JPH01134861A - Manufacture of hydrogen absorption alloy electrode - Google Patents

Manufacture of hydrogen absorption alloy electrode

Info

Publication number
JPH01134861A
JPH01134861A JP62294332A JP29433287A JPH01134861A JP H01134861 A JPH01134861 A JP H01134861A JP 62294332 A JP62294332 A JP 62294332A JP 29433287 A JP29433287 A JP 29433287A JP H01134861 A JPH01134861 A JP H01134861A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
chloride
manufacturing
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62294332A
Other languages
Japanese (ja)
Inventor
Sanehiro Furukawa
古川 修弘
Kenji Inoue
健次 井上
Takanao Matsumoto
松本 孝直
Seiji Kameoka
亀岡 誠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62294332A priority Critical patent/JPH01134861A/en
Publication of JPH01134861A publication Critical patent/JPH01134861A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enhance the quality and performance of a battery by immersing a porous body in an alcoholic solution of two types or more of metal compounds followed by drying, reducing the metal compounds, and eluding a hydrogen occluding alloy, which is to be used as positive electrode. CONSTITUTION:A porous body is immersed in an alcoholic solution of two types or more of metal compounds, followed by drying. The metal compounds are reduced, and on the porous body a hydrogen absorption alloy is formed, which is used as positive electrode. Examples of metal compounds are lanthanum chloride plus nickel chloride, titanium chloride plus nickel chloride, lanthanum chloride plus nickel chloride plus cobalt chloride, magnesium chloride plus nickel chloride, calcium chloride plus nickel chloride, lanthanum/nitric acid compound plus nickel/nitric acid compound, and magnesium/perchloric acid compound plus nickel chloride. Their reduction is made by heating to 1000-1300 deg.C in Li vapor. As the porous body it is desirable of using a one formed from sintered nickel.

Description

【発明の詳細な説明】 主星上■■■分団 本発明は金属酸化物から成る正極活物質を備えた正極と
、水素吸蔵合金を備えた負極とを有する金属−水素アル
カリ蓄電池の水素吸蔵合金電極の製造方法に関するもの
である。
Detailed Description of the Invention The present invention provides a hydrogen storage alloy electrode for a metal-hydrogen alkaline storage battery having a positive electrode having a positive electrode active material made of a metal oxide and a negative electrode having a hydrogen storage alloy. The present invention relates to a manufacturing method.

従来■肢歪 従来より、蓄電池としては鉛電池及びニッケルーカドミ
ウム電池がよく用いられているが、近年、これらの電池
より軽量で且つ高容量化が可能な金属−水素アルカリ蓄
電池の開発が盛んに行われている。この金属−水素アル
カリ蓄電池は、特に低圧で水素を可逆的に吸蔵及び放出
することのできる水素吸蔵合金を負極に備えると共に、
水酸化ニッケル等の金属酸化物からなる正極活物質を正
極に備えるような構造である。
Conventional ■ Limb strain Traditionally, lead batteries and nickel-cadmium batteries have been commonly used as storage batteries, but in recent years, metal-hydrogen alkaline storage batteries, which are lighter than these batteries and can have higher capacities, have been actively developed. It is being done. This metal-hydrogen alkaline storage battery is equipped with a hydrogen storage alloy in the negative electrode that can reversibly store and release hydrogen especially at low pressure, and
It has a structure in which the positive electrode is equipped with a positive electrode active material made of a metal oxide such as nickel hydroxide.

ところで、上記金属−水素アルカリ蓄電池の負極に用い
られる水素吸蔵合金としては、特公昭59−31829
号公報に示すように、チタンとコバルトとからなるよう
なものが提案されている。
By the way, as a hydrogen storage alloy used for the negative electrode of the above-mentioned metal-hydrogen alkaline storage battery, Japanese Patent Publication No. 59-31829
As shown in the publication, a material made of titanium and cobalt has been proposed.

しかし、この水素吸蔵合金は粉体の形で用いられている
ため、水素ガスを繰り返し吸蔵、放出すると徐々に破砕
されて微粉化する。このため、水素吸蔵合金が電極から
剥離、脱落し、負極の容量が低下するという問題点を有
していた。
However, since this hydrogen-absorbing alloy is used in the form of a powder, if it repeatedly absorbs and releases hydrogen gas, it will gradually be crushed into fine powder. Therefore, there was a problem in that the hydrogen storage alloy peeled off and fell off from the electrode, resulting in a decrease in the capacity of the negative electrode.

