JPH01134872A - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JPH01134872A
JPH01134872A JP62291104A JP29110487A JPH01134872A JP H01134872 A JPH01134872 A JP H01134872A JP 62291104 A JP62291104 A JP 62291104A JP 29110487 A JP29110487 A JP 29110487A JP H01134872 A JPH01134872 A JP H01134872A
Authority
JP
Japan
Prior art keywords
solvent
succinic anhydride
organic electrolyte
battery
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62291104A
Other languages
Japanese (ja)
Other versions
JPH084015B2 (en
Inventor
Yoshinori Toyoguchi
豊口 吉徳
Junichi Yamaura
純一 山浦
Toru Matsui
徹 松井
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62291104A priority Critical patent/JPH084015B2/en
Publication of JPH01134872A publication Critical patent/JPH01134872A/en
Publication of JPH084015B2 publication Critical patent/JPH084015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To enhance the overdischarge characteristics by using a mixture solvent consisting of an organic electrolyte solvent to which at least succinic anhydride is added. CONSTITUTION:A mixture solvent containing succinic anhydride is used to the solvent for organic electrolyte. This provides a charge/discharge characteristics equivalent to or better than when a conventional mixture solvent of PC or EC and ethers is used, and even an overdischarge causes less dissolution of the solvent, to allow sufficient charging/discharging thereafter. Here mix proportion of succinic anhydride to the other solvent shall be 1:10 thru 30:10 by mol.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極にリチウムなどを用いた有機電解質二次
電池の改良に関するものでアシ、特に有機電解質を構成
する有機溶媒の改良により、電池の過放電特性の向上を
目指すものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the improvement of organic electrolyte secondary batteries using lithium or the like as a negative electrode. The aim is to improve discharge characteristics.

従来の技術 負極にリチウムやリチウム合金、正極に、活物質として
の二硫化チタン(T iS 2 沖、二酸化マンガン(
Mn 02 ) 、三二酸化クロム(Cr2o5)に、
導電剤としてのアセチレンブラックなどの炭素粉を混合
して作製された電極を用いた有機電解質二次電池の研究
が活発に行われている。これらの電池の電解質には、プ
ロビレンカーボネー)(PC)やエチレンカーボネー)
(EC)などのカーボネート類に、ジメトキシエタン(
DME)や、2−メチルテトラヒドロフラン(2−M4
?−THF )  ナトのエーテル類を混合した混合溶
媒に、過塩素リチウム(LiC104)やリチウムへキ
サクロロアルシネ−) (L i A s F e )
を溶質として溶解した有機電解質が用いられて来た。
Conventional technology Lithium or lithium alloy is used as the negative electrode, and titanium disulfide (TiS 2 Oki) and manganese dioxide (
Mn 02 ), chromium sesquioxide (Cr2o5),
Research is actively being conducted on organic electrolyte secondary batteries using electrodes made by mixing carbon powder such as acetylene black as a conductive agent. The electrolytes in these batteries include propylene carbonate (PC) and ethylene carbonate).
Dimethoxyethane (
DME), 2-methyltetrahydrofuran (2-M4
? -THF) Lithium perchlorate (LiC104) or lithium hexachloroarsine) (LiAsFe)
Organic electrolytes have been used in which the solute is dissolved.

