JPH0113461B2 - - Google Patents

Info

Publication number
JPH0113461B2
JPH0113461B2 JP56070777A JP7077781A JPH0113461B2 JP H0113461 B2 JPH0113461 B2 JP H0113461B2 JP 56070777 A JP56070777 A JP 56070777A JP 7077781 A JP7077781 A JP 7077781A JP H0113461 B2 JPH0113461 B2 JP H0113461B2
Authority
JP
Japan
Prior art keywords
amcha
tpn
water
present
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56070777A
Other languages
Japanese (ja)
Other versions
JPS57188547A (en
Inventor
Ryuji Aoki
Jiro Hayakawa
Kenji Ooyabu
Ryugo Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP56070777A priority Critical patent/JPS57188547A/en
Publication of JPS57188547A publication Critical patent/JPS57188547A/en
Publication of JPH0113461B2 publication Critical patent/JPH0113461B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明はテレフタロニトリル(別名、1,4−
ジシアノベンゼン、以下「TPN」と略す。)を水
または含水有機溶媒中で、アルカリまたはアルカ
リ土類金属水酸化物と水素添加用の金属触媒の存
在下に水素を加熱接触せしめることにより、
TPNの側鎖ニトリル基の選択水添、加水分解お
よびベンゼン核の水素化の3反応をバランスよく
同時に進行せしめ単一工程で直接4−アミノメチ
ルシクロヘキサン−1−カルボン酸(以下
「AMCHA」と略す。)を製造する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides terephthalonitrile (also known as 1,4-
Dicyanobenzene, hereinafter abbreviated as "TPN". ) in water or a water-containing organic solvent in the presence of an alkali or alkaline earth metal hydroxide and a metal catalyst for hydrogenation, by bringing hydrogen into contact with heating,
The three reactions of selective hydrogenation of the side chain nitrile group of TPN, hydrolysis, and hydrogenation of the benzene nucleus proceed simultaneously in a well-balanced manner, allowing direct 4-aminomethylcyclohexane-1-carboxylic acid (hereinafter abbreviated as "AMCHA") to occur in a single step. ).

本発明方法により得られるAMCHAはトラン
ス異性体とシス異性体との混合物であるが、これ
から分離されるトランス異性体は抗プラスミン作
用を有する優れた薬剤として有用な化合物であ
る。
AMCHA obtained by the method of the present invention is a mixture of trans isomer and cis isomer, and the trans isomer separated from it is a compound useful as an excellent drug with anti-plasmin action.

AMCHAの製造については、すでに多数の方
法が提案されているが、これらの方法のうち工業
的に有利なTPNを原料とする製造方法としては
以下の各方法が公知である。
Many methods have already been proposed for producing AMCHA, and among these methods, the following methods are known as industrially advantageous production methods using TPN as a raw material.

TPMの選択的加水分離あるいは、これと芳
香族二塩基酸エステル等との加熱により4−シ
アノ安息香酸を得(特公昭41−10629号公報明
細書所載、以下同様)、これの側鎖ニトリル基
およびベンゼン核をそれぞれ接触水素化するこ
とによりAMCHAを得る。(特公昭32−9073、
特公昭40−9254、特開昭49−76841) TPNの選択的側鎖接触水素化により4−シ
アノベンジルアミンを得(特公昭40−10133)、
これを常法により加水分解して4−アミノメチ
ル安息香酸としたのちベンゼン核の接触水素化
を行つてAMCHAとする(特公昭33−27、特
公昭40−9254、特公昭45−32257等) TPNの側鎖およびベンゼン核を同時に接触
水素化して得られる1,4−ビス(アミノメチ
ル)シクロヘキサンを選択的に酸化することに
よりAMCHAを得る(特開昭55−76846) 以上の記載からわかるように、TPNから
AMCHAを製造するための公知の方法は、側鎖
接触水素化、母核接触水素化、加水分解、側鎖交
換反応するいは選択酸化特の反応のうちの複数の
反応をいろいろな順序で実施することから成り立
つているものである。各方法とも一長一短がある
が、共通して選択性を要求される反応を含むた
め、概して副反応をともないやすく収率も低い
(いずれの方法によつてもTPNからの通算収率は
50%前後にすぎない)。そのうえ副生する不純物
が引き続く反応工程の円滑な反応を阻害する場合
が多く、工程毎に必要最少限度の精製操作を付加
することが不可欠である。
4-cyanobenzoic acid is obtained by selective hydrolysis of TPM or by heating it with an aromatic dibasic acid ester (as described in the specification of Japanese Patent Publication No. 10629/1989, hereinafter the same), and the side chain nitrile of this is obtained. AMCHA is obtained by catalytic hydrogenation of the group and the benzene nucleus, respectively. (Tokuko Show 32-9073,
4-cyanobenzylamine was obtained by selective side chain catalytic hydrogenation of TPN (Japanese Patent Publication No. 40-10133),
This is hydrolyzed by a conventional method to produce 4-aminomethylbenzoic acid, and then the benzene nucleus is catalytically hydrogenated to produce AMCHA (Special Publications No. 33-27, No. 9254, No. 40, No. 32257, etc.) AMCHA is obtained by selectively oxidizing 1,4-bis(aminomethyl)cyclohexane obtained by simultaneous catalytic hydrogenation of the side chain and benzene nucleus of TPN (JP-A-55-76846). , from TPN
Known methods for producing AMCHA include carrying out multiple reactions in various orders, including side chain catalytic hydrogenation, core catalytic hydrogenation, hydrolysis, side chain exchange reactions or selective oxidation. It is made up of doing. Each method has its advantages and disadvantages, but since they all involve reactions that require selectivity, they generally involve side reactions and have low yields (the total yield from TPN is
(only around 50%). Furthermore, by-produced impurities often impede smooth reactions in subsequent reaction steps, and it is therefore essential to add the minimum necessary purification operations to each step.

これに対して本発明の方法によればTPNから
直接単一工程でAMCHAを得ることができ、し
かも収率は公知の複数工程による通算収率を凌駕
することから工業的に著しく有利な方法というこ
とができる。
In contrast, according to the method of the present invention, AMCHA can be obtained directly from TPN in a single step, and the yield exceeds the total yield of known multiple steps, making it an extremely advantageous method industrially. be able to.

本発明方法における反応の機構は明らかではな
いが、本発明者等は前述したいくつかの素反応を
個々に研究している過程で、特定の条件を採用す
れば目的とする素反応が温和な条件下で相互に補
完し合つてバランスよく進行し、収率よく直接的
にAMCHAが得られることを見出し本発明を完
成するに到つた。
Although the reaction mechanism in the method of the present invention is not clear, in the process of individually researching several of the elementary reactions mentioned above, the present inventors have discovered that if specific conditions are adopted, the target elementary reaction can be produced mildly. We have completed the present invention by discovering that AMCHA can be obtained directly in good yield under the conditions that complement each other and proceed in a well-balanced manner.

本発明における反応溶媒として水を単独に使用
し得るということは、TPNを原料とする一般的
化学反応では常識的に考えられないことであるの
みならず、水の使用が目的の反応をより円滑に進
めるために有効であることを見出した点で工業的
にも画期的ということができる。本発明における
反応溶媒としては、以上の水単独のほかに、水を
含む親水性有機溶媒、たとえばエタノール、プロ
パノール等のアルコール類、ジオキサン等のエー
テル類を用いても好ましい結果が得られる。
The fact that water can be used alone as a reaction solvent in the present invention is not only unconceivable in common chemical reactions using TPN as a raw material, but also because the use of water facilitates the desired reaction. It can be said to be an industrial breakthrough in that it was found to be effective in advancing the process. As the reaction solvent in the present invention, in addition to the above-mentioned water alone, preferable results can also be obtained by using hydrophilic organic solvents containing water, such as alcohols such as ethanol and propanol, and ethers such as dioxane.

溶媒の使用量は特に限定されるものではない
が、通常はTPNの2〜10倍量程度が適当である。
The amount of solvent to be used is not particularly limited, but it is usually appropriate to use an amount of about 2 to 10 times the amount of TPN.

本発明方法において使用するアルカリまたはア
ルカリ土類金属の水酸化物は、TPNのニトリル
基の加水分解剤として機能するものと推定される
がそれ以外に、反応を温和に進行させるのに重要
な役割を果しているものと考えられる。工業的に
はカセイソーダ、カセイカリ、水酸化カルシウ
ム、水酸化バリウム等の使用が適当であるが、と
りわけ水酸化バリウムを使用するときは、得られ
るAMCHA中の有効成分であるトランス体の含
有率が高いという特性を示すとともに、反応液を
硫酸で処理してバリウムを硫酸塩として除去すれ
ば、引き続くAMCHAのイオン交換樹脂による
精製工程においてイオン交換樹脂の負荷を著しく
軽減できるという利点がある。
The alkali or alkaline earth metal hydroxide used in the method of the present invention is presumed to function as a hydrolyzing agent for the nitrile group of TPN, but it also plays an important role in making the reaction proceed mildly. It is thought that this has been achieved. Industrially, it is appropriate to use caustic soda, caustic potash, calcium hydroxide, barium hydroxide, etc., but especially when barium hydroxide is used, the content of trans isomer, which is the active ingredient in the resulting AMCHA, is high. In addition to exhibiting these characteristics, treating the reaction solution with sulfuric acid to remove barium as sulfate has the advantage that the load on the ion exchange resin can be significantly reduced in the subsequent AMCHA purification process using the ion exchange resin.

添加する水酸化物の量は、TPNに対して1.0当
量以上が好ましい。
The amount of hydroxide added is preferably 1.0 equivalent or more relative to TPN.

また、本発明方法において使用する接触水素化
用金属触媒としては、公知の白金、ロジウム、パ
ラジウム、ルテニウム等の1種または2種以上の
混合物を用いることができる。これらの中で工業
的に最も適当と思われるものはパラジウムとルテ
ニウムの併用である。担体として一方にアルミナ
を、他方に活性炭を使用すれば、反応後反応液か
ら分離された両触媒混合物から沈降速度の差を利
用して容易に両者を分別することが可能である。
Further, as the metal catalyst for catalytic hydrogenation used in the method of the present invention, one type or a mixture of two or more of known platinum, rhodium, palladium, ruthenium, etc. can be used. Among these, the combination of palladium and ruthenium is considered to be industrially most suitable. If alumina is used as one carrier and activated carbon is used as the other carrier, it is possible to easily separate both catalyst mixtures separated from the reaction solution after the reaction by utilizing the difference in sedimentation rate.

以下、本発明を実施例により具体的に説明する
が、本発明はこれらに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

実施例 1 撹拌機付1ステンレス製オートクレープに、
TPN50g、水400ml、水酸化バリウム8水和物70
g、5%パラジウム−アルミナ5gおよび5%ル
テニウム−炭素10gを仕込み、常温で水素ガスを
圧力100Kg/cm2Gまで尊入したのち撹拌しながら
ゆつくりと100℃に昇温した。内温約40℃のとき
から水素の吸収が認められたので以後は内圧を
100Kg/cm2Gに保つように水素ガスを連続的に補
給した。100℃で5時間反応したのち冷却し、触
媒を口別した。ロ液に硫酸を加えてPHを3に調節
し、生成した硫酸バリウムおよび副反応生成物の
白色沈澱をロ過し、ロ液を陽イオン交換樹脂(ア
ンバーライト120B、200ml)充填塔に通して
AMCHAを吸着せしめたのち常法どおり、水洗、
アンモニア水溶離を行つた。得られたアンモニア
溶離液を結晶が析出するまで濃縮し、これにアセ
トンを加えてAMCHAを析出させ、ロ過乾燥し
たところ、AMCHAの白色結晶33gが得られた。
得られたAMCHA中に含まれるトランス異性体
の割合は72%であつた。
Example 1 In a stainless steel autoclave with a stirrer,
TPN 50g, water 400ml, barium hydroxide octahydrate 70
g, 5 g of 5% palladium-alumina and 10 g of 5% ruthenium-carbon were charged, hydrogen gas was introduced at room temperature to a pressure of 100 kg/cm 2 G, and the temperature was slowly raised to 100° C. while stirring. Hydrogen absorption was observed when the internal temperature was approximately 40°C, so the internal pressure was reduced from then on.
Hydrogen gas was continuously supplied to maintain the pressure at 100Kg/cm 2 G. After reacting at 100°C for 5 hours, the mixture was cooled and the catalyst was separated. Add sulfuric acid to the filtrate to adjust the pH to 3, filter out the barium sulfate and white precipitate of side reaction products, and pass the filtrate through a column packed with cation exchange resin (Amberlite 120B, 200ml).
After adsorbing AMCHA, wash with water as usual.
Aqueous ammonia elution was performed. The obtained ammonia eluate was concentrated until crystals were precipitated, acetone was added thereto to precipitate AMCHA, and the mixture was filter-dried to obtain 33 g of white crystals of AMCHA.
The proportion of trans isomer contained in the obtained AMCHA was 72%.

実施例 2 実施例1において、水酸化バリウム8水和物70
gのかわりにカセイソーダ33gを用い、また陽イ
オン交換樹脂量200mlのかわりに800mlを用いた場
合のAMCHA収量は30gで、その中に含まれる
トランス異性体の割合は50%であつた。
Example 2 In Example 1, barium hydroxide octahydrate 70
When 33 g of caustic soda was used instead of 20 g, and 800 ml was used instead of 200 ml of cation exchange resin, the yield of AMCHA was 30 g, and the proportion of trans isomer contained therein was 50%.

実施例 3 実施例1において、水400mlのかわりにジオキ
サン200mlと水200mlの混合物を用いた場合は36g
のAMCHAの白色結晶が得られた。
Example 3 In Example 1, when a mixture of 200 ml of dioxane and 200 ml of water was used instead of 400 ml of water, the amount was 36 g.
White crystals of AMCHA were obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 テレフタロニトリルを水または水と親水性有
機溶剤との混合物を溶媒としてアルカリまたはア
ルカリ土類金属水酸化物および金属触媒の存在下
に水素と処理することを特徴とする4−アミノメ
チルシクロヘキサン−1−カルボン酸の製造方
法。
1. 4-Aminomethylcyclohexane, which is characterized by treating terephthalonitrile with hydrogen in the presence of an alkali or alkaline earth metal hydroxide and a metal catalyst using water or a mixture of water and a hydrophilic organic solvent as a solvent. Method for producing 1-carboxylic acid.
JP56070777A 1981-05-13 1981-05-13 Preparation of 4-aminomethylcyclohexane-1-carboxylic acid Granted JPS57188547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56070777A JPS57188547A (en) 1981-05-13 1981-05-13 Preparation of 4-aminomethylcyclohexane-1-carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56070777A JPS57188547A (en) 1981-05-13 1981-05-13 Preparation of 4-aminomethylcyclohexane-1-carboxylic acid

Publications (2)

Publication Number Publication Date
JPS57188547A JPS57188547A (en) 1982-11-19
JPH0113461B2 true JPH0113461B2 (en) 1989-03-06

Family

ID=13441284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56070777A Granted JPS57188547A (en) 1981-05-13 1981-05-13 Preparation of 4-aminomethylcyclohexane-1-carboxylic acid

Country Status (1)

Country Link
JP (1) JPS57188547A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105712863A (en) * 2015-02-12 2016-06-29 江苏永达药业有限公司 Process for producing trans-acid

Also Published As

Publication number Publication date
JPS57188547A (en) 1982-11-19

Similar Documents

Publication Publication Date Title
JP5343925B2 (en) Method for producing (2R) -2-propyloctanoic acid
EP0002308B1 (en) Catalytic hydrogenation process for the manufacture of aromatic amines
JPS62207285A (en) Synthesis of l-sugar
US3932497A (en) Process for preparing 4-aminomethyl cyclohexane carboxylic acid-1
JPS6232741B2 (en)
JPH0113461B2 (en)
US3956387A (en) Manufacture of concentrated aqueous (meth)acrylamide solutions by catalytic addition of water to (meth)acrylonitrile
US5225593A (en) Process for preparing pyruvate
US3742049A (en) Method for producing bis(4-aminocyclohexyl)alkane
US5030750A (en) Process for preparing DL-serine and process for separation and purification of the same
EP0337246B1 (en) Process for preparing pyruvate
US4400533A (en) Method of preparing d,l-phenylalanine
JP4075336B2 (en) Method for reforming crude alcohol
JPS6017780B2 (en) Method for producing 4-aminomethylbenzoic acid
JPS58183650A (en) Preparation of trans-4-aminomethylcyclohexane-1- carboxylic acid
US3141895A (en) Process for producing gamma-hydroxybutyronitrile and gamma-butyrolactone
KR800001452B1 (en) Process for preparing o-cyclo hexylphenol
US3182080A (en) Process for producing beta-amino-gamma-hydroxybutyric acid
US2509309A (en) Preparation of ephedrine and salts thereof
JPH03193738A (en) Production of neopentyl glycol
CN116283625A (en) Preparation method of tranexamic acid
SU1105492A1 (en) Method of obtaining 1,3,5-triazaadamantane
JPH01272540A (en) Production of 1-phenylethanol
JPS6197250A (en) Purification of trans-1,2-diaminocyclohexane
JPS5950657B2 (en) Method for producing methyl isobutyl ketone