そこで、特開昭58−27976号公報に示すように、
フラッシュ蒸着法により希土類金属−Ni系合金から成
る水素吸蔵合金薄膜を基板上に形成するようなものが提
案されている。
Therefore, as shown in Japanese Patent Application Laid-open No. 58-27976,
A method has been proposed in which a hydrogen storage alloy thin film made of a rare earth metal-Ni alloy is formed on a substrate by a flash vapor deposition method.

■ く”しよ゛と−る。 占 しかしながら、上記製造方法で作製した水素吸蔵合金は
結晶状であるため、水素吸蔵合金が電極から剥離すると
いう問題を完全に解決するには到らない。更に、水素吸
蔵合金作製工程を経た後に薄膜工程が必要となるため製
造工程が複雑化し、電池の製造コストが高くなり、加え
て、水素吸蔵合金の膜厚を大きくすることができないた
め、水素吸蔵合金の高容量化を図ることができない等の
問題点を有していた。
■ It is possible to do so. However, since the hydrogen storage alloy produced by the above manufacturing method is crystalline, it is not possible to completely solve the problem of the hydrogen storage alloy peeling off from the electrode. Furthermore, a thin film process is required after the hydrogen storage alloy manufacturing process, which complicates the manufacturing process and increases the manufacturing cost of the battery.In addition, since the film thickness of the hydrogen storage alloy cannot be increased, There were problems such as the inability to increase the capacity of the alloy.

本発明は従来のこのような問題点を解決して、水素ガス
の吸蔵、放出を繰り返し行った場合であっても水素吸蔵
合金が電極から剥離するのを完全に防止して電池容量が
低下するのを防ぎ、且つ製造工程を簡素化し、加えて水
素吸蔵合金の高容量化を図ることにより、高品質、高性
能且つ安価な水素吸蔵合金電極の製造方法の提供を目的
とするものである。
The present invention solves these conventional problems and completely prevents the hydrogen storage alloy from peeling off from the electrode even when hydrogen gas is stored and released repeatedly, resulting in a decrease in battery capacity. The purpose of the present invention is to provide a method for manufacturing a high-quality, high-performance, and inexpensive hydrogen-absorbing alloy electrode by preventing this, simplifying the manufacturing process, and increasing the capacity of the hydrogen-absorbing alloy.

1、 占 2 るための 本発明は上記の目的を達成するために、2種以上の金属
化合物をアルコール溶液に溶解させる第1ステップと、
上記アルコール溶液に多孔体を浸漬した後、この多孔体
を乾燥させる第2ステップと、前記金属化合物を還元さ
せて上記多孔体上に水素吸蔵合金を形成して正極を作成
する第3ステップとを有することを特徴とするものであ
る。
1. In order to achieve the above object, the present invention includes a first step of dissolving two or more metal compounds in an alcohol solution;
After immersing the porous body in the alcohol solution, a second step of drying the porous body; and a third step of reducing the metal compound to form a hydrogen storage alloy on the porous body to create a positive electrode. It is characterized by having.

作二−−−月− 本発明は上記のように、多孔体の表面に付着した2種以
上の金属化合物を還元させて、多孔体の表面に水素吸蔵
合金を形成している。このように、多孔体の表面にて水
素吸蔵合金を形成しているので、多孔体と水素吸蔵合金
との密着性が向上する。
As described above, the present invention reduces two or more metal compounds attached to the surface of a porous body to form a hydrogen storage alloy on the surface of the porous body. In this way, since the hydrogen storage alloy is formed on the surface of the porous body, the adhesion between the porous body and the hydrogen storage alloy is improved.

この結果、水素ガスの吸蔵、放出を繰り返し行っても水
素吸蔵合金は破砕されず、水素吸蔵合金が微粉化するの
を防ぐことができるので、負極から水素吸蔵合金が剥離
、脱落するのを防止しうる。
As a result, even if hydrogen gas is repeatedly absorbed and released, the hydrogen-absorbing alloy will not be crushed, and the hydrogen-absorbing alloy will be prevented from becoming pulverized, thereby preventing the hydrogen-absorbing alloy from peeling off or falling off from the negative electrode. I can do it.