発明が解決しようとする問題点 従来のPCは、誘電率が大であるが粘度が大であるため
、電池に使用すると高率放電時に電圧の低下、正極の利
用率の低下が起こる。一方、DMEや2−Me−THF
などのエーテル類では粘度は小さいが誘電率が小さいた
め、溶質のL I CI 04などを十分な割合でイオ
ン解離させることができず、高率放電時に、電池電圧の
低下や利用率の低下が起こった。このため、PCやEC
などのカーボネート類と、エーテル類を混合して、十分
な溶質のイオン解離を得るとともに、粘度の低下を図っ
て、電池の放電特性を向上させて来た。しかし、これら
の電解質中で電池を過放電させると、正極の電位の低下
に伴い、活物質表面や、導電剤に使用している炭素粉の
表面でPC+ECなどカーボネート類の溶媒の分解が起
こシ、分解生成物が正極粒子表面を覆って、以後の充放
電特性は、急激に低下した。
Problems to be Solved by the Invention Conventional PC has a high dielectric constant but a high viscosity, so when used in batteries, a drop in voltage and a drop in the utilization rate of the positive electrode occur during high rate discharge. On the other hand, DME and 2-Me-THF
Ethers such as ethers have a low viscosity but a low dielectric constant, so they cannot ionically dissociate solutes such as L I CI 04 at a sufficient rate, resulting in a decrease in battery voltage and utilization rate during high rate discharge. Happened. For this reason, PC and EC
By mixing carbonates such as ethers with ethers, sufficient ionic dissociation of solutes is obtained and the viscosity is lowered, thereby improving the discharge characteristics of batteries. However, when a battery is over-discharged in these electrolytes, the potential of the positive electrode decreases, causing decomposition of carbonate solvents such as PC+EC on the surface of the active material and the surface of the carbon powder used as the conductive agent. , the decomposition products covered the surface of the positive electrode particles, and the subsequent charge-discharge characteristics deteriorated rapidly.

本発明は上記従来技術の問題点に鑑み、PCやECに代
って、溶質のLi(JO4などを十分にイオン解離させ
る能力を持ち、かつ過放電で正極の電位が低下しても分
離しない溶媒を使用する電池を提供することを目的とす
る。
In view of the problems of the prior art described above, the present invention, in place of PC and EC, has the ability to sufficiently ionically dissociate the solute Li (JO4, etc.), and does not separate even if the potential of the positive electrode decreases due to overdischarge. The purpose of the present invention is to provide a battery that uses a solvent.

問題点を解決するだめの手段 本発明は、従来の有機電解質に用いる溶媒に、無水コハ
ク酸を含む混合溶媒を使用することを特徴とする有機電
解質電池である。
Means for Solving the Problems The present invention is an organic electrolyte battery characterized in that a mixed solvent containing succinic anhydride is used as a solvent for a conventional organic electrolyte.

作   用 無水コハク酸は、ECと同じように20℃では固体であ
る。しかし、DMEや2−Me−THFには溶解するの
で、エーテル類との混合溶媒を形成することができる。
Effect Succinic anhydride, like EC, is a solid at 20°C. However, since it dissolves in DME and 2-Me-THF, a mixed solvent with ethers can be formed.

このエーテル類と無水コハク酸の混合溶媒を用いること
により、溶質の十分なイオン解離によると思われる、従
来のPCやECとエーテル類との混合溶媒を用いた時と
同等もしくは以上の充放電特性が得られ、さらに過放電
を行っても、PCやECを用いた場合と異り、溶媒の分
解が少なく、その後十分な充放電が行える。
By using this mixed solvent of ethers and succinic anhydride, charge-discharge characteristics are equal to or better than when using conventional mixed solvents of PC or EC and ethers, which is thought to be due to sufficient ionic dissociation of the solute. is obtained, and even if overdischarge is performed, there is little decomposition of the solvent, unlike when using PC or EC, and sufficient charging and discharging can be performed thereafter.

実施例 以下に本発明の詳細な説明する。Example The present invention will be explained in detail below.

(実施例1) 負極に直径17.6n、厚さ0.511Mの円板状リチ
ウムを用いた。この時の理論充填量は247 mAhで
ある。正極には、二酸化マンガン100重量に導電剤と
してのアセチレンブラック10重量部、結着剤としての
ポリ四フッ化エチレン樹脂10重量部を加えた合剤0.
4gを、直径17.5nの円盤状に圧縮成形したものを
用いた。この正極の理論充填容量は103 mAh  
であった。この正極、負極を用いて第1図に示した扁平
形電池を構成し、有機電解質の違いによる特性差を検討
した。
(Example 1) Disc-shaped lithium with a diameter of 17.6 nm and a thickness of 0.511 M was used for the negative electrode. The theoretical filling amount at this time is 247 mAh. The positive electrode was made of a mixture of 100 parts by weight of manganese dioxide, 10 parts by weight of acetylene black as a conductive agent, and 10 parts by weight of polytetrafluoroethylene resin as a binder.
4g was compression-molded into a disk shape with a diameter of 17.5n. The theoretical filling capacity of this positive electrode is 103 mAh
Met. A flat battery shown in FIG. 1 was constructed using these positive and negative electrodes, and differences in characteristics due to differences in organic electrolytes were investigated.

第1図において、1は電池ケース、2は封口板、3は負
極、4はセパレータ、6は正極、eはガスケットである
In FIG. 1, 1 is a battery case, 2 is a sealing plate, 3 is a negative electrode, 4 is a separator, 6 is a positive electrode, and e is a gasket.

有機電解質の溶質として、全て濃度1モル/lのL I
 C1104を用いた。有機電解質の混合溶媒として、
本発明の溶媒として、モル比で6:1oの無水コハク酸
とDMEの混合溶媒を用いた電池をA、同じ<5:10
の無水コハク酸と2−Me−THFを用いた電池をBと
する。また従来例として、6:10のPCとDMEを用
いた電池をC1同じ(5:10のPCと2−Me−TH
Fを用いた電池をD、2−M e −T HF単独溶媒
を用いた電池をEとする。
As a solute in an organic electrolyte, all concentrations of L I are 1 mol/l.
C1104 was used. As a mixed solvent for organic electrolytes,
A battery using a mixed solvent of succinic anhydride and DME at a molar ratio of 6:1o as the solvent of the present invention is A, the same <5:10.
B is a battery using succinic anhydride and 2-Me-THF. In addition, as a conventional example, a battery using 6:10 PC and DME is the same as C1 (5:10 PC and 2-Me-TH
A battery using F is designated as D, and a battery using 2-M e -T HF as a sole solvent is designated as E.

各電池を2mAで2vまで放電し、3.9vまで充電す
るサイクルを10サイクルまで行い、11サイクル日以
降は放電を電池端子電圧がoVになるまで行った。第2
図には、各電池の16サイクル日の放電曲線を示す。こ
れより、過放電を行った場合でも、本発明の無水コハク
酸の混合溶媒を用いた場合において、良好な充放電サイ
クルが可能であることがわかる。また、過放電を行う前
の8サイクル目の電池の放電曲線を第3図に示す。
Each battery was discharged to 2V at 2 mA and charged to 3.9V for up to 10 cycles, and after the 11th cycle, discharge was continued until the battery terminal voltage reached oV. Second
The figure shows the discharge curve of each battery on 16 cycle days. This shows that even when overdischarging is performed, good charge/discharge cycles are possible when the mixed solvent of succinic anhydride of the present invention is used. Further, FIG. 3 shows the discharge curve of the battery at the 8th cycle before over-discharging.

Eの2−M e −T HF単独溶媒に比べ、無水コハ
ク酸を添加したBの電池では、従来のPCを用いた混合
溶媒と同等もしくは、それ以上の性能を示すことがわか
る。
It can be seen that, compared to the 2-M e -T HF single solvent shown in E, the battery shown in B to which succinic anhydride was added exhibits performance equivalent to or better than that of the conventional mixed solvent using PC.

(実施例2) 無水コハク酸は室温で固体であるため、他の溶媒との混
合が必要である。実施例1と同じ構成の電池を作り、混
合溶媒として、無水コハク酸とDMEの混合溶媒を用い
、その混合比を変えて充放電特性を検討した。溶質には
、濃度1モル/4のリチウムへキサフロロフォスフニー
) (L 1PFe )を用いた。充放電条件は、実施
例1と同様に行った。第4図には、混合溶媒中の無水コ
ハク酸のモル比を変えた時の過放電を行った時の第15
サイクル目の放電容量をプロットした。DME10モル
に対して、無水コハク酸が1モル未満では、L iP 
F csのイオン解離が不十分であると思われる放電容
量の低下が見られ、また30モルを超えると粘度が増し
全ての無水コハク酸がDMEに溶解しなくなる。このた
め、無水コハク酸とDMEの比率は、1:10から30
:10が良い。
Example 2 Since succinic anhydride is solid at room temperature, mixing with other solvents is necessary. A battery having the same configuration as in Example 1 was made, and a mixed solvent of succinic anhydride and DME was used as the mixed solvent, and the charging/discharging characteristics were examined by changing the mixing ratio. As the solute, lithium hexafluorophosphine (L 1PFe ) having a concentration of 1 mol/4 was used. The charging and discharging conditions were the same as in Example 1. Figure 4 shows the 15th graph when overdischarge was performed while changing the molar ratio of succinic anhydride in the mixed solvent.
The discharge capacity at the cycle was plotted. If succinic anhydride is less than 1 mol per 10 mol of DME, LiP
A decrease in discharge capacity, which seems to be due to insufficient ion dissociation of F cs, was observed, and when the amount exceeds 30 mol, the viscosity increases and all of the succinic anhydride becomes insoluble in DME. Therefore, the ratio of succinic anhydride to DME is 1:10 to 30.
:10 is good.

(実施例3) 過放電を行うと分解するPCやEC存在下での無水コハ
ク酸添加の効果を調べた。実施例1と同様の電池を用い
て、有機電解質の混合溶媒として、無水コハク酸:PC
:DMEが5:5:10の電解質を用いた電池をF、従
来例としてのPC:DMEが5=10の電解質を用いた
電池をGとする。実施例1と同じ条件で充放電を行った
(Example 3) The effect of adding succinic anhydride in the presence of PC and EC, which decompose when overdischarged, was investigated. Using the same battery as in Example 1, succinic anhydride:PC was used as the mixed solvent of the organic electrolyte.
A battery using an electrolyte with :DME of 5:5:10 is designated as F, and a conventional battery using an electrolyte with PC:DME of 5=10 is designated as G. Charging and discharging were performed under the same conditions as in Example 1.

第6図には、過放電を行った第16サイクル日の放電曲
線を示す。これより、従来のPCとDMEの混合溶媒に
、さらに無水コハク酸を添加した時にも、過放電特性が
向上していることがわかる。
FIG. 6 shows a discharge curve on the 16th cycle day when overdischarge was performed. This shows that the overdischarge characteristics are improved even when succinic anhydride is further added to the conventional mixed solvent of PC and DME.

以上の実施例は、正極活物質にM n O2を用いた場
合を示しだが、TiS2やCr2O5やへ三酸化クロム
(Cr3O8)を用いた場合にも同様な効果が見られた
Although the above examples show the case where MnO2 was used as the positive electrode active material, similar effects were observed when TiS2, Cr2O5, or chromium trioxide (Cr3O8) was used.

発明の効果 以上のように、本発明により、過放電特性に優れた電池
が得られる。
Effects of the Invention As described above, the present invention provides a battery with excellent overdischarge characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の有機電解質電池の縦断面図
、第2図は各種溶媒を用いた電池の過放電を行った後の
充放電での放電特性図、第3図は過放電を行う前の充放
電での放電特性図、第4図は混合溶媒中の無水コハク酸
のモル比を変えた時の電池の放電容量特性図、第6図は
各種溶媒を用いた電池の過放電を行った後の充放電での
放電特性図である。 A、B、F・・・・・・本発明の実施例電池、C,D、
E。 G・・・・・・従来電池。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名3−
 負  極 !−1!パレーク 5−正 極 第1図 第 2 図 放電時閉(s間) 第4図 χ 兵水コハク酸、D閂E〜χ:10 第5図 ×電眸間(呼量)
Fig. 1 is a vertical cross-sectional view of an organic electrolyte battery according to an embodiment of the present invention, Fig. 2 is a discharge characteristic diagram during charging and discharging after overdischarging the battery using various solvents, and Fig. Figure 4 is a diagram of discharge characteristics during charging and discharging before discharging, Figure 4 is a diagram of discharge capacity characteristics of batteries when the molar ratio of succinic anhydride in the mixed solvent is changed, and Figure 6 is a diagram of discharge capacity characteristics of batteries using various solvents. FIG. 3 is a discharge characteristic diagram during charging and discharging after overdischarging. A, B, F... Example batteries of the present invention, C, D,
E. G... Conventional battery. Name of agent: Patent attorney Toshio Nakao and 1 other person3-
Negative pole! -1! Pareque 5-positive pole Fig. 1 Fig. 2 Closed during discharge (s interval) Fig. 4 χ Hydrochloric acid succinic acid, D bar E ~ χ: 10 Fig. 5 × Telephone interval (volume)

Claims (2)

【特許請求の範囲】[Claims] (1)負極と、正極と、有機電解質を有し、有機電解質
の溶媒に、少なくとも、無水コハク酸を添加した混合溶
媒を用いたことを特徴とする有機電解質二次電池。
(1) An organic electrolyte secondary battery comprising a negative electrode, a positive electrode, and an organic electrolyte, using a mixed solvent containing at least succinic anhydride as the solvent for the organic electrolyte.
(2)無水コハク酸とそれ以外の溶媒の混合割合がモル
比で、1:10から30:10であることを特徴とする
特許請求の範囲第1項記載の有機電解質二次電池。
(2) The organic electrolyte secondary battery according to claim 1, wherein the molar ratio of the succinic anhydride to the other solvent is from 1:10 to 30:10.
JP62291104A 1987-11-18 1987-11-18 Organic electrolyte secondary battery Expired - Fee Related JPH084015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62291104A JPH084015B2 (en) 1987-11-18 1987-11-18 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62291104A JPH084015B2 (en) 1987-11-18 1987-11-18 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH01134872A true JPH01134872A (en) 1989-05-26
JPH084015B2 JPH084015B2 (en) 1996-01-17

Family

ID=17764501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62291104A Expired - Fee Related JPH084015B2 (en) 1987-11-18 1987-11-18 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH084015B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355065A (en) * 1991-05-30 1992-12-09 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
KR100801592B1 (en) * 2006-01-05 2008-02-11 제일모직주식회사 Nonaqueous electrolyte including succinic acid and tri-methylsillyl borate and lithium secondary battery using thereof
US8173297B2 (en) 2006-08-25 2012-05-08 Sony Corporation Electrolytic solution containing an acyl halide and battery containing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355065A (en) * 1991-05-30 1992-12-09 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
KR100801592B1 (en) * 2006-01-05 2008-02-11 제일모직주식회사 Nonaqueous electrolyte including succinic acid and tri-methylsillyl borate and lithium secondary battery using thereof
US8173297B2 (en) 2006-08-25 2012-05-08 Sony Corporation Electrolytic solution containing an acyl halide and battery containing same

Also Published As

Publication number Publication date
JPH084015B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
EP0827231B1 (en) Non-aqueous electrolyte lithium secondary battery
US5013620A (en) Nonaqueous electrolyte secondary cell
JP2561556B2 (en) Positive electrode active material for lithium secondary battery
JPH07320784A (en) Nonaqeous electrolytic lithium secondary battery
JPH0837025A (en) Nonaqueous electrolyte
JPH01134873A (en) Organic electrolyte secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JPH10188977A (en) Lithium secondary battery
JP2940015B2 (en) Organic electrolyte secondary battery
JPH01134872A (en) Organic electrolyte secondary battery
JPH05251080A (en) Negative electrode for nonaqueous electrolyte secondary cell and its manufacture
JPH1027627A (en) Lithium secondary battery
JPS6151387B2 (en)
JPH07134986A (en) Nonaqueous electrolyte battery
JPH03192663A (en) Nonaqueous electrolyte secondary battery
JPH01132067A (en) Organic electrolyte secondary cell
JPH05307974A (en) Organic electrolyte secondary battery
JPH0495362A (en) Nonaqueous electrolytic battery
JPH0770326B2 (en) Organic electrolyte battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
JPH07296850A (en) Nonaqueous electrolyte lithium secondary battery
JPH01320780A (en) Organic electrolytic accumulator
JP2801684B2 (en) Non-aqueous electrolyte secondary battery
JPH05283104A (en) Organic electrolyte secondary battery
JPH0315300B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees