JPH01133320A - Thin-film processing device - Google Patents

Thin-film processing device

Info

Publication number
JPH01133320A
JPH01133320A JP29141587A JP29141587A JPH01133320A JP H01133320 A JPH01133320 A JP H01133320A JP 29141587 A JP29141587 A JP 29141587A JP 29141587 A JP29141587 A JP 29141587A JP H01133320 A JPH01133320 A JP H01133320A
Authority
JP
Japan
Prior art keywords
stage
holders
processed
stages
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29141587A
Other languages
Japanese (ja)
Inventor
Kichizo Komiyama
吉三 小宮山
Kazuhito Kobayashi
一仁 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP29141587A priority Critical patent/JPH01133320A/en
Publication of JPH01133320A publication Critical patent/JPH01133320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To make the space of a reaction room small and to save energy and be more uniform by setting the distance between axes of each stage provided with a plurality of holders for mounting work to be processed shorter than the circumscribed circle diameter of a plurality of holders and by making a stage rotate so that neighboring holders of a stage will not interfere with each other. CONSTITUTION:Axes 35A and 35B are mounted in the center of the lower surface of stages 32A and 32B, each rotating with respective stage. The distance between axes 35A and 35B is set shorter than the circumscribed circle diameter of a plurality of holders 34 mounted in a stage 32A or 32B. And when neighboring stages 32A and 32B rotate in opposite directions, an adjacent holder 34 is positioned between circumference directions of each. Thus, while each set adjacent to the holder 34 on the stages 32A and 32B revolves while turning on its own axis, it moves in a reaction room 1a by the rotation of a table 30. This enables the degree of processing between each work to be processed 7 and within each work to be processed 7 to be uniform despite the difference of thin-film processing capabilities in the circumferential and radial directions of the electrode 3.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、例えば半導体などの基板(以下、被処理物と
いう)に対する成膜やエツチングなどの薄膜処理を施こ
す装置に係り、特に処理の均一性の向上に関するもので
ある。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to an apparatus that performs thin film processing such as film formation and etching on a substrate such as a semiconductor (hereinafter referred to as a processing object). In particular, it relates to improving uniformity of processing.

(従来の技術) 例えば成膜装置として、@5図および@6図に示すよう
な平行平板型プラズマCVD装置が知ら3と、これに対
向してアース電極を構成するテーブル4とが収納され、
テーブル4は駆動源5によって回転されるようになって
いる。テーブル4上には8g6図に示すように保持体6
が配列され、それらの上にウェハなどの被処理物7が載
置され、例えば電極a内に埋設したヒータ3aなどの加
熱源にて被処理物7を加熱すると共に排気口8から排気
して反応室1a内を所定の真空度に保ちつつノズル9か
ら反応ガスを導入し、電極3に高周波電圧を印加してテ
ーブル4との間にプラズマ放電を生じさせ、被処理物7
上に薄膜を形成する。
(Prior Art) For example, as a film forming apparatus, a parallel plate type plasma CVD apparatus as shown in Fig. @5 and Fig. @6 is known.
The table 4 is rotated by a drive source 5. There is a holder 6 on the table 4 as shown in the 8g6 figure.
A workpiece 7 such as a wafer is placed on top of the workpiece 7, and the workpiece 7 is heated by a heat source such as a heater 3a embedded in the electrode a, and the workpiece 7 is exhausted from an exhaust port 8. A reaction gas is introduced from the nozzle 9 while maintaining the inside of the reaction chamber 1a at a predetermined degree of vacuum, and a high frequency voltage is applied to the electrode 3 to generate a plasma discharge between the electrode 3 and the table 4.
Form a thin film on top.

また、第7図および第8図に示すように、保持体6a 
fテーブル4の同心円周上に回転自在に取付け、保持体
6aから下方へ伸びる軸10に固定された歯車11を、
真空反応容器1の底面に固定されたリングギヤ12にか
み合わせることにより、テーブル4の回転に従って保持
体6a f自転させて自公転を行ない、膜厚の均一性を
向上させたものもある。
Further, as shown in FIGS. 7 and 8, the holding body 6a
f A gear 11 is rotatably mounted on the concentric circumference of the table 4 and fixed to a shaft 10 extending downward from the holder 6a.
There is also one in which the holder 6a f rotates and revolves around its axis as the table 4 rotates by meshing with a ring gear 12 fixed to the bottom surface of the vacuum reaction vessel 1, thereby improving the uniformity of the film thickness.

(発明が解決しよ5とする問題点) 前記ノよづな薄膜処理装置において、lバッチの処理数
の増加による生産性あ向上が望まれている。しかしなが
ら、同一テーブル4内に多数の被処理物7を収納しよう
とすると、第6図および第8図のように同心円周上に1
列載置するだけでは生産性が悪(、内外の2列に載せる
ことが考えられ、実際に気相成長装置などの半導体処理
装置で行なわれている。しかし、被処理物7の大径化に
伴い、単純に2列に載せただけでは、均一化が図れない
場合がある。例えば、本願発明者らはプラズマCVD装
置において、第9図および第10図に示すように、内外
列の保持体6a 、 6aが内外に歯を有するリングギ
ヤ13によって共に自転しつつ公転する装置を試作して
成膜を試みた。その結果は、l@11図に示すように、
内外各列のそれぞれの均一性については自公転の効果が
あり、高い均一性を示し、外側の被処理物7内の均一性
は±3゜2%、内側のそれは±0.9%であった。しか
し、内外の被処理物7間では、±32.5%と非常に大
きな差を生じた。
(Problems to be Solved by the Invention) In the above-mentioned thin film processing apparatus, it is desired to improve productivity by increasing the number of batches processed. However, when trying to store a large number of workpieces 7 in the same table 4, one
If the workpieces 7 are placed in two rows, the productivity is poor (but it is possible to place them in two rows, inside and outside, and this is actually done in semiconductor processing equipment such as vapor phase growth equipment. However, as the diameter of the workpiece 7 increases, Due to this, it may not be possible to achieve uniformity by simply placing them in two rows.For example, the inventors of the present application have developed a plasma CVD apparatus in which the inner and outer rows are held as shown in FIGS. 9 and 10. An attempt was made to form a film using a prototype device in which the bodies 6a, 6a both rotate and revolve around their own axis using a ring gear 13 having teeth inside and outside.The results were as shown in Figure 1@11.
The uniformity of each of the inner and outer rows is due to the effect of rotation and revolution, and shows high uniformity, with the uniformity in the outer workpiece 7 being ±3.2% and that in the inner row being ±0.9%. Ta. However, there was a very large difference of ±32.5% between the inner and outer objects to be treated.

プラズマCVD装置の場合、膜形成に影響する因子とし
て、真空度、R,F印加電力、温度、電極間距離、ノズ
ル位置と形状等があり、種々の条件を変えて成膜試験を
行なったが、内外の均一性に優れた条件を求めることは
できなかった。また、プラズマCVD装置の場合、真空
反応容器1の太きさやテーブル4の直径ならびに被処理
物7の載置位置などもプラズマ密度分布などの影響があ
り、膜厚分布に影響すると言われており、装置設計時に
゛は、確実に膜厚分布の均一化が図れるかどうか定かで
ないという未知な要因があるため、大径化に対し一層の
困難さを有している。
In the case of plasma CVD equipment, the factors that affect film formation include the degree of vacuum, R and F applied power, temperature, distance between electrodes, nozzle position and shape, etc., and film formation tests were conducted under various conditions. However, it was not possible to obtain conditions with excellent internal and external uniformity. In addition, in the case of plasma CVD equipment, the thickness of the vacuum reaction vessel 1, the diameter of the table 4, and the placement position of the workpiece 7 are said to have an influence on the plasma density distribution, and thus on the film thickness distribution. When designing the device, there is an unknown factor in that it is not certain whether the film thickness distribution can be reliably made uniform, making it even more difficult to increase the diameter.

なお、第12図は、第9図および第10図に示した試作
機で、保持体6a 、 5aは回転させずに、テーブル
4のみを回転させた場合の内外列の被処理物7のテーブ
ル半径方向の膜厚を測定してクロッ上したものである。
Note that FIG. 12 shows the table of the workpieces 7 in the inner and outer rows of the prototype machine shown in FIGS. 9 and 10, when only the table 4 is rotated without rotating the holders 6a and 5a. The film thickness in the radial direction was measured and plotted.

この第12図から明らかなように、前記のようなプラズ
マCVD装置においては、半径方向の膜厚分布がほぼs
inカーブで大きく変化する。このような半径方向の薄
膜処理効率の変化は、プラズマCVD装置に限らず、程
度の違いはあっても種々の薄膜処理装置において見られ
る現象である。
As is clear from FIG. 12, in the plasma CVD apparatus described above, the film thickness distribution in the radial direction is approximately s.
It changes greatly with the in curve. Such a change in thin film processing efficiency in the radial direction is a phenomenon that is observed not only in plasma CVD apparatuses but also in various thin film processing apparatuses, although there may be differences in degree.

なお、プラズマによらないCVD装置において、第13
図に示すように、反応炉20内に固定内歯車21を投げ
ると共にその中心に太陽歯車22ヲ設け、両歯車21 
、22にかみ合う保持体23ヲ設けて各保持体23上に
複数の被処理物7を載置し、太陽歯車22ヲ回転させる
ことにより、保持体23ヲ自公転させて膜厚の均一化を
図るものも知られている(特開昭49−43579号)
。しかしながら、この方式は、被処理物7の保持体23
の外周に近い部分と中心に近い部分とは反応炉20内の
通過箇所が異なるため、各被処理物7間の均一化は図れ
ても、被処理物7内での均一化が十分に得られない欠点
を有している。この欠点は被処理物7の大径化に伴って
顕著に現れる。
In addition, in a CVD apparatus that does not use plasma, the 13th
As shown in the figure, a fixed internal gear 21 is placed in a reactor 20, a sun gear 22 is provided at the center of the fixed internal gear 21, and both gears 21
, 22 are provided, a plurality of objects 7 to be treated are placed on each of the holders 23, and the sun gear 22 is rotated to cause the holders 23 to revolve around themselves and to make the film thickness uniform. It is also known that there is a method for
. However, in this method, the holder 23 of the workpiece 7
Since the passage points in the reactor 20 are different between the part near the outer periphery and the part near the center, even if uniformity can be achieved between each workpiece 7, uniformity within the workpiece 7 cannot be sufficiently achieved. It has disadvantages that cannot be avoided. This drawback becomes more noticeable as the diameter of the object 7 to be processed increases.

本発明の目的は、より多数で大径の被処理物の薄膜処理
を各被処理物内および各被処理物間で均一にすることの
できる薄膜処理装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thin film processing apparatus that can uniformly perform thin film processing on a larger number of large-diameter objects within and between each object.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、反応ガスの導入口および排気口全備えた反応
室内で被処理物に対し薄膜処理ヲ施こす装置において、
反応室内に回転可能に設けられたテーブルと、このテー
ブルの同心円周上に回転自在に設けられた複数のステー
ジと、このステージ上の同心円周上に回転自在に設けら
れた被処理物載置用の複数の保持体と、テーブル、ステ
ージおよび保持体に回転を与える駆動機構とを具備し、
ステージの軸間距離を各ステージに設けられている複数
の保持体の外接円直径より短かく設定し、うに構成した
ものである。
(Means for Solving the Problems) The present invention provides an apparatus for performing thin film treatment on a workpiece in a reaction chamber equipped with all reaction gas inlets and exhaust ports.
A table rotatably installed in the reaction chamber, a plurality of stages rotatably installed on the concentric circumference of this table, and a workpiece placed rotatably installed on the concentric circumference of the stage. a plurality of holding bodies, and a drive mechanism that rotates the table, stage, and holding bodies,
The distance between the axes of the stages is set to be shorter than the diameter of the circumscribed circle of the plurality of holders provided on each stage.

(作 用) 保持体は自転しつつステージの回転によって公転し、ス
テージにテーブルの回転によって反応室内を移動するた
め、保持体上に載置された被処理物にすべてが反応室内
の円周方向および半径方向に対しほとんど同−条件下に
置かれ、かつ保持体も自転しているため被処理物の各部
分もほとんど同−条件下に置かれる。このため被処理物
間および被処理物内の処理の均一化がより完全に達成さ
れると共に、ステージの軸間距離を上記のように定めて
保持体をより密に配列するように構成したため、反応室
のスペースを小形にして省エネルギ化とより高い均一化
が図れる。
(Function) The holder rotates on its own axis and revolves around the rotation of the stage, and is moved within the reaction chamber by the rotation of the stage and table. Since the holding body is also rotating, each part of the object to be treated is also placed under almost the same conditions in the radial direction. Therefore, the uniformity of processing between and within the objects to be processed is achieved more completely, and the distance between the axes of the stage is determined as described above, and the holders are arranged more densely. By reducing the space of the reaction chamber, energy savings and higher uniformity can be achieved.

(実施例) 以下本発明を平行平板型プラズマCVD装置に適用した
一実施例を示す第1図ないし第3図について説明する。
(Embodiment) Hereinafter, a description will be given of FIGS. 1 to 3 showing an embodiment in which the present invention is applied to a parallel plate type plasma CVD apparatus.

なお、前述した第4図と同一部分には同一符号を付して
説明を省略する。30ば、電極3に対向してアース電極
全構成する円板状のテーブルで、駆動源5によって回転
を与えられる。
Note that the same parts as those in FIG. 4 described above are designated by the same reference numerals, and the description thereof will be omitted. 30 is a disc-shaped table entirely composed of a ground electrode facing the electrode 3, and is rotated by a drive source 5.

テーブル30の同心円周上には、軸受:31ヲ介してス
テージ32A 、 32Bが回転自在に交互に合計で偶
数個取付けられている。ステージ32A 、 32Bの
同心円周上には、軸受33を介して保持体34が複数取
付けられている。
On the concentric circumference of the table 30, an even number of stages 32A and 32B are rotatably and alternately mounted via bearings 31. A plurality of holders 34 are attached via bearings 33 on the concentric circumferences of the stages 32A and 32B.

ステージ32A 、 32Bの丁面中心には、これらと
共に回転する軸35A 、 35Bがそれぞれ取付けら
れている。軸35A 、 35Bの第1図において下端
には、厚い歯車36Aと薄い歯車36Bがそれぞれ取付
けられている。厚い歯車36Aは、真空反応容器1の底
部にテーブル30と同心に固定されている中心歯車37
にかみ合っている。他方、薄い歯車36Bは、中心歯車
37より上方に位置してこれにはかみ合わず、厚い歯車
36Aにかみ合っている。
Shafts 35A and 35B, which rotate together with the stages 32A and 32B, are attached to the centers of the surfaces of the stages 32A and 32B, respectively. A thick gear 36A and a thin gear 36B are attached to the lower ends of the shafts 35A and 35B in FIG. 1, respectively. The thick gear 36A is a central gear 37 fixed to the bottom of the vacuum reaction vessel 1 concentrically with the table 30.
They are engaged. On the other hand, the thin gear 36B is located above the center gear 37 and does not mesh with it, but meshes with the thick gear 36A.

前記軸35A 、 35Bの軸間距離に、1つのステー
ジ32Aもしく +! 32Bに取付けられている複数
の保持体34の外接円直径より短かく設定されている。
One stage 32A or +! in the distance between the axes 35A and 35B. It is set shorter than the diameter of the circumscribed circle of the plurality of holders 34 attached to 32B.

ステージ3’2A 、 32B毎の各保持体:う4の位
置関係は、第2図に示すように、隣り合うステージ32
A、32Bが互いに逆方向へ回転したとぎ近接する保持
体34がそれぞれ円周方向に対し間に位置するようにな
されている。
The positional relationship of each holder for each stage 3'2A and 32B is as shown in FIG.
When A and 32B rotate in opposite directions, the adjacent holders 34 are positioned between them in the circumferential direction.

また、保持体34ヲ支持している支持軸38の第1図に
おいて下端にはそれぞれ歯車39が固定されている。こ
れらの歯車39は、軸35A 、 35Bの同心上に位
置させてテーブル3()に固定されている内歯車40に
それぞれかみ合っている。
Further, gears 39 are fixed to the lower ends of the support shafts 38 supporting the holder 34 in FIG. 1, respectively. These gears 39 are positioned concentrically with the shafts 35A and 35B and mesh with internal gears 40 fixed to the table 3().

次いで木製・置の作用について説明する。加熱源3aに
より保持体34および被処理物7を加熱し、排気口8か
ら排気して反応室1a内を所定の真空度に保ちつつノズ
ル9から反応ガスを導入し、電極3に高周波電力を印加
して同電極3とテーブル30ならびにこのテーブル30
に電気的に導通されているステージ32A 、 32B
および保持体34との間にプラズマ放電を生じさせ、被
処理物7上に薄膜を形成する。
Next, we will explain the function of the wooden table. The holder 34 and the object to be processed 7 are heated by the heating source 3a, the reaction chamber 1a is kept at a predetermined degree of vacuum by being evacuated from the exhaust port 8, the reaction gas is introduced from the nozzle 9, and high-frequency power is applied to the electrode 3. Applying voltage to the same electrode 3 and table 30 as well as this table 30
stages 32A and 32B that are electrically connected to
Plasma discharge is generated between the holder 34 and the holder 34, and a thin film is formed on the object 7 to be processed.

このとき、駆動源5によってテーブル30ヲ比較的低速
で回転させる。いま、テーブル:30 i第2図におい
て矢印Aで示す方向へ回転させたとすると、中心歯車3
7にかみ合っている厚い歯車36A &!第2図におい
て矢印Bで示す方向へ回転し、これに連結されているス
テージ32A’!i−同じ(矢印B方向へ回転させる。
At this time, the drive source 5 rotates the table 30 at a relatively low speed. Now, if table 30i is rotated in the direction shown by arrow A in Figure 2, center gear 3
Thick gear 36A meshing with 7 &! The stage 32A' rotates in the direction shown by arrow B in FIG. 2 and is connected thereto! i-Same (rotate in the direction of arrow B).

このステージ32Aの回転により、こ軸 れに取付けられている保持体34の支持@:38が矢印
B方向へ回転し、内歯車40にかみ合っている歯車39
とそれに連結されている保持体34を矢印C方向へ回転
させる。
Due to this rotation of the stage 32A, the support @:38 of the holder 34 attached to the shaft rotates in the direction of arrow B, and the gear 39 meshing with the internal gear 40 rotates.
and the holder 34 connected thereto are rotated in the direction of arrow C.

他方、厚い歯車36Aにかみ合っている薄い歯車36B
&’!前記矢印Bと反対の矢印り方向へ回転する。
On the other hand, a thin gear 36B meshes with a thick gear 36A.
&'! It rotates in the direction of the arrow opposite to the arrow B.

そこで、薄い歯車36Bに連結されているステージ32
Bも矢印り方向へ回転し、その上の保持体34ハ矢印E
方向へ回転する。
Therefore, the stage 32 connected to the thin gear 36B
B also rotates in the direction indicated by the arrow, and the holding body 34 above it rotates in the direction indicated by the arrow E.
Rotate in the direction.

そこで、ステージ32A 、 32B上の保持体34の
隣接する各組は互いに逆方向へ自公転しつつ、テーブル
30の回転によって反応室la内を移動する。
Therefore, each set of adjacent holders 34 on the stages 32A and 32B rotates in opposite directions and moves within the reaction chamber la by the rotation of the table 30.

そこで、各保持体34はいずれも反り室la内を円周方
向へ移動しつつ半径方向に対し同一の範囲を移動し、か
つ保持体34は自転するため、保持体34上の被処理物
7上の各部分も同一の範囲を移動する。このため、電極
3の円周方向および半径方向に薄膜処理能力の差があっ
ても、それぞれの被処理物7問および各被処理物7内の
処理の程度は均一化される。
Therefore, each holder 34 moves within the warp chamber la in the circumferential direction and moves in the same range in the radial direction, and the holder 34 rotates, so the object to be processed on the holder 34 Each part above also moves in the same range. Therefore, even if there is a difference in thin film processing capacity in the circumferential direction and the radial direction of the electrode 3, the seven objects to be processed and the degree of processing within each object to be processed 7 are made uniform.

第3図は、本実施例の装置により窒化シリコン膜をシリ
コンウェハ(被処理物)上に形成した場合の膜厚分布を
グロ7)したものであり、横軸にネ痔処理物7の半径方
向位置、縦軸に膜厚を示し、1つのステージ32A!た
は32B内の3枚の被処理物7についての測定結果であ
る。これによれば、被処理物7内の均一性は±1%以内
であり、被処理物7間の均一性は±3%以内という非常
に高い均一性が得られた。なお、以下に上記実施例にお
ける成膜条件を示す。
FIG. 3 shows the film thickness distribution when a silicon nitride film is formed on a silicon wafer (object to be treated) using the apparatus of this example, and the horizontal axis shows the radius of the hemorrhoid treatment object 7. The directional position and the film thickness are shown on the vertical axis, and one stage 32A! These are the measurement results for three objects to be processed 7 in 32B or 32B. According to this, the uniformity within the object 7 to be processed was within ±1%, and the uniformity between the objects 7 to be processed was within ±3%, which was a very high level of uniformity. Note that the film forming conditions in the above examples are shown below.

テーブル30の直径:800+Mn 処理枚数/バッチ=18枚 1組の保持体34の外接円直径=280Wr!Rテーブ
ル回転数: 7 r、p、m。
Diameter of table 30: 800+Mn Number of sheets processed/batch = 18 sheets Diameter of circumscribed circle of holder 34 = 280Wr! R table rotation speed: 7 r, p, m.

電極3と被処理物7との距離=40配 電極3の温度=350℃ 高周波電源2の周波数: 13.56 MHz高周波電
源2の出カニ200W 真空度: 0.3Torr 使用ガスおよび流量: SiH4、50SCCM、 N
H3、300SCCM第4図は、本発明の他の実施例を
示すもので、各ステージ41A 、 41Bに保持体3
4全2つずつ設けたものである。
Distance between electrode 3 and workpiece 7 = 40 Temperature of distribution electrode 3 = 350°C Frequency of high frequency power source 2: 13.56 MHz Output power of high frequency power source 2 200 W Degree of vacuum: 0.3 Torr Gas used and flow rate: SiH4, 50SCCM, N
H3, 300SCCM FIG. 4 shows another embodiment of the present invention, in which a holder 3 is mounted on each stage 41A and 41B.
4, two of each.

前述した実施例は、本発明をプラズマCVD装置に適用
した例を示したが、本発明は他の成膜装置やエツチング
装置などの薄膜処理装置にも適用し得る。また、前述し
た実施例では、ステージ32A 、 32Bまたは41
A 、 41Bと保持体34を、第2図または第4図に
矢印B、Cまたは矢印り、Bで示すように、逆方向へ回
転させる例を示したが、両者は同一方向へ回転させた方
が均一性には効果があり、このため内歯車40と歯車3
9の間に図示しないアイドル歯車を追加するとよい。さ
らにまた均一性を高めるために、ステージ32A 、 
32Bと保持体34の回転比は整数倍でない方がよい。
Although the above-mentioned embodiment shows an example in which the present invention is applied to a plasma CVD apparatus, the present invention can also be applied to other thin film processing apparatuses such as film forming apparatuses and etching apparatuses. Furthermore, in the embodiments described above, stages 32A, 32B, or 41
A, 41B and the holding body 34 are rotated in opposite directions as shown by arrows B and C in FIG. 2 or 4, but it is not possible to rotate both in the same direction. This is more effective for uniformity, and for this reason, the internal gear 40 and gear 3
It is recommended to add an idle gear (not shown) between 9 and 9. Furthermore, to improve uniformity, stage 32A,
It is preferable that the rotation ratio between 32B and the holding body 34 is not an integral multiple.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、各被処理物内および
被処理物間の薄膜処理の均一性を高められると共に、よ
り多数の被処理物を処理することができ、さらに反応室
のスペースを小形にでき、省エネルギ化とより高い均一
性を得られる効果がある。
As described above, according to the present invention, it is possible to improve the uniformity of thin film processing within each workpiece and between workpieces, to process a larger number of workpieces, and to take up less space in the reaction chamber. can be made smaller, resulting in energy savings and higher uniformity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例金示す断面図、第2図は81
図のI−T[線による一部破断断面図、第3図は本発明
の一実施例による成膜結果全示す図、第4図は本発明の
他の実施例を示す一部破断断面図、第5図は従来装置の
断面図、第6図は第5図のVT−VIX線断面図第7図
は他の従来装置の断面図、第8図は第7図の■1−■線
断回線断第9図は参考装置の断面図、第10図は第9図
のX−X線断面図、第11図は第9および10図に示し
た参考装置による成膜結果を示す図、第12図は第9お
よび10図に示す参考装置で被処理物を自転させなかっ
た場合の成膜結果を示す図、第13図はさらに他の従来
装置を示す断面平面図である。 1a・・・・・・反応室、 5・・・・・・駆動源、 
7・・・・・・被処理物、 8・・・・・・排気口、 
9・・・・・・ノズル、30・・・・・・テーブル、 
 32A 、 32B 、 41A 、 41B・・・
・・・ステージ、 34・・・・・・保持体、 35A
 、 35B・・・・・・軸、 36A 、 36B 
、 39・・・・・・歯車、 37・・・・・・中心歯
車、 40・・・・・・内歯車。
Fig. 1 is a sectional view showing one embodiment of the present invention, and Fig. 2 is a sectional view showing an 81
FIG. 3 is a diagram showing all the film formation results according to one embodiment of the present invention, and FIG. 4 is a partially fractured sectional diagram showing another embodiment of the present invention. , FIG. 5 is a sectional view of a conventional device, FIG. 6 is a sectional view taken along the VT-VIX line in FIG. 5, FIG. 7 is a sectional view of another conventional device, and FIG. 8 is a sectional view taken along the line 9 is a sectional view of the reference device, FIG. 10 is a sectional view taken along the line X-X in FIG. 9, and FIG. 11 is a diagram showing the film formation results using the reference device shown in FIGS. FIG. 12 is a diagram showing the film formation results when the object to be processed is not rotated using the reference apparatus shown in FIGS. 9 and 10, and FIG. 13 is a cross-sectional plan view showing still another conventional apparatus. 1a... Reaction chamber, 5... Drive source,
7...Object to be processed, 8...Exhaust port,
9... Nozzle, 30... Table,
32A, 32B, 41A, 41B...
...stage, 34...holding body, 35A
, 35B... shaft, 36A, 36B
, 39...gear, 37...center gear, 40...internal gear.

Claims (1)

【特許請求の範囲】 1、反応ガスの導入口および排気口を備えた反応室内で
被処理物に対し薄膜処理を施こす装置において、反応室
内に回転可能に設けられたテーブルと、一同テーブルの
同心円周上に回転自在に設けられた複数のステージと、
同ステージの同心円周上に回転自在に設けられた被処理
物載置用の複数の保持体と、前記テーブル、ステージお
よび保持体に回転を与える駆動機構とを具備し、かつ前
記ステージの軸間距離は各ステージに設けられている複
数の保持体の外接円直径より短かく設定され、さらに隣
り合うステージ上の保持体は互いに干渉しないように配
列されると共に該保持体が互いに干渉しないようにステ
ージが回転されるように構成されていることを特徴とす
る薄膜処理装置。 2、隣り合うステージが互いに逆方向へ同一回転数で回
転されるように構成されていることを特徴とする特許請
求の範囲第1項記載の薄膜処理装置。
[Scope of Claims] 1. In an apparatus for performing thin film treatment on an object to be treated in a reaction chamber equipped with a reaction gas inlet and an exhaust port, a table rotatably provided in the reaction chamber and a A plurality of stages rotatably provided on concentric circles,
A plurality of holders for placing objects to be processed are rotatably provided on the concentric circumference of the stage, and a drive mechanism that rotates the table, the stage, and the holder, and an axis between the axes of the stage is provided. The distance is set to be shorter than the diameter of the circumscribed circle of the plurality of holders provided on each stage, and further, the holders on adjacent stages are arranged so as not to interfere with each other, and the holders are arranged so as not to interfere with each other. A thin film processing apparatus characterized in that the stage is configured to be rotated. 2. The thin film processing apparatus according to claim 1, wherein adjacent stages are configured to be rotated at the same rotation speed in opposite directions.
JP29141587A 1987-11-18 1987-11-18 Thin-film processing device Pending JPH01133320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29141587A JPH01133320A (en) 1987-11-18 1987-11-18 Thin-film processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29141587A JPH01133320A (en) 1987-11-18 1987-11-18 Thin-film processing device

Publications (1)

Publication Number Publication Date
JPH01133320A true JPH01133320A (en) 1989-05-25

Family

ID=17768591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29141587A Pending JPH01133320A (en) 1987-11-18 1987-11-18 Thin-film processing device

Country Status (1)

Country Link
JP (1) JPH01133320A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143274A (en) * 1990-10-05 1992-05-18 Shinku Kikai Kogyo Kk Thin film forming device
JPH05314540A (en) * 1992-05-08 1993-11-26 Kuraray Co Ltd Sputtering device
WO2000036178A1 (en) * 1998-12-15 2000-06-22 Unaxis Balzers Aktiengesellschaft Planetary system workpiece support and method for surface treatment of workpieces
DE102004027989A1 (en) * 2004-06-09 2006-03-02 Esser, Stefan, Dr.-Ing. Workpiece support device for holding workpieces comprises an annular planetary element and a transfer element for driving a lunar element in the inner space of the annular planetary element
JP2013507776A (en) * 2009-10-09 2013-03-04 クリー インコーポレイテッド Multi-rotation epitaxial growth apparatus and reactor incorporating the same
JP2015179770A (en) * 2014-03-19 2015-10-08 株式会社日立国際電気 Substrate processing apparatus, and method for manufacturing semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143274A (en) * 1990-10-05 1992-05-18 Shinku Kikai Kogyo Kk Thin film forming device
JPH05314540A (en) * 1992-05-08 1993-11-26 Kuraray Co Ltd Sputtering device
WO2000036178A1 (en) * 1998-12-15 2000-06-22 Unaxis Balzers Aktiengesellschaft Planetary system workpiece support and method for surface treatment of workpieces
US6620254B2 (en) * 1998-12-15 2003-09-16 Unaxis Balzers Ag Planetary system workpiece support and method for surface treatment of workpieces
JP2010265552A (en) * 1998-12-15 2010-11-25 Oerlikon Trading Ag Truebbach Vacuum treatment planetary system workpiece carrier
DE102004027989A1 (en) * 2004-06-09 2006-03-02 Esser, Stefan, Dr.-Ing. Workpiece support device for holding workpieces comprises an annular planetary element and a transfer element for driving a lunar element in the inner space of the annular planetary element
DE102004027989B4 (en) * 2004-06-09 2007-05-10 Esser, Stefan, Dr.-Ing. Workpiece carrier device for holding workpieces
JP2013507776A (en) * 2009-10-09 2013-03-04 クリー インコーポレイテッド Multi-rotation epitaxial growth apparatus and reactor incorporating the same
US9637822B2 (en) 2009-10-09 2017-05-02 Cree, Inc. Multi-rotation epitaxial growth apparatus and reactors incorporating same
JP2015179770A (en) * 2014-03-19 2015-10-08 株式会社日立国際電気 Substrate processing apparatus, and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US6554905B1 (en) Rotating semiconductor processing apparatus
JP2016096220A (en) Film formation apparatus
CN112708865B (en) Coating equipment for improving film uniformity
TW202033811A (en) Method of forming titanium nitride films with (200) crystallographic texture
JPH01133320A (en) Thin-film processing device
JP2006279058A (en) Heat treatment apparatus and method of manufacturing semiconductor device
TWM558256U (en) Wafer carrier and chemical vapor phase deposition apparatus or epitaxial growth apparatus
JPS61110768A (en) Device for manufacturing amorphous silicon photosensitive body
US7262390B2 (en) Apparatus and adjusting technology for uniform thermal processing
JPH01133318A (en) Thin-film processing device
JP2010103544A (en) Film forming apparatus and method
JPH01133319A (en) Thin-film processing device
JPS61212014A (en) Semiconductor wafer processing device using chemical vapor deposition method
JPS61174388A (en) Etching device
JPS63147894A (en) Vapor growth method and vertical vapor growth device
JPH06136543A (en) Plasma cvd apparatus
CN114182227B (en) Film forming apparatus
US20230133402A1 (en) Injection module for a process chamber
JPH11102903A (en) Method and equipment for thin film forming and method for manufacturing semiconductor device
JPS63300512A (en) Chemical vapor deposition apparatus
TW202405211A (en) Composite pvd targets
JP2013206732A (en) Longitudinal batch type processing device
JPS63310119A (en) Dry etching device
JPH0526734Y2 (en)
JPS59145531A (en) Vapor-phase wafer processing device