また、上記製造方法で作製された水素吸蔵合金はアモル
ファス化しているということによっても、水素吸蔵合金
が微粉化するのを防ぐことができ、負極から水素吸蔵合
金が剥離、脱落するのを防止しろる。
Furthermore, since the hydrogen storage alloy produced by the above manufacturing method is amorphous, it is possible to prevent the hydrogen storage alloy from becoming pulverized, and to prevent the hydrogen storage alloy from peeling off or falling off from the negative electrode. Ru.

更に、上記の如く多孔体と水素吸蔵合金との密着性は良
好であるため、多孔体の表面に厚い水素吸蔵層を形成す
ることができ、負極の水素吸蔵量を多くすることができ
る。
Furthermore, since the adhesion between the porous body and the hydrogen storage alloy is good as described above, a thick hydrogen storage layer can be formed on the surface of the porous body, and the amount of hydrogen storage in the negative electrode can be increased.

加えて、水素吸蔵合金を別途作製する工程が不要となる
ので、製造工程を簡素化することができる。
In addition, since a separate process for producing a hydrogen storage alloy is not necessary, the manufacturing process can be simplified.

実−」L−桝 以下、本発明の実施例について述べる。Fruit-”L-masu Examples of the present invention will be described below.

〔第1実施例〕 先ず初めに、ランタン塩化物(L a CI!3  ・
8H,0)400gと、ニッケル塩化物(N i C1
2・682O)12O0gとをアルコール溶解させる。
[First Example] First, lanthanum chloride (L a CI!3 ・
8H,0) and 400 g of nickel chloride (N i C1
2.682O) 12O0g is dissolved in alcohol.

次に、このアルコール溶液に焼結式ニッケル板を浸漬し
た後、この焼結式ニッケル板を乾燥させる。そして、こ
れら浸漬、乾燥工程を数回繰り返した後、上記焼結式ニ
ッケル板を金属リチウムの蒸気中(温度1100℃)で
1時間加熱し、上記両温化物を還元させる。しかる後、
焼結式ニッケル板を冷却し、更にこの焼結式ニッケル板
をアルコール溶液に浸漬して未反応の前記塩化物をアル
コール溶液に溶出させて、焼結式ニッケル板上から未反
応の塩化物を除去する。これによって、焼結式ニッケル
板の表面には[、 a N i sという組成の水素吸
蔵合金が形成される。
Next, after immersing the sintered nickel plate in this alcohol solution, the sintered nickel plate is dried. After repeating these immersion and drying steps several times, the sintered nickel plate is heated in metallic lithium vapor (temperature 1100° C.) for one hour to reduce the two warmed products. After that,
The sintered nickel plate is cooled, and the sintered nickel plate is immersed in an alcohol solution to dissolve the unreacted chloride into the alcohol solution, and the unreacted chloride is removed from the sintered nickel plate. Remove. As a result, a hydrogen storage alloy having a composition of [, aN i s is formed on the surface of the sintered nickel plate.

(第2実施例〕 金属化合物として、チタン塩化物(TiC6g>2O0
gと、ニッケル塩化物(NicIlz  ・6H.0)
2O0gとを用い、且つ加熱温度を1000℃で行った
以外は第1実施例と同様にして作成した。これにより、
焼結式ニッケル板の表面にはTi.Niという組成の水
素吸蔵合金が形成される。
(Second Example) Titanium chloride (TiC6g>2O0
g and nickel chloride (NicIlz ・6H.0)
It was prepared in the same manner as in Example 1, except that 2O0g was used and the heating temperature was 1000°C. This results in
The surface of the sintered nickel plate contains Ti. A hydrogen storage alloy having a composition of Ni is formed.

〔第3実施例〕 金属化合物として、ランタン塩化物(L a C I!
、・8HtO)400gと、ニッケル塩化物(NicI
lz  ・6Hz O)500gと、コバルト塩化物(
CoC&!z )400gとを用い、且つ加熱温度を1
300℃で行った以外は第1実施例と同様にして作成し
た。これにより、焼結式ニッケル板の表面には、LaN
i,Co3という組成を有する水素吸蔵合金が形成され
る。
[Third Example] As a metal compound, lanthanum chloride (L a C I!
, 400 g of 8HtO) and 400 g of nickel chloride (NicI
lz ・6Hz O) 500g and cobalt chloride (
CoC&! z) 400g, and the heating temperature was 1
It was prepared in the same manner as in the first example except that the temperature was 300°C. As a result, the surface of the sintered nickel plate has LaN
A hydrogen storage alloy having the composition i,Co3 is formed.

〔第4実施例〕 金属化合物として、マグネシウム塩化物(MgClt 
 ・6 H□O)400gと、ニッケル塩化物(NIC
1z  ・6Hz O)250gとを用い、且つ加熱温
度を1300℃で行った以外は第1実施例と同様にして
作成した。これにより、焼結式ニッケル板の表面にはM
gzNiという組成の水素吸蔵合金が形成される。
[Fourth Example] As a metal compound, magnesium chloride (MgClt
・6H□O) 400g and nickel chloride (NIC
It was prepared in the same manner as in Example 1, except that 250 g of 1z 6 Hz O) was used and the heating temperature was 1300°C. As a result, the surface of the sintered nickel plate has M
A hydrogen storage alloy having the composition gzNi is formed.

〔第5実施例〕 金属化合物として、カルシウム塩化物(CaCl,・6
H.O)2O0gと、ニッケル塩化物(Ni(1!, 
 ・6HgO)1000gとを用い、且つ加熱温度を1
300℃で行った以外は第1実施例と同様にして作成し
た。これにより、焼結式ニッケル板の表面にはC a 
N i sという組成の水素吸蔵合金が形成される。
[Fifth Example] As a metal compound, calcium chloride (CaCl, 6
H. O)2O0g and nickel chloride (Ni(1!,
・6HgO) 1000g and heating temperature 1
It was prepared in the same manner as in the first example except that the temperature was 300°C. As a result, the surface of the sintered nickel plate has C a
A hydrogen storage alloy having a composition of N i s is formed.

〔第6実施例〕 金属化合物として、ランタン硝酸化合物(La(Noi
z  ・6Hz O)100gと、ニッケル硝酸化合物
[N i  (N 03 ) z  ・6H2O)14
00gと用いた以外は第1実施例と同様にして作成した
。これにより、焼結式ニッケル板の表面にはLaNi、
という組成の水素吸蔵合金が形成される。
[Sixth Example] As a metal compound, a lanthanum nitrate compound (La (Noi
z ・6Hz O) 100 g and nickel nitrate compound [N i (N 03 ) z ・6H2O) 14
It was prepared in the same manner as in the first example except that 00g was used. As a result, the surface of the sintered nickel plate has LaNi,
A hydrogen storage alloy with the following composition is formed.

〔第7実施例〕 金属化合物として、マグネシウム過塩素酸化合物(Mg
 (C10a )z )2O0gと、ニッケル塩化′J
j!yJ(Nicl、  ・6H2O)400gとを用
い、且つ加熱温度を1300℃で行った以外は第1実施
例と同様にして作成した。これにより、焼結式ニッケル
板の表面にはMgzNiという組成の水素吸蔵合金が形
成される。
[Seventh Example] Magnesium perchlorate compound (Mg
(C10a)z)2O0g and nickel chloride'J
j! It was prepared in the same manner as in Example 1, except that 400 g of yJ (NiCl, .6H2O) was used and the heating temperature was 1300°C. As a result, a hydrogen storage alloy having a composition of MgzNi is formed on the surface of the sintered nickel plate.

尚、上記第1実施例乃至第7実施例においては水素吸蔵
合金の製造方法について説明したが、これら水素吸蔵合
金を電極として使用できることは実験により確認済であ
る。
In addition, in the first to seventh embodiments described above, the method of manufacturing hydrogen storage alloys has been described, but it has been confirmed through experiments that these hydrogen storage alloys can be used as electrodes.

ここで、第1実施例、第2実施例、第4実施例、及び第
5実施例で作製した水素吸蔵多孔体をそれぞれ圧力容器
に充填し、水素ガスを吸蔵させたときの水素吸蔵量を以
下の表1に示す。尚、実験条件は40℃の温度雰囲気で
、水素ガス圧は2O気圧で行った。
Here, the hydrogen storage amount when the hydrogen storage porous bodies produced in the first example, the second example, the fourth example, and the fifth example are filled into a pressure vessel and stored hydrogen gas is calculated. It is shown in Table 1 below. The experimental conditions were a temperature atmosphere of 40° C. and a hydrogen gas pressure of 20 atm.

上記表1から明らかなように、第1実施例の水素吸蔵合
金(LaNi、)では水素吸蔵量が1.3i%であり、
第2実施例の水素吸蔵合金(Tj。
As is clear from Table 1 above, the hydrogen storage alloy (LaNi) of the first example has a hydrogen storage capacity of 1.3i%,
Hydrogen storage alloy (Tj.

Ni)では水素吸蔵量が1.2ht%であり、第4実施
例の水素吸蔵合金(MgzNi)では水素吸蔵量が3.
5wt%であり、第5実施例の水素吸蔵合金(CaNi
、)では水素吸蔵量が1.1wt%であることが認めら
れる。この結果、熔解法により作製した合金と同程度の
水素吸蔵量を有していることが伺える。
Ni) has a hydrogen storage capacity of 1.2ht%, and the hydrogen storage alloy (MgzNi) of the fourth example has a hydrogen storage capacity of 3.2ht%.
5 wt%, and the hydrogen storage alloy of the fifth example (CaNi
, ), it is recognized that the hydrogen storage amount is 1.1 wt%. As a result, it can be seen that the alloy has a hydrogen storage capacity comparable to that of the alloy produced by the melting method.

〔第8実施例〕 前記第3実施例の方法を用いて、焼結式ニッケル板の表
面に厚み25〜30μmの1aNizc0、膜を形成し
た水素吸蔵多孔体から成る負極と、理論界IJ 500
mAhの公知の焼結式ニッケル極から成る正極と、6規
定の水酸化カリウム水溶液から成る電解液とを用いてニ
ッケル水素電池を作製した。
[Eighth Example] Using the method of the third example, a negative electrode consisting of a hydrogen storage porous body with a 25-30 μm thick 1aNizc0 film formed on the surface of a sintered nickel plate, and a theoretical IJ 500
A nickel-metal hydride battery was fabricated using a positive electrode consisting of a known sintered nickel electrode of mAh and an electrolyte consisting of a 6N potassium hydroxide aqueous solution.

以下、この電池を(A)電池と称する。Hereinafter, this battery will be referred to as the (A) battery.

〔比較例〕[Comparative example]

LaNi、Co、合金粉末とNi粉末とをNi網で覆っ
た後これを加圧形成して作成した負極を用いる他は上記
第8実施例と同様の方法で製造した。
It was manufactured in the same manner as in Example 8, except that a negative electrode was prepared by covering LaNi, Co, alloy powder, and Ni powder with a Ni net and then forming the same under pressure.

以下、この電池を(B)電池と称する。Hereinafter, this battery will be referred to as the (B) battery.

ここで、上記第8実施例の(A)電池と、比較例の(B
)電池とのサイクル特性試験を行ったので、その結果を
第1図に示す。
Here, the (A) battery of the eighth example and the (B) battery of the comparative example are compared.
) A cycle characteristic test was conducted with the battery, and the results are shown in Figure 1.

尚、試験条件は115 Cの電流値で5時間充電した後
、1/2Cの電流値で放電電圧が1.OVに低下するま
で放電を行なった。
The test conditions were: after charging for 5 hours at a current value of 115C, the discharge voltage was 1.5C at a current value of 1/2C. Discharge was continued until the voltage dropped to OV.

第1図より、比較例の(B)電池では約22O0サイク
ル経過後に急激に電池容量が低下するのに対して、本発
明の(A)電池では3000サイクル経過後であっても
電池容量の急激な低下は認められない。したがって、本
発明の(A)電池は、比較例の(B)電池に比べ、サイ
クル寿命が飛躍的に向上していることが伺える。
From FIG. 1, it can be seen that in the battery (B) of the comparative example, the battery capacity rapidly decreases after approximately 2200 cycles, whereas in the battery (A) of the present invention, the battery capacity rapidly decreases even after 3000 cycles. No significant decrease was observed. Therefore, it can be seen that the cycle life of the battery (A) of the present invention is dramatically improved compared to the battery (B) of the comparative example.

これは以下に示す理由によるものと考えられる。This is considered to be due to the following reasons.

即ち、比較例の(B)電池の負極では合金は粉末状態で
あるため、充放電が繰り返されるにしたがって合金が微
粉化し、これにより、合金が負極から剥離、脱落するの
に対し、本発明の(A)電池では、焼結式ニッケル板の
表面で合金を作製しているため、合金と焼結式ニッケル
板の密着性が良好となり、合金が負極から剥離、脱落す
るのを防止しうるからである。特に、第8実施例の如く
合金の一部に多孔体の金属(本実施例ではニッケル)と
同一の金属が含まれていれば、合金と多孔体との密着性
をより向上させることができる。更に、(A)電池の水
素吸蔵合金はアモルファス化しているため、−層微粉化
し難くなる。
That is, in the negative electrode of the battery (B) of the comparative example, the alloy is in a powder state, so as charging and discharging are repeated, the alloy becomes fine powder, and as a result, the alloy peels off and falls off from the negative electrode, whereas in the present invention, the alloy is in a powder state. (A) In batteries, since the alloy is made on the surface of the sintered nickel plate, the adhesion between the alloy and the sintered nickel plate is good, which prevents the alloy from peeling off or falling off the negative electrode. It is. In particular, if part of the alloy contains the same metal as the metal of the porous body (nickel in this example) as in the eighth embodiment, the adhesion between the alloy and the porous body can be further improved. . Furthermore, since the hydrogen storage alloy of the battery (A) is amorphous, it becomes difficult to pulverize the -layer.

皇皿圓羞来 本発明の水素吸蔵合金電極の製造方法は以上のように、
多孔体の表面にて水素吸蔵合金を形成しているので、多
孔体と水素吸蔵合金との密着性が向上する。従って、水
素ガスの吸蔵、放出を繰り返し行っても水素吸蔵合金は
破砕されず、水素吸蔵合金が微粉化するのを防ぐことが
できるので、負極から水素吸蔵合金が剥離、脱落するの
を防止できる。また、上記製造方法で作製された水素吸
蔵合金はアモルファス化しているということによっても
、水素吸蔵合金が微粉化するのを防ぐことができ、負極
から合金が剥離、脱落するのを防止しうる。これらのこ
とから、充放電を繰り返し行っても電池容量は低下しな
いので、金属−水素アルカリ蓄電池の品質を飛躍的に向
上させることができる。
The method for manufacturing the hydrogen storage alloy electrode of the present invention is as described above.
Since the hydrogen storage alloy is formed on the surface of the porous body, the adhesion between the porous body and the hydrogen storage alloy is improved. Therefore, even if hydrogen gas is stored and released repeatedly, the hydrogen storage alloy will not be crushed, and the hydrogen storage alloy will be prevented from being pulverized, which will prevent the hydrogen storage alloy from peeling off or falling off from the negative electrode. . Furthermore, since the hydrogen storage alloy produced by the above manufacturing method is amorphous, it is possible to prevent the hydrogen storage alloy from becoming pulverized, and it is possible to prevent the alloy from exfoliating or falling off from the negative electrode. For these reasons, the battery capacity does not decrease even after repeated charging and discharging, so the quality of the metal-hydrogen alkaline storage battery can be dramatically improved.

更に、上記の如く多孔体と水素吸蔵合金との密着性は良
いため、多孔体の表面に厚い水素吸蔵層を形成しうるの
で、負極の水素W&藏量を多くすることができる。これ
により、金属−水素アルカリ蓄電池の性能を著しく向上
させることが可能となる。
Furthermore, since the adhesion between the porous body and the hydrogen storage alloy is good as described above, a thick hydrogen storage layer can be formed on the surface of the porous body, so that the amount of hydrogen W and hydrogen in the negative electrode can be increased. This makes it possible to significantly improve the performance of metal-hydrogen alkaline storage batteries.

加えて、水素吸蔵合金を別途作製する工程が不要となる
ので、製造工程を簡素化することができ、低コストで金
属−水素アルカリ蓄電池を作製しうる等の効果を奏する
In addition, since a separate process for producing a hydrogen storage alloy is not necessary, the production process can be simplified, and a metal-hydrogen alkaline storage battery can be produced at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の(A)電池と比較例の(B)電池との
サイクル特性を示すグラフである。 特許出願人 : 三洋電機 株式会社 代理人 : 弁理士 中隔 司朗 手  続  補  正  書(自発)
FIG. 1 is a graph showing the cycle characteristics of the battery (A) of the present invention and the battery (B) of the comparative example. Patent applicant: Sanyo Electric Co., Ltd. Agent: Patent attorney Shiro Nakagaki Procedural amendment (voluntary)

Claims (13)

【特許請求の範囲】[Claims] (1)2種以上の金属化合物をアルコール溶液に溶解さ
せる第1ステップと、 上記アルコール溶液に多孔体を浸積した後、この多孔体
を乾燥させる第2ステップと、 前記金属化合物を還元させて上記多孔体上に水素吸蔵合
金を形成して正極を作成する第3ステップとを有するこ
とを特徴とする水素吸蔵合金電極の製造方法。
(1) A first step of dissolving two or more metal compounds in an alcohol solution; A second step of immersing the porous body in the alcohol solution and then drying the porous body; and reducing the metal compound. A method for manufacturing a hydrogen storage alloy electrode, comprising a third step of forming a hydrogen storage alloy on the porous body to create a positive electrode.
(2)前記第1ステップにおける金属化合物は、ランタ
ン塩化物(LaCl_3・8H_2O)と、ニッケル塩
化物(NiCl_2・6H_2O)とから成ることを特
徴とする特許請求の範囲第1項記載の水素吸蔵合金電極
の製造方法。
(2) The hydrogen storage alloy according to claim 1, wherein the metal compound in the first step is composed of lanthanum chloride (LaCl_3.8H_2O) and nickel chloride (NiCl_2.6H_2O). Method of manufacturing electrodes.
(3)前記第1ステップにおける金属化合物は、チタン
塩化物(TiCl_2)と、ニッケル塩化物(NiCl
_2・6H_2O)とから成ることを特徴とする特許請
求の範囲第1項記載の水素吸蔵合金電極の製造方法。
(3) The metal compounds in the first step include titanium chloride (TiCl_2) and nickel chloride (NiCl_2).
_2.6H_2O). The method for manufacturing a hydrogen storage alloy electrode according to claim 1.
(4)前記第1ステップにおける金属化合物は、ランタ
ン塩化物(LaCl_3・8H_2O)と、ニッケル塩
化物(NiCl_2・6H_2O)と、コバルト塩化物
(CoCl_2)とから成ることを特徴とする特許請求
の範囲第1項記載の水素吸蔵合金電極の製造方法。
(4) Claims characterized in that the metal compound in the first step consists of lanthanum chloride (LaCl_3.8H_2O), nickel chloride (NiCl_2.6H_2O), and cobalt chloride (CoCl_2). 2. A method for producing a hydrogen storage alloy electrode according to item 1.
(5)前記第1ステップにおける金属化合物は、マグネ
シウム塩化物(MgCl_2・6H_2O)と、ニッケ
ル塩化物(NiCl_2・6H_2O)とから成ること
を特徴とする特許請求の範囲第1項記載の水素吸蔵合金
電極の製造方法。
(5) The hydrogen storage alloy according to claim 1, wherein the metal compound in the first step is composed of magnesium chloride (MgCl_2.6H_2O) and nickel chloride (NiCl_2.6H_2O). Method of manufacturing electrodes.
(6)前記第1ステップにおける金属化合物は、カルシ
ウム塩化物(CaCl_2・6H_2O)と、ニッケル
塩化物(NiCl_2・6H_2O)とから成ることを
特徴とする特許請求の範囲第1項記載の水素吸蔵合金電
極の製造方法。
(6) The hydrogen storage alloy according to claim 1, wherein the metal compound in the first step is composed of calcium chloride (CaCl_2.6H_2O) and nickel chloride (NiCl_2.6H_2O). Method of manufacturing electrodes.
(7)前記第1ステップにおける金属化合物は、ランタ
ン硝酸化合物〔La(No_3)_3・6H_2O〕と
、ニッケル硝酸化合物〔Ni(No_3)_2・6H_
2O〕とから成ることを特徴とする特許請求の範囲第1
項記載の水素吸蔵合金電極の製造方法。
(7) The metal compounds in the first step are a lanthanum nitrate compound [La(No_3)_3.6H_2O] and a nickel nitrate compound [Ni(No_3)_2.6H_
2O]
A method for producing a hydrogen storage alloy electrode as described in Section 1.
(8)前記第1ステップにおける金属化合物は、マグネ
シウム過塩素酸化合物〔Mg(ClO_4)_2〕と、
ニッケル塩化物(NiCl_2・6H_2O)とから成
ることを特徴とする特許請求の範囲第1項記載の水素吸
蔵合金電極の製造方法。
(8) The metal compound in the first step is a magnesium perchlorate compound [Mg(ClO_4)_2],
The method for manufacturing a hydrogen storage alloy electrode according to claim 1, characterized in that the electrode is made of nickel chloride (NiCl_2.6H_2O).
(9)前記第2ステップにおいて、金属化合物の還元は
リチウム蒸気中で行なうことを特徴とする特許請求の範
囲第1項記載の水素吸蔵合金電極の製造方法。
(9) The method for manufacturing a hydrogen storage alloy electrode according to claim 1, wherein in the second step, the reduction of the metal compound is carried out in lithium vapor.
(10)上記リチウム蒸気中で金属化合物の還元を行な
際に、1000℃〜1300℃の温度範囲で行なうこと
を特徴とする特許請求の範囲第9項記載の水素吸蔵合金
電極の製造方法。
(10) The method for producing a hydrogen storage alloy electrode according to claim 9, wherein the reduction of the metal compound in the lithium vapor is carried out at a temperature range of 1000°C to 1300°C.
(11)前記第2ステップにおける多孔体は、焼結式ニ
ッケルから成ることを特徴とする特許請求の範囲第1項
記載の水素吸蔵合金電極の製造方法。
(11) The method for manufacturing a hydrogen storage alloy electrode according to claim 1, wherein the porous body in the second step is made of sintered nickel.
(12)前記第2ステップにおける多孔体は、前記第3
ステップにて作成される水素吸蔵合金成分の金属の成分
のうち少なくとも一種の成分と同一成分の金属から成る
ことを特徴とする特許請求の範囲第1項記載の水素吸蔵
合金電極の製造方法。
(12) The porous body in the second step is
The method for manufacturing a hydrogen storage alloy electrode according to claim 1, characterized in that the electrode is made of a metal having the same composition as at least one of the metal components of the hydrogen storage alloy component prepared in the step.
(13)前記第2ステップにおいて、浸漬、乾燥工程を
複数回繰り返すことを特徴とする特許請求の範囲第1項
記載の水素吸蔵合金電極の製造方法。
(13) The method for manufacturing a hydrogen storage alloy electrode according to claim 1, wherein in the second step, the dipping and drying steps are repeated multiple times.
JP62294332A 1987-11-20 1987-11-20 Manufacture of hydrogen absorption alloy electrode Pending JPH01134861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62294332A JPH01134861A (en) 1987-11-20 1987-11-20 Manufacture of hydrogen absorption alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62294332A JPH01134861A (en) 1987-11-20 1987-11-20 Manufacture of hydrogen absorption alloy electrode

Publications (1)

Publication Number Publication Date
JPH01134861A true JPH01134861A (en) 1989-05-26

Family

ID=17806331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62294332A Pending JPH01134861A (en) 1987-11-20 1987-11-20 Manufacture of hydrogen absorption alloy electrode

Country Status (1)

Country Link
JP (1) JPH01134861A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1044175C (en) * 1994-10-20 1999-07-14 浙江大学 Magnesium base hydrogen-storing alloy electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1044175C (en) * 1994-10-20 1999-07-14 浙江大学 Magnesium base hydrogen-storing alloy electrode

Similar Documents

Publication Publication Date Title
JPH03191040A (en) Hydrogen storage alloy electrode
JP2003132940A (en) Nickel - hydrogen storage battery
JPH0789488B2 (en) Method for manufacturing hydrogen storage electrode
CN109830676A (en) Rechargeable uses for nickel-hydrogen battery high capacity and long-life La-Mg-Ni type cathode hydrogen storage material and preparation method thereof
JPH01134861A (en) Manufacture of hydrogen absorption alloy electrode
US5547784A (en) Alkaline storage battery and method for producing the same
JP3326197B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3432870B2 (en) Method for producing metal hydride electrode
JP3124458B2 (en) Metal oxide / hydrogen storage battery
JPH01267966A (en) Manufacture of sealed nickel-hydrogen battery
JPH06283197A (en) Sealed nickel-hydrogen battery and activation thereof
JP3171401B2 (en) Hydride rechargeable battery
JP3528333B2 (en) Nickel hydride battery and method of manufacturing the same
JP3136886B2 (en) Metal oxide / hydrogen storage battery
JPH10147827A (en) Hydrogen storage alloy and its production
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JPH0729569A (en) Manufacture of hydrogen storage alloy electrode
JPH10255775A (en) Hydrogen storage alloy electrode and its manufacture
JP3011437B2 (en) Hydrogen storage alloy electrode
JPH0410175B2 (en)
JP3043143B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3214569B2 (en) Method for producing hydride secondary battery
JP3322449B2 (en) Method for producing metal hydride electrode
JP2532498B2 (en) Hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery