JPH01133971A - Production of superconducting material - Google Patents

Production of superconducting material

Info

Publication number
JPH01133971A
JPH01133971A JP63175021A JP17502188A JPH01133971A JP H01133971 A JPH01133971 A JP H01133971A JP 63175021 A JP63175021 A JP 63175021A JP 17502188 A JP17502188 A JP 17502188A JP H01133971 A JPH01133971 A JP H01133971A
Authority
JP
Japan
Prior art keywords
superconducting material
superconductor
oxygen plasma
producing
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63175021A
Other languages
Japanese (ja)
Inventor
Yukio Okamoto
幸雄 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63175021A priority Critical patent/JPH01133971A/en
Publication of JPH01133971A publication Critical patent/JPH01133971A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E40/642

Abstract

PURPOSE:To obtain a superconductive material having the higher critical current density at a high temp. by using at least oxygen plasma in a production process of a superconductor. CONSTITUTION:At least the oxygen plasma is used in the production process of the superconductor. The stable superconductor is obtainable at the lower temp. in the shorter period of time by executing oxidation or annealing by the use of the oxygen plasma. The oxygen plasma is generated stationarily and/or impulsively by using at least either of, for example, high-frequency (including microwave) power or DC power. External magnetic fields are preferably used in order to facilitate the confinement of the generated plasma or the generation thereof. The superconductive stock 10 which constitutes the superconductor is made into a (super)fine particle state by the above-mentioned method and is introduced into a reaction region (vacuum vessel) 4 where the superconductive stock is brought into reaction chemically and/or physically with the oxygen plasma 8 to form the thin superconductive film on a substrate 2; otherwise, the superconductive stock 10 is molded to a pellet shape and the pellet is on the substrate 2 and is similarly brought into reaction, by which the superconductive material 1 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超伝導体の製造法に係り、特に、高温酸化物系
超伝導材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a superconductor, and particularly to a method for manufacturing a high-temperature oxide-based superconducting material.

〔従来の技術〕[Conventional technology]

従来の製造方法は、ジャパニーズ ジャーナルオブ ア
プライド フィズイクス、第26巻、第5号(1987
年)第L676頁〜第L677頁(Jpn、 J、 A
ppl、 Phys、、 26.5 (1987)pp
L676−L677)に記載されているように、例えば
、Y−Ba−Cu−0酸化物超伝導体の場合、Y2O,
とBaCO3とCuOの粉末を適当な比で混合し、95
0℃で1時間大気中又は酸素ガス雰囲気中で仮焼成した
後、ペレット状等適当な形に整形し、900℃で18〜
19時間程度大気中又は酸素雰囲気中で、第2図に示す
ように、電気炉9を用いて焼結させていた。なお、この
図で、1は超伝導材料10(例えば、前記ペレット)に
焼結した高温超伝導体、2は基板を示す。
The conventional manufacturing method is described in Japanese Journal of Applied Physics, Vol. 26, No. 5 (1987).
2013) Pages L676-L677 (Jpn, J, A
ppl, Phys, 26.5 (1987) pp
For example, in the case of Y-Ba-Cu-0 oxide superconductor, Y2O,
By mixing powders of BaCO3 and CuO in an appropriate ratio, 95
After pre-calcining at 0°C for 1 hour in the air or oxygen gas atmosphere, it is shaped into an appropriate shape such as a pellet, and heated at 900°C for 18 to 30 minutes.
Sintering was carried out for about 19 hours in the air or in an oxygen atmosphere using an electric furnace 9 as shown in FIG. In this figure, 1 indicates a high-temperature superconductor sintered into a superconducting material 10 (for example, the pellet), and 2 indicates a substrate.

[発明が解決しようとする課題〕 上記従来技術は、製作に長時期を有し、また不純物の混
入等について配慮されておらず、生産性や安定性などに
問題があった。
[Problems to be Solved by the Invention] The above-mentioned conventional technology requires a long period of time to manufacture, does not take into consideration the possibility of contamination with impurities, and has problems with productivity, stability, etc.

本発明の目的は、上記問題点を解決するとともに、より
高温でより臨界電流密度の大きい超伝導材料の製造方法
を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to provide a method for manufacturing a superconducting material having a higher critical current density at a higher temperature.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、超伝導体の作製工程に少な
くとも酸素プラズマを用いるようにしたダものである。
In order to achieve the above object, at least oxygen plasma is used in the superconductor manufacturing process.

〔作用〕[Effect]

酸素プラズマでの処理(化学的and10r物理的反応
を用いた)は、酸化プラズマ中の活性な酸Cu−0超伝
電体において、酸素と銅が一次元的に配列し易くなり、
転移(又は臨界)温度は上昇し、さらに臨界電流密度も
増大し、安定した特性が短時間で得られる。
Treatment with oxygen plasma (using chemical and 10r physical reactions) facilitates one-dimensional alignment of oxygen and copper in the active acid Cu-0 superconductor in the oxidizing plasma;
The transition (or critical) temperature increases, and the critical current density also increases, allowing stable characteristics to be obtained in a short time.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図および第3図により説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 3.

第1図は本発明に用いた実験装置の概w8図を示す。石
英ガラス等から成る真空容器4は排気装置により高真空
(〜10−@Torr)に排気でき、その内部に超伝導
体1を形成する。または超伝導材料をセットする基板2
とこれらを加熱and10r冷却するための加熱and
10r冷却器3を設ける。−方、酸素プラズマの発生は
前記真空容器4内に酸素ガス単体、又は酸素ガスにフレ
オンガスやアルゴンガス等を混合したガスを導入すると
ともに、前記真空容器4の外側に設けた電力供給器5(
容量や誘導結合など)に高周波(マイクロ波含む)発生
器6から高周波(マイクロ波含む)電力(周波数:数1
0H2〜数10GHz、数100W〜数100MW)を
供給して行う。なお、発生したプラズマの閉じ込めや発
生を容易にするために、磁界発生器7を用いて外部磁界
を重畳するとよい(用いなくても可)。このときの磁界
の配位は発(支) 散型(第5屓参照)、ミラー型、カスプ型などいずれで
もよい。このときの磁界の強さ(磁界強度B)は、第5
図に示すように、電子サイクロトロン共鳴条件Bcを満
たす(B=Bc)か高周波(主にマイクロ波)のモード
によりB<Bcでもよい。
FIG. 1 shows a schematic w8 diagram of the experimental apparatus used in the present invention. A vacuum container 4 made of quartz glass or the like can be evacuated to a high vacuum (~10-@Torr) by an evacuation device, and a superconductor 1 is formed therein. Or substrate 2 on which superconducting material is set
Heating and cooling these by 10r and
A 10r cooler 3 is provided. - On the other hand, to generate oxygen plasma, oxygen gas alone or a mixture of oxygen gas and Freon gas, argon gas, etc. is introduced into the vacuum container 4, and a power supply 5 (
high frequency (including microwave) power (frequency: number 1) from the high frequency (including microwave) generator 6 (capacitance, inductive coupling, etc.)
0H2 to several 10 GHz, several 100 W to several 100 MW). Note that in order to facilitate confinement and generation of the generated plasma, it is preferable to use the magnetic field generator 7 to superimpose an external magnetic field (it is not necessary to use it). The configuration of the magnetic field at this time may be of any type, such as an emitting (supporting) type (see Part 5), a mirror type, or a cusp type. The strength of the magnetic field at this time (magnetic field strength B) is the fifth
As shown in the figure, the electron cyclotron resonance condition Bc may be satisfied (B=Bc), or B<Bc may be satisfied depending on the high frequency (mainly microwave) mode.

超伝導素材10の導入法は、超伝導体1を薄膜状に形成
する場合には、超伝導体1を構成する素材10を粉末状
(超微粒子など含む)にして、前記真空容器4内に導入
する。一方、超伝導体1をペレット状などに形成すると
きは、前記超伝導材料10をペレット状などに整形し、
前記基板2上にセットする。
When forming the superconductor 1 into a thin film, the method for introducing the superconducting material 10 is to powder the material 10 constituting the superconductor 1 (including ultrafine particles, etc.) and place it in the vacuum container 4. Introduce. On the other hand, when forming the superconductor 1 into a pellet or the like, the superconductor material 10 is shaped into a pellet or the like,
Set on the substrate 2.

次に、上記装置の動作と超伝導体製造方法にっいて述べ
る。超伝導体1を薄膜状に形成する場合には、まず前記
真空容器1内を高真空に排気した後、前記基板1(前記
薄膜を形成する基板)を前記加熱and10r冷却器3
を用いて温調する(0〜1000 ’C位)。
Next, the operation of the above-mentioned apparatus and the superconductor manufacturing method will be described. When forming the superconductor 1 in the form of a thin film, first, the inside of the vacuum container 1 is evacuated to a high vacuum, and then the substrate 1 (the substrate on which the thin film is formed) is heated and heated in the 10R cooler 3.
Adjust the temperature using a (about 0 to 1000'C).

適当な大きさのバイアス電位(直流and10r交流(
高周波含む)の正and10r負)を印加する。次に、
前記酸素又は酸素+フレオンなどの活性なガスを導入し
く 10”5〜10’Torr) 、高温(10〜10
4ev程度)で高密度(10” 〜10”/cc程度)
のプラズマを発生し、ついで、超伝導素材1例えば、Y
2O,とBaC0,とCuOの微粉末(重量混合比二〇
、6 :1.5 : 1.0)を作製する超伝導体1の
化学量論的組成比が一致するように前記プラズマ中に入
射する。
Bias potential of appropriate size (DC and 10r AC (
(including high frequency) and 10r negative) are applied. next,
Introduce active gas such as oxygen or oxygen + freon at high temperature (10 to 10 Torr) and high temperature (10 to 10 Torr).
(about 4ev) and high density (about 10” to 10”/cc)
A plasma is generated, and then superconducting material 1, for example, Y
2O, BaC0, and CuO fine powder (weight mixing ratio 20:6:1.5:1.0) was prepared in the plasma so that the stoichiometric composition ratio of the superconductor 1 matched. incident.

なお、前記超伝導素材10の導入は、モレキュラビーム
エピタキシー技術で用いられているように、例えば、レ
ーザビームや電子ビームなどを用いて、第6図に示すよ
うに、前記超伝導体1を構成する個々の金属元素(例え
ば、上記例の場合、Y、Ba、Cu)を加熱蒸発させて
原子状(超微粒子含む)にし、化学量論的組成比が一致
するように個々を独立に制御するとよいが、特に限定す
るものではない。
The superconducting material 10 is introduced by using, for example, a laser beam or an electron beam to introduce the superconductor 1 as shown in FIG. 6, as used in molecular beam epitaxy technology. The individual constituent metal elements (for example, Y, Ba, and Cu in the above example) are heated and evaporated into atomic forms (including ultrafine particles), and each element is independently controlled so that the stoichiometric composition ratio matches. It is good to do so, but there is no particular limitation.

このとき、前記プラズマ中の活性な酸素原子やフレオン
原子(ラジカルなど含む)およびこれらの荷電粒子と前
記超伝導素材を構成する原子との化学的and10r物
理的反応によりイオン結晶を成長させながら前記基板2
上にデポジットし、超伝導薄膜を形成する。所要の厚さ
の薄膜が得られたら、前記超伝導素材10の入射を停止
し、前記プラズマand10r前記加熱and10r冷
却器3を用いて酸化and10rアニールするとより低
温、短時間超伝導材Y−Ba−Cu−0の抵抗率の温度
依存性を示す。従来の電気炉を用いた方法によって作製
した膜に比べ、本発明の方法による膜の方が、高温で、
しかも抵抗率の小さいことが解る。また安定性や臨界電
流密度も従来方法に比べ優れていた。
At this time, the substrate is grown while ionic crystals are grown by chemical and 10r physical reactions between active oxygen atoms, freon atoms (including radicals, etc.) in the plasma, and these charged particles and atoms constituting the superconducting material. 2
to form a superconducting thin film. When a thin film of the required thickness is obtained, the injection of the superconducting material 10 is stopped, and oxidation and 10r annealing is performed using the plasma and 10r heating and 10r cooler 3 to form a lower temperature, short-time superconducting material Y-Ba- The temperature dependence of resistivity of Cu-0 is shown. Compared to the film produced by the conventional method using an electric furnace, the film produced by the method of the present invention can be produced at a higher temperature.
Moreover, it can be seen that the resistivity is small. Furthermore, stability and critical current density were also superior to conventional methods.

一方、ペレット状に作製するときは、例えば前記超伝導
素材10をペレット状に整形した後、前記基板2上にセ
ットし、高真空に加熱(焼結しない温度で)排気した後
、前記プラズマ中で焼結させ(イオン結晶化)るととも
に酸化and10rアニールして超伝導体1を作製する
。なお、このとき基板2のセットする位置は前記薄、膜
形成とは一般に異なる(積極的に前記プラズマ中にセッ
トする)。
On the other hand, when producing pellets, for example, the superconducting material 10 is shaped into a pellet, set on the substrate 2, heated to a high vacuum (at a temperature that does not sinter), and then placed in the plasma. The superconductor 1 is produced by sintering (ionic crystallization) and oxidation and 10R annealing. Note that the position at which the substrate 2 is set at this time is generally different from that for forming a thin film (it is actively set in the plasma).

第4項(イ)〜(ハ)は別の実験装置の概略を示す。Sections 4 (a) to (c) outline another experimental device.

(イ)は超伝導素材10を陰極として動作させ、陽極側
に所望の超伝導体1を作製するもので、電力として高周
波や直流またパルス電力を用いて酸素プラズマを発生し
、前記同様、少なくともこの酸素プラズマを用いること
を特徴とする。なお、この時、基板2は前記同様加熱a
nd10r冷却器3で追加熱等を行ってもよい。
In (a), the superconducting material 10 is operated as a cathode, and the desired superconductor 1 is produced on the anode side. Oxygen plasma is generated using high frequency, direct current, or pulsed power as the electric power, and as in the above, at least It is characterized by using this oxygen plasma. Note that at this time, the substrate 2 is heated a as described above.
Additional heat may be provided by the nd10r cooler 3.

(ロ)は前記第1図において、高周波電力としてマイク
ロ波電力(IG Hz以上、10W〜102第1図の実
施例と同じであるが、プラズマの発生方法によりプラズ
マの物理量(温度や密度など)が異なるため、動作ガス
圧力や前記基板2の位置は異なる。ただし、少なくとも
酸素プラズマを用いるとともに前記超伝導体1表面での
プラズマ等の物理量とその化学的and10r物理的諸
反応は不変である。
(b) In Fig. 1 above, microwave power (IG Hz or more, 10 W to 102 Since the operating gas pressure and the position of the substrate 2 are different, the operating gas pressure and the position of the substrate 2 are different.However, at least oxygen plasma is used, and the physical quantities such as plasma on the surface of the superconductor 1 and its chemical and 10r physical reactions are unchanged.

働 第51Aと第6図は別の実施例を示す。これらの実施例
では、前記プラズマ8中にバイアス電位を印加した例え
ばメツシュ状の電極13を設けたことを特徴とする。前
記バイアス電位(直流and10r交流)は、バイアス
電源l114により任意に設定でき、鹸記基板2を衝撃
するイオン等の荷電粒子のエネルギーとその量を最適制
御し、安定で良質の超伝導体1を作製するのに効果的で
ある。ここで、第5図は外部磁界とマイクロ波電力を組
合せた実施例を、第6図は外部磁界を用いないときの一
実施例を示す。なお、10は超伝導素材(超微粒子状な
ど)、12は前記超微粒子状超伝導素材を作製するため
の加熱蒸発装置(超微粒子など生成装置)を示す。
Figures 51A and 6 show alternative embodiments. These embodiments are characterized in that, for example, a mesh-shaped electrode 13 to which a bias potential is applied is provided in the plasma 8. The bias potential (DC and 10R AC) can be arbitrarily set by the bias power supply 114, and the energy and amount of charged particles such as ions bombarding the substrate 2 can be optimally controlled to produce a stable and high quality superconductor 1. It is effective for making. Here, FIG. 5 shows an embodiment in which an external magnetic field and microwave power are combined, and FIG. 6 shows an embodiment in which no external magnetic field is used. Note that 10 indicates a superconducting material (such as ultrafine particles), and 12 indicates a heating evaporation device (a device for producing ultrafine particles) for producing the superconducting material in the form of ultrafine particles.

上記説明ではY−Ba−Cu−0について述べたが、L
a−3r−Cu−0,La−Ba−Cu−0など素材お
よびその導入法などは特に限定するものではない(酸化
物系超伝導材料共通)。
In the above explanation, Y-Ba-Cu-0 was described, but L
The materials such as a-3r-Cu-0 and La-Ba-Cu-0 and their introduction methods are not particularly limited (common to oxide-based superconducting materials).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、超伝導体作製工程に少なくとも酸素プ
ラズマを用いることにより、活性な酸素原子(ラジカル
などの活性な中性粒子も含む)とその荷電粒子と超伝導
素材との化学的and10r物理的反応が促進され、短
時間で結晶が成長し、良質(高温低抵抗率)で安定な超
伝導材料を作製できる効果がある。
According to the present invention, by using at least oxygen plasma in the superconductor manufacturing process, active oxygen atoms (including active neutral particles such as radicals), their charged particles, and superconducting materials can be chemically and This has the effect of promoting chemical reactions, allowing crystals to grow in a short time, and producing stable superconducting materials of high quality (high temperature and low resistivity).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明は超伝導材料製造方法を説明するための
装置の概略図、第2図は従来技術の概略施例を示す概略
図である。 1・・・・・・超伝導体、2・・・・・・基板。 3・・・・・・加熱and10r冷却器、4・・・・・
・真空容器、5・・・・・・電力供給器、6・・・・・
・高周波(マイクロ波含む)発生器、7・・・・・・磁
界発生器、8・・・・・・プラズマ、9・・・・・・電
気炉、10・・・・・・超伝導素材、11・・・・・・
バイアス電源!、12・・・・・・超微粒子生成装置、
13・・・・・・電極、14・・・・・・バイアス電源
■。 第7回 第 3 回 忌/l (社意口爪〕 項4圓 (イ) 21t表
FIG. 1 is a schematic diagram of an apparatus for explaining the method of manufacturing a superconducting material according to the present invention, and FIG. 2 is a schematic diagram showing a schematic embodiment of the prior art. 1...Superconductor, 2...Substrate. 3... Heating and 10r cooler, 4...
・Vacuum container, 5...Power supply device, 6...
・High frequency (including microwave) generator, 7... Magnetic field generator, 8... Plasma, 9... Electric furnace, 10... Superconducting material , 11...
Bias power supply! , 12... Ultrafine particle generator,
13... Electrode, 14... Bias power supply ■. 7th 3rd Anniversary/l (Social Intent) Section 4 En (A) 21t Table

Claims (10)

【特許請求の範囲】[Claims] 1.超伝導体の製造工程において、少なくとも酸素プラ
ズマを用いたことを特徴とする超伝導材料の製造方法。
1. A method for producing a superconducting material, characterized in that at least oxygen plasma is used in the superconductor production process.
2.上記酸素プラズマを高周波(マイクロ波含む)電力
または直流電力の少なくとも一方を用いて、定常および
/またはパルス的に発生させたことを特徴とする第1項
の超伝導材料の製造方法。
2. 2. The method for producing a superconducting material according to item 1, wherein the oxygen plasma is generated in a steady and/or pulsed manner using at least one of high frequency (including microwave) power and direct current power.
3.上記酸素プラズマ発生に、外部磁界を用いたことを
特徴とする第1項あるいは第2項の超伝導材料の製造方
法。
3. 2. The method for producing a superconducting material according to item 1 or 2, characterized in that an external magnetic field is used to generate the oxygen plasma.
4.超伝導体を構成する超伝導素材を(超)微粒子状と
して反応領域に導入し、上記酸素プラズマと化学的およ
び/または物理的に反応させて超伝導薄膜を作製したこ
とを特徴とする第1項から第3項までのいずれか1つの
項の超伝導材料の製造方法。
4. A first method characterized in that a superconducting material constituting a superconductor is introduced into a reaction region in the form of (ultra)fine particles and reacted chemically and/or physically with the oxygen plasma to produce a superconducting thin film. A method for producing a superconducting material according to any one of paragraphs 1 to 3.
5.超伝導素材をペレットや線状などとして導入し、上
記酸素プラズマと化学的および/または物理的に反応さ
せて超伝導体を作製したことを特徴とする第1項から第
3項までのいずれか1つの項の超伝導材料の製造方法。
5. Any of items 1 to 3, characterized in that the superconductor is produced by introducing a superconducting material in the form of pellets, wires, etc., and reacting chemically and/or physically with the oxygen plasma. A method for manufacturing a superconducting material in one term.
6.上記酸素プラズマを少なくとも超伝導体の酸化作用
に用いたことを特徴とする第1項から第5項までのいず
れか1つの項の超伝導材料の製造方法。
6. The method for producing a superconducting material according to any one of items 1 to 5, characterized in that the oxygen plasma is used for at least the oxidation of the superconductor.
7.上記酸素プラズマを少なくとも超伝導体のアニーリ
ングに用いたことを特徴とする第1項から第5項までの
いずれか1つの項の超伝導材料の製造方法。
7. The method for producing a superconducting material according to any one of items 1 to 5, characterized in that the oxygen plasma is used at least for annealing the superconductor.
8.基板を加熱および/または冷却したことを特徴とす
る第1項から第7項までのいずれか1つの項の超伝導材
料の製造方法。
8. 8. The method for producing a superconducting material according to any one of items 1 to 7, characterized in that the substrate is heated and/or cooled.
9.上記基板に直流および/または交流(高周波含む)
のバイアス電位を与えたことを特徴とする第1項から第
8項までのいずれか1つの項の超伝導材料の製造方法。
9. Direct current and/or alternating current (including high frequency) on the above board
The method for producing a superconducting material according to any one of items 1 to 8, characterized in that a bias potential of .
10.上記酸素プラズマ中に直流および/または交流(
高周波含む)のバイアス電位を印加した電極を設け、上
記超伝導体を構成する元素および酸素原子(分子)のイ
オンまたは電子のエネルギーとこれらの量を制御したこ
とを特徴とする第1項から第8項までのいずれか1つの
項の超伝導材料の製造方法。
10. Direct current and/or alternating current (
Items 1 to 3 are characterized in that the energy and amount of ions or electrons of elements and oxygen atoms (molecules) constituting the superconductor are controlled by providing an electrode to which a bias potential (including high frequency) is applied. A method for producing a superconducting material according to any one of items up to item 8.
JP63175021A 1987-08-07 1988-07-15 Production of superconducting material Pending JPH01133971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63175021A JPH01133971A (en) 1987-08-07 1988-07-15 Production of superconducting material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-196186 1987-08-07
JP19618687 1987-08-07
JP63175021A JPH01133971A (en) 1987-08-07 1988-07-15 Production of superconducting material

Publications (1)

Publication Number Publication Date
JPH01133971A true JPH01133971A (en) 1989-05-26

Family

ID=26496414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63175021A Pending JPH01133971A (en) 1987-08-07 1988-07-15 Production of superconducting material

Country Status (1)

Country Link
JP (1) JPH01133971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193483A (en) * 1987-10-05 1989-04-12 Kanegafuchi Chem Ind Co Ltd Production of superconductive material
JPH03146418A (en) * 1989-10-31 1991-06-21 Res Dev Corp Of Japan Method and device for forming oxide hightemperature superconducting film by plasma-excitation vaporization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314719A (en) * 1987-06-17 1988-12-22 Furukawa Electric Co Ltd:The Manufacture of ceramic superconductive formed body
JPS649853A (en) * 1987-07-01 1989-01-13 Furukawa Electric Co Ltd Production of feedstock powder for ceramic superconductor
JPS6465004A (en) * 1987-05-18 1989-03-10 Sumitomo Electric Industries Method for modifying superconductive material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465004A (en) * 1987-05-18 1989-03-10 Sumitomo Electric Industries Method for modifying superconductive material
JPS63314719A (en) * 1987-06-17 1988-12-22 Furukawa Electric Co Ltd:The Manufacture of ceramic superconductive formed body
JPS649853A (en) * 1987-07-01 1989-01-13 Furukawa Electric Co Ltd Production of feedstock powder for ceramic superconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193483A (en) * 1987-10-05 1989-04-12 Kanegafuchi Chem Ind Co Ltd Production of superconductive material
JPH03146418A (en) * 1989-10-31 1991-06-21 Res Dev Corp Of Japan Method and device for forming oxide hightemperature superconducting film by plasma-excitation vaporization

Similar Documents

Publication Publication Date Title
KR910007382B1 (en) Superconductor material and method of manufacturing super-conductor film
JPH01133971A (en) Production of superconducting material
US4889665A (en) Process for producing ultrafine particles of ceramics
JPH0825742B2 (en) How to make superconducting material
EP0349341A2 (en) Method of improving and/or producing oxide superconductor
JP2713343B2 (en) Superconducting circuit fabrication method
JPH0331482A (en) Manufacture of material contain- ing either one or both of alkali earth metal and alkali earth metal oxide
JP2603688B2 (en) Superconducting material reforming method
RU2795949C1 (en) Manufacturing of ybco gradient ceramic material using plasma processing
Kamble et al. Development of Nanocrystalline LaB₆ Electron Emitters Processed Using Arc Thermal Plasma Route
JPH0764678B2 (en) Method for producing superconducting thin film
JPH02221125A (en) Oxide superconductor and its production
JP2668532B2 (en) Preparation method of superconducting thin film
JPH0193483A (en) Production of superconductive material
JPH0193403A (en) Production of ceramic-based superconducting material and apparatus therefor
GB2225162A (en) Activating superconductor material and producing semiconductor device incorporating it
JP2567446B2 (en) Preparation method of superconducting thin film
JPH0556283B2 (en)
JPS63274620A (en) Preparation of superconductive material
JPH0195575A (en) Formation of oxide superconducting material
JP2525852B2 (en) Preparation method of superconducting thin film
JP2501615B2 (en) Preparation method of superconducting thin film
JPH0337104A (en) Production of oxide superconducting thin film and apparatus therefor
JPH03197321A (en) Production of superconductor of thin film
JPH01192705A (en) Production of raw material powder for oxide superconductor