JPH01133306A - Oxide superconducting coil - Google Patents

Oxide superconducting coil

Info

Publication number
JPH01133306A
JPH01133306A JP29125087A JP29125087A JPH01133306A JP H01133306 A JPH01133306 A JP H01133306A JP 29125087 A JP29125087 A JP 29125087A JP 29125087 A JP29125087 A JP 29125087A JP H01133306 A JPH01133306 A JP H01133306A
Authority
JP
Japan
Prior art keywords
oxide superconductor
coil
electrically insulating
insulating layer
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29125087A
Other languages
Japanese (ja)
Inventor
Misao Koizumi
小泉 操
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29125087A priority Critical patent/JPH01133306A/en
Publication of JPH01133306A publication Critical patent/JPH01133306A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to form a coil shaped conductive path even if there is no plasticity in an oxide superconductor and an electrically insulating layer, by forming it such that a coil element alternates with an electrically insulating layer and as an laminating substance in which coil elements are spirally adjacent to each other by a conductive material filled in a slit in the electrically insulating layer through the electrically insulating layer. CONSTITUTION:An electrically insulating layer 4 and a coil element 3 are alternately laminated using the coil element 3 serving as a molding 1 of an oxide superconductor with a silver layer 2 formed and an aluminum sintered body as an electrically insulating layer. When they are laminated, it is arranged that the right end part of a slit 5a of a coil element 3a positioned above the electrically insulating layer 4a is adjacent to the left end part of a slit 5b of a coil element 3b positioned beneath it through the electrically insulating layer 4a. After the lamination, silver 7 is filled in the slit of each electrically insulating layer 4a to connect, the coil elements by the silver. After a while, the whole is covered with an epoxy resin 8 to be integrated and then, a superconductive coil 9 is provided.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、スリットを有するリング状に成形した酸化物
超電導体を用いた超電導コイルに関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a superconducting coil using an oxide superconductor formed into a ring shape having slits.

(従来の技術) 近年、Ba−La−Cu−0系の層状ペロブスカイト型
の酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の研究が行われて
いる(Z、Phys、B Condensed Mat
ter64、189−193(1986))、その中で
もY−Ha−Cu−0系で代表される酸素欠陥を有する
欠陥ペロブスカイト型(LnBa  Cu  O型)(
δは酸素欠陥を表わし231−δ 通常1以下、Lnは、Y、La、 Sc、 Nd、Sl
l、 Eu、 Gd、0■、■0、Er、Tn、 ’i
’bおよびLuから選ばれた少なくとも1種の元素、B
aの一部はS「等で置換可能)の酸化物超電導体は、臨
界温度が90に以上と液体窒素以上の高い温度を示すな
め非常に有望な材料として注目されている(Phys、
 Rev、 Lett、Vol、58No、9,908
−910) 。
(Prior Art) In recent years, it has been announced that layered perovskite-type oxides based on Ba-La-Cu-0 may have a high critical temperature, and since then, research on oxide superconductors has been carried out in various places. (Z, Phys, B Condensed Mat
ter64, 189-193 (1986)), among which defective perovskite type (LnBa Cu O type) with oxygen defects represented by Y-Ha-Cu-0 system (
δ represents oxygen defect, 231-δ is usually 1 or less, Ln is Y, La, Sc, Nd, Sl
l, Eu, Gd, 0■, ■0, Er, Tn, 'i
'b and at least one element selected from Lu, B
Oxide superconductors, in which a can be partially replaced with S, etc., are attracting attention as very promising materials because they exhibit a critical temperature of 90°C or higher, which is higher than liquid nitrogen (Phys,
Rev, Lett, Vol, 58 No. 9,908
-910).

ところで、従来から合金系あるいは金属間化合物系の超
電導体については、各種のコイルが研究され、NMRや
回転電機では既に実用化も行われているが、上記酸化物
超電導体は、脆い結晶性の酸化物であって可撓性に乏し
いため、可撓性の良好な線材あるいはテープを得ること
が困難である。
By the way, various types of coils have been studied for alloy-based or intermetallic compound-based superconductors, and they have already been put into practical use in NMR and rotating electric machines, but the oxide superconductors mentioned above are brittle crystalline. Since it is an oxide and has poor flexibility, it is difficult to obtain a wire or tape with good flexibility.

また、この酸化物超電導体は機械的応力に対して弱く、
一定値以上歪むと超電導特性が低下または消滅するため
、線材の巻回時において所望の電流密度を得ることが困
難であり、コイルへの適用が非常に困難視されている。
In addition, this oxide superconductor is weak against mechanical stress,
If the wire is distorted beyond a certain value, the superconducting properties will deteriorate or disappear, making it difficult to obtain a desired current density when winding the wire, making it extremely difficult to apply it to coils.

(発明が解決しようとする問題点) このように、酸化物超電導体を用いて可撓性に優れた線
材を得、かつ、巻回時において所望の電流密度を得るこ
とは困難であるため、酸化物超電導体を用いたコイルの
製造はきわめて困難なものであった。
(Problems to be Solved by the Invention) As described above, it is difficult to obtain a wire with excellent flexibility using an oxide superconductor and to obtain a desired current density during winding. Manufacturing coils using oxide superconductors has been extremely difficult.

本発明はこのような問題点を解決すべくなされたもので
、上記の問題のない酸化物超電導体コイルを提供するこ
とを目的とする。
The present invention was made to solve these problems, and an object of the present invention is to provide an oxide superconductor coil free from the above problems.

[発明の構成] (問題点を解決するための手段) すなわち、本発明の酸化物超電導体コイルは、少なくと
も両面に安定化材層を有しかつ半径方向に向かうスリッ
トを有するリング状に成形された酸化物超電導体からな
るコイルエレメントを、電気絶縁物層を介して複数個積
層し、前記電気絶縁物層を通して前記コイルエレメント
をスパイラル状に電気接続するとともに、これらを電気
絶縁性の補強材により一体化してなることを特徴として
いる。
[Structure of the Invention] (Means for Solving the Problems) That is, the oxide superconductor coil of the present invention is formed into a ring shape having a stabilizing material layer on at least both sides and having slits extending in the radial direction. A plurality of coil elements made of an oxide superconductor are laminated with an electrical insulating layer interposed therebetween, and the coil elements are electrically connected in a spiral manner through the electrical insulating layer, and these are connected by an electrically insulating reinforcing material. It is characterized by being integrated.

本発明には各種の酸化物超電導体を用いることができる
が、臨界温度の高い、希土類元素含有のペロブスカイト
型の酸化物超電導体を用いた場合に特に実用的効果が大
きい。
Although various oxide superconductors can be used in the present invention, the use of a perovskite-type oxide superconductor containing a rare earth element, which has a high critical temperature, has a particularly large practical effect.

ここでいう希土類元素を含有しペロブスカイト型構造を
有する酸化物超電導体は、超電導状態を実現できるもの
であればよく、LnBa2Cu3O7−。
The oxide superconductor containing a rare earth element and having a perovskite structure may be one that can realize a superconducting state, such as LnBa2Cu3O7-.

系〈δは酸素欠陥を表し通常1以下の数、Lnは、Y、
 La、 Sc、 Nd5Si、 Eu、 Gd、 D
y、■0、Er、 Tn、Ybおよび[Uから選ばれた
少なくとも 1種の元素、Baの一部はS「等で置換可
能)等の酸素欠陥を有する欠陥ペロブスカイト型、5r
−La−Cu−0系等の層状ペロブスカイト型等の広義
にペロブスカイト型を有する酸化物が例示される。また
希土類元゛素も広義の定義とし、Sc、  YおよびE
u系を含むものとする0代表的な系としてY−Ba−C
u−0系のほかに、YをEu、 Dy、Ho、 Er、
Tn、 Yb、 Lu等の希土類で置換した系、5C−
Ba−Ctl−0系、5r−La−Cu−0系、さらに
S「をBa、 Caで置換した系等が挙げられる。
System〈δ represents an oxygen defect and is usually a number of 1 or less, Ln is Y,
La, Sc, Nd5Si, Eu, Gd, D
Defect perovskite type, 5r having oxygen defects such as y,
Examples include oxides having a perovskite type in a broad sense, such as a layered perovskite type such as -La-Cu-0 type. Rare earth elements are also broadly defined, and include Sc, Y, and E.
Y-Ba-C as a representative system including the u system
In addition to the u-0 series, Y can be changed to Eu, Dy, Ho, Er,
System substituted with rare earth elements such as Tn, Yb, Lu, etc., 5C-
Examples include Ba-Ctl-0 system, 5r-La-Cu-0 system, and systems in which S' is replaced with Ba or Ca.

本発明に用いる酸化物超電導体は、たとえば以下に示す
ようにして製造される。
The oxide superconductor used in the present invention is manufactured, for example, as shown below.

まず、Y、 Ba、 Cu等のペロブスカイト型酸化物
超電導体の構成元素を充分混合する。混合の際には、Y
O−CuO等の酸化物を原料として用いることができる
、また、これらの酸化物はかに、焼成後酸化物に転化す
る炭酸塩、硝酸塩、水酸化物等の化合物を用いてもよい
、さらには、共沈法等で得たシュウ酸塩等を用いてもよ
い、ペロブスカイト型酸化物超電導体を構成する元素は
、基本的に化学量論比の組成となるように混合するが、
多少製造条件等との関係でずれていても差支えない、た
とえば、Y−Ba−Cu−0系ではY f molに対
しBa 2 not、Cu 3層01が標準組成である
が、実用上はY 1 molに対して、Ba 2±0.
611101、Cu 3±0.2 mol程度のずれは
問題ない。
First, the constituent elements of the perovskite oxide superconductor, such as Y, Ba, and Cu, are thoroughly mixed. When mixing, Y
Oxides such as O-CuO can be used as raw materials, and compounds such as carbonates, nitrates, and hydroxides that are converted to oxides after firing may also be used as these oxides. The elements constituting the perovskite oxide superconductor are basically mixed in a stoichiometric composition, but oxalate etc. obtained by coprecipitation method etc. may be used.
There is no problem even if there is a slight deviation due to manufacturing conditions, etc. For example, in the Y-Ba-Cu-0 system, the standard composition is Ba 2 not and Cu 3 layer 01 for Y f mol, but in practice, Y For 1 mol, Ba 2±0.
611101, Cu. A deviation of about 3±0.2 mol is not a problem.

前述の原料を混合した後、仮焼、粉砕し所望の形状にし
た後、850〜980℃程度で焼成する。仮焼は必ずし
も必要ではない、仮焼および焼成は充分な酸素が供給で
きるような酸素含有雰囲気中で行うことが好ましい。所
望の形状に焼成した後、酸素含有雰囲気中で熱処理して
超電導特性を付与する。上記熱処理は、通常600℃以
下で徐冷しながら行うようにする。
After mixing the above-mentioned raw materials, they are calcined and pulverized into a desired shape, and then fired at about 850 to 980°C. Calcination is not necessarily necessary; it is preferable that the calcination and firing be performed in an oxygen-containing atmosphere where sufficient oxygen can be supplied. After firing into a desired shape, it is heat-treated in an oxygen-containing atmosphere to impart superconducting properties. The above heat treatment is usually performed at 600° C. or lower while slowly cooling.

このようにして得られた酸化物超電導体は、酸素欠陥δ
を有する酸素欠陥型ペロブスカイト構造(LnBa2C
u3O7. (δは通常1以下))となる。
The oxide superconductor thus obtained has oxygen defects δ
Oxygen-deficient perovskite structure (LnBa2C
u3O7. (δ is usually 1 or less)).

なお、BaをS「、Caの少なくとも 1種で置換する
こともでき、さらにCuの一部をTi、V、Cr、Hn
、 Fe、C01N1、Zn等で置換することもできる
Incidentally, Ba can be replaced with at least one of S and Ca, and furthermore, a part of Cu can be replaced with Ti, V, Cr, and Hn.
, Fe, C01N1, Zn, etc. can also be substituted.

この置換量は、超電導特性を低下させない程度の範囲で
適宜設定可能であるが、あまりに多量の置換は超電導特
性を低下させてしまうので80no 1%以下、さらに
実用上は20nolX以下程度までとする。
The amount of substitution can be set as appropriate within a range that does not reduce the superconducting properties, but too much substitution will reduce the superconducting properties, so it is set to 80no1% or less, and more practically 20no1 or less.

また、本発明に用いる安定化材には、 ■ 何らかの原因で酸化物超電導体の超電導状態が破壊
され局所的な常電導部を生じた場合の、電流のバイパス
、 ■ ■の場合に発生する局所的な発熱を速やかに発散さ
せるための、冷却効果、 等の役割が要求されるため、銅、銀、金またはこれらの
化合物等の導電性および熱伝導性に優れ、比熱が大きい
物質を用いることが好ましい、安定化材層はリング状成
形物の上面および下面だけでもよいが、バイパス効果を
向上させるために、成形物の上下面の他側面に設けても
よい、電気絶縁物層としては、アルミナ、マグネシア等
のセラミックス、あるいはエポキシ樹脂、その他の合成
樹脂等の電気絶縁性の高分子化合物を用いることができ
る。コイルエレメントと電気絶縁物層との積層物を全体
として一体化させるための補強材としては、エポキシ樹
脂、その他の合成樹脂等の電気絶縁性の接着性高分子化
合物、あるいは、電気絶縁性の物質からなる治具もしく
は容器を用いることができる。
In addition, the stabilizing material used in the present invention includes: (1) Current bypass when the superconducting state of the oxide superconductor is destroyed for some reason and a local normal conducting part is created; (2) Local current bypass that occurs in the case of Because it is required to have a cooling effect to quickly dissipate heat generated by heat, materials with excellent electrical and thermal conductivity and large specific heat, such as copper, silver, gold, or their compounds, should be used. is preferable, and the stabilizing material layer may be provided only on the upper and lower surfaces of the ring-shaped molded product, but in order to improve the bypass effect, it may be provided on other sides of the upper and lower surfaces of the molded product. Ceramics such as alumina and magnesia, or electrically insulating polymeric compounds such as epoxy resin and other synthetic resins can be used. As a reinforcing material to integrate the laminate of the coil element and the electrical insulating layer as a whole, an electrically insulating adhesive polymer compound such as epoxy resin or other synthetic resin, or an electrically insulating material can be used. A jig or container consisting of the following can be used.

本発明の酸化物超電導体コイルは、上記の材料を用いて
、たとえば次のような方法により製造される。
The oxide superconductor coil of the present invention is manufactured using the above-mentioned materials, for example, by the following method.

まず、酸化物超電導体をボールミル等の公知の手段によ
り粉砕して酸化物超電導体粉末とし、加圧プレス等を用
いて、半径方向に向かうスリットを有するリング状に圧
縮成形する0次に、この成形物を、酸素含有雰囲気中で
850〜980℃で1〜50時間焼成する。焼成後、6
00℃以下を1℃/分程度の割合で徐冷して、超電導特
性を向上させる。
First, the oxide superconductor is ground into oxide superconductor powder using a known means such as a ball mill, and then compression molded into a ring shape having slits extending in the radial direction using a pressure press or the like. The molded product is fired at 850-980° C. for 1-50 hours in an oxygen-containing atmosphere. After baking, 6
The superconducting properties are improved by slowly cooling the temperature below 00°C at a rate of about 1°C/min.

徐冷後、成形物の表面を安定化材により被覆する。After slow cooling, the surface of the molded product is coated with a stabilizing material.

被覆に際しては、電気めっき法や無電解めっき法等のめ
っき法、イオンブレーティング赤やスパッタ法あるいは
真空蒸着法等の蒸着法、溶射法等を用いることができる
For coating, plating methods such as electroplating and electroless plating, vapor deposition methods such as ion blating, sputtering, and vacuum evaporation methods, thermal spraying methods, and the like can be used.

このようにして得なコイルエレメントと、電気絶縁物層
とを交互にm層する。電気絶縁物層の形状は、コイルエ
レメントと同形状であることが好ましいが、コイルエレ
メント間を接続するためのスリットを有し、かつ、他の
部分を絶縁するに充分な形状であればいかなる形状であ
ってもよい。
In this way, m layers of high-quality coil elements and electrical insulator layers are alternately formed. The shape of the electrical insulator layer is preferably the same as that of the coil elements, but any shape may be used as long as it has a slit for connecting the coil elements and is sufficiently shaped to insulate other parts. It may be.

積層するに際しては、積層後電気絶縁物層のスリットに
銅、銀等の常電導金属やポリアセチレン、ポリピロール
等の常電導性の高分子化合物等の常電導物質、酸化物超
電導体または熱処理により酸化物超電導体となる物質を
充填したときに、電気絶縁物層を介して隣接するコイル
エレメント間がスパイラル状に接続されるようにする。
When laminating, after lamination, the slits in the electrical insulator layer are filled with a normal conductive metal such as copper or silver, a normal conductive substance such as a normally conductive polymer compound such as polyacetylene or polypyrrole, an oxide superconductor, or an oxide by heat treatment. When filled with a substance that becomes a superconductor, adjacent coil elements are connected in a spiral manner via an electrical insulating layer.

積層後、電気絶縁物層のスリットに前述の兼電導物質、
酸化物超電導体または熱処理により酸化物超電導体とな
る物質を充填してコイルエレメント間を接続し、しかる
後、全体を電気絶縁性の接着性高分子化合物で被覆して
コイルエレメントと電気絶縁物層を一体化する。あるい
は、全体を貫通する孔を穿設して、電気絶縁性の物質か
らなる治具により全体を一体化してもよく、さらには、
積層物を電気絶縁性の物質からなる容器に密着収容する
ことにより、全体を一体化してもよい。
After lamination, the above-mentioned double-conductor material is placed in the slit of the electrical insulator layer.
The coil elements are connected by filling with an oxide superconductor or a substance that becomes an oxide superconductor through heat treatment, and then the whole is coated with an electrically insulating adhesive polymer compound to form a coil element and an electrically insulating layer. to integrate. Alternatively, a hole may be bored through the entire structure and the entire structure may be integrated using a jig made of an electrically insulating material.
The laminate may be integrated as a whole by tightly accommodating the laminate in a container made of an electrically insulating material.

なお、コイルエレメント間を接続するにあたり、酸化物
超電導体または熱処理により酸化物超電導体となる物質
を充填した場合には、充填後、必要に応じて熱処理を施
す。
In addition, when connecting between coil elements, if an oxide superconductor or a substance that becomes an oxide superconductor by heat treatment is filled, heat treatment is performed as necessary after filling.

また、冷媒を用いて使用する場合には、必要に応じて、
酸化物Iti!電導体コイルに冷却効率を向上させるた
めの小孔を穿設してもよい。
In addition, when using a refrigerant, if necessary,
Oxide Iti! Small holes may be formed in the conductor coil to improve cooling efficiency.

なお、本発明の酸化物fl電導体コイルを得るにあたっ
ては、酸化物超電導体からなるリング状成形物を焼成、
徐冷する工程は、成形物を安定化材で被覆してコイルエ
レメントとした後でも、また、コイルエレメントと電気
絶縁物層を積層し電気絶縁物層のスリットに常電導物質
、酸化物超電導体または熱処理により酸化物B電導体と
なる物質を充填した後でもよい。これらの場合、安定化
材、電気絶縁物層およびコイルエレメント間を接続する
ための物質は、製造方法の違いに伴う熱的条件の違い等
に応じて、種々選択可能である。
In order to obtain the oxide fl conductor coil of the present invention, a ring-shaped molded product made of an oxide superconductor is fired,
The slow cooling process can be carried out even after the molded product is coated with a stabilizing material to form a coil element. Also, the coil element and the electrical insulating layer are laminated, and the slits of the electrical insulating material are filled with a normal conducting substance or an oxide superconducting material. Alternatively, the material may be filled with a substance that becomes an oxide B conductor through heat treatment. In these cases, various materials can be selected for the stabilizing material, the electrical insulating layer, and the material for connecting between the coil elements, depending on the differences in thermal conditions caused by different manufacturing methods.

(作 用) 本発明の酸化物超電導体コイルは、コイルエレメントと
電気絶縁物層とが交互に、かつ、電気絶縁物層中のスリ
ットに充填された導電物質により電気絶縁物層を介して
隣接するコイルエレメント間がスパイラル状に接続され
た積層物として形成されるので、酸化物超電導体および
電気絶縁物層が可視性を有していなくともコイル状の導
電路が形成される。
(Function) In the oxide superconductor coil of the present invention, the coil elements and the electrical insulating layers are arranged alternately and adjacent to each other via the electrical insulating layer due to the conductive material filled in the slits in the electrical insulating layer. Since the coil elements are formed as a laminate with spirally connected coil elements, a coil-shaped conductive path is formed even if the oxide superconductor and the electrical insulator layer are not visible.

また、コイルエレメントを安定化材で被覆しであるため
、何らかの原因で酸化物超電導体の超電導状態が破壊さ
れ局所的な常電導部を生じた場合でも、安定化材が電流
のバイパスの役割を為し、かつ、局所的な発熱を速やか
に発散させて常電導部の伝播を防止するので、コイルの
破損を回避することができる。さらに、全体が高分子化
合物または治具もしくは容器により一体化されているた
め、通電時にコイルの内側または外側に向かって生じる
応力によるコイルの破損を!!避することができ、コイ
ルとしての安定性が向上する。
In addition, since the coil element is coated with a stabilizing material, even if the superconducting state of the oxide superconductor is destroyed for some reason and a localized normal conductive area is created, the stabilizing material will still function as a current bypass. In addition, localized heat generation is quickly dissipated to prevent propagation of the normal conductive portion, so damage to the coil can be avoided. Furthermore, since the entire structure is integrated with a polymer compound, jig, or container, the coil will not be damaged due to stress generated toward the inside or outside of the coil when electricity is applied! ! This improves the stability of the coil.

(実施例) 以下、本発明の実施例について図面を用いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

実施例 まず、Y O粉末0.5molX、 BaCO3粉末2
1o1%、 CuO粉末31101%を充分混合し、こ
の゛混合物を大気中900℃で12、時間焼成した後、
焼成物をボールミルにより粉砕して酸化物超電導体粉末
を得た0次に、この酸化物超電導体粉末を加圧プレスを
用いて、第1図に示すように、外径が3Omm、内径が
1(Inn、厚さが0.1111で1箇所に半径方向に
向かう幅11IIIのスリット1aを有するリング状成
形物1に圧縮成形した。成形物1を酸素含有雰囲気中で
980℃で24時間焼成した後、600℃以下を1℃/
分の割合で徐冷して超電導!性を向上させ、しかる後、
成形物1の上面および下面にイオンブレーティング法を
用いて銀を被覆し、第2図に示すように、銀層2の形成
された酸化物超電導体の成形物1であるコイルエレメン
ト3を得た。
Example First, YO powder 0.5 molX, BaCO3 powder 2
After thoroughly mixing 101% CuO powder and 31101% CuO powder, and baking this mixture in the air at 900°C for 12 hours,
The fired product was ground in a ball mill to obtain an oxide superconductor powder. Next, this oxide superconductor powder was crushed into powders with an outer diameter of 30 mm and an inner diameter of 1 mm using a pressure press, as shown in Figure 1. (Inn, compression molded into a ring-shaped molded product 1 having a thickness of 0.1111 and having a slit 1a with a width of 11III extending in the radial direction at one location.The molded product 1 was fired at 980° C. for 24 hours in an oxygen-containing atmosphere. After that, reduce the temperature below 600℃ by 1℃/
Superconducting by slow cooling at a rate of 1 minute! Improve your sexuality and then
The upper and lower surfaces of the molded product 1 are coated with silver using the ion blating method, and as shown in FIG. Ta.

また、コイルエレメント3と同形状でスリット幅が5n
nであるアルミナ焼結体を電気絶縁物層として用い、第
3図に示すように、電気絶縁物M4とコイルエレメント
3とを交互に積層した。積層に際しては、電気絶縁物層
4aの上側に位置するコイルエレメント3aのスリット
5aの右縁部が、電気絶縁物7114aを介してその下
方に位置するコイルエレメント3bのスリット5bの左
縁部と、電気絶縁物層4aのスリット6aを介して隣接
するように配設した。積層後、各電気絶縁物層のスリッ
ト中に銀7を充填して各コイルエレメント間を銀7によ
り接続し、しかる後、全体をエポキシ樹脂8で被覆して
一体化し、酸化物超電導体コイル9を得た。
Also, it has the same shape as coil element 3 and the slit width is 5n.
An alumina sintered body of n was used as an electrical insulator layer, and electrical insulators M4 and coil elements 3 were alternately laminated as shown in FIG. When stacking, the right edge of the slit 5a of the coil element 3a located above the electrical insulator layer 4a and the left edge of the slit 5b of the coil element 3b located below it via the electrical insulator 7114a, They were arranged adjacent to each other through the slit 6a of the electrical insulator layer 4a. After lamination, silver 7 is filled into the slit of each electrical insulator layer to connect each coil element with silver 7, and then the whole is coated with epoxy resin 8 to be integrated, forming an oxide superconductor coil 9. I got it.

この酸化物超電導体コイルの、臨界電流密度は200 
A/aa、臨界温度は90にであった。
The critical current density of this oxide superconductor coil is 200
A/aa, critical temperature was 90.

なお、本発明の酸化物超電導体コイルにおいては、コイ
ルエレメントと電気絶縁物層との積層物を一体化するに
あたって、第4図に示すように、酸化物超電導体コイル
10を貫通する孔を穿設して、絶縁性の物質からなる治
具11により固定してもよい、また、冷却効率を上げる
ために、必要に応じて、酸化物超電導体コイル10に冷
却用の小孔12を穿設してもよい、第4図において、第
3図と同様の部材については、第3図と同じ符号を付し
である。
In the oxide superconductor coil of the present invention, in order to integrate the laminate of the coil element and the electrical insulator layer, a hole is drilled through the oxide superconductor coil 10 as shown in FIG. The oxide superconductor coil 10 may be fixed with a jig 11 made of an insulating material, and small holes 12 for cooling may be formed in the oxide superconductor coil 10 as necessary to increase cooling efficiency. In FIG. 4, the same members as in FIG. 3 are given the same reference numerals as in FIG. 3.

[発明の効果] 以上説明したように、本発明によれば、可撓性に優れか
つ巻回時に−おいて所望の電流密度を得ることができる
線材を得ることが困難である酸化物超電導体を用いて、
超電導コイルを得ることができる。
[Effects of the Invention] As explained above, according to the present invention, it is difficult to obtain a wire rod that has excellent flexibility and can obtain a desired current density during winding. Using,
A superconducting coil can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の酸化物超電導体コイルを
得るための手順の一例を示す図であり、第1図は酸化物
超電導体からなるリング状成形物の斜視図、第2図はコ
イルエレメントの一部切欠図、第3図は酸化物超電導体
コイルの一部切欠図である。また、第4図はコイルエレ
メントと電気絶縁物層を一体化するための一方法を示す
一部切欠図である。 1・・・・・・・・・酸化物超電導体のリング状成形物
1a・・・・・・成形物のスリット 2・・・・・・・・・銀層 3・・・・・・・・・コイルエレメント4・・・・・・
・・・電気絶縁物層 5a、5b・・・コイルエレメントのスリット6a・・
・・・・電気絶縁物層のスリット7・・・・・・・・・
銀 8・・・・・・・・・エポキシ樹脂 9.10・・・酸化物超電導体コイル 11・・・・・・・・・治具 出願人     株式会社 東芝 代理人弁理士  須 山 佐 − 第2図 第3図
1 to 3 are diagrams showing an example of the procedure for obtaining an oxide superconductor coil of the present invention, in which FIG. 1 is a perspective view of a ring-shaped molded product made of an oxide superconductor, and FIG. 3 is a partially cutaway view of a coil element, and FIG. 3 is a partially cutaway view of an oxide superconductor coil. Further, FIG. 4 is a partially cutaway view showing one method for integrating the coil element and the electrical insulating layer. 1... Ring-shaped molded product 1a of oxide superconductor... Slit in the molded product 2... Silver layer 3...・・Coil element 4・・・・・・
... Electrical insulator layers 5a, 5b ... Coil element slit 6a ...
...Slit 7 in the electrical insulator layer...
Silver 8...Epoxy resin 9.10...Oxide superconductor coil 11...Jig Applicant: Toshiba Corporation Patent attorney Satoshi Suyama - No. Figure 2 Figure 3

Claims (7)

【特許請求の範囲】[Claims] (1)少なくとも両面に安定化材層を有しかつ半径方向
に向かうスリットを有するリング状に成形された酸化物
超電導体からなるコイルエレメントを、電気絶縁物層を
介して複数個積層し、前記電気絶縁物層を通して前記コ
イルエレメントをスパイラル状に電気接続するとともに
、これらを電気絶縁性の補強材により一体化してなるこ
とを特徴とする酸化物超電導体コイル。
(1) A plurality of coil elements made of a ring-shaped oxide superconductor having stabilizing material layers on at least both sides and slits extending in the radial direction are laminated with an electrical insulator layer interposed therebetween, and An oxide superconductor coil characterized in that the coil elements are electrically connected in a spiral manner through an electrically insulating layer and are integrated by an electrically insulating reinforcing material.
(2)安定化材層は、銅、銀、金またはこれらの化合物
からなることを特徴とする特許請求の範囲第1項記載の
酸化物超電導体コイル。
(2) The oxide superconductor coil according to claim 1, wherein the stabilizing material layer is made of copper, silver, gold, or a compound thereof.
(3)電気接続は、電気絶縁物のスリットに充填された
常電導物質または酸化物超電導体により為されることを
特徴とする特許請求の範囲第1項または第2項記載の酸
化物超電導体コイル。
(3) The oxide superconductor according to claim 1 or 2, wherein the electrical connection is made by a normal conducting substance or an oxide superconductor filled in the slit of the electrical insulator. coil.
(4)補強材は、電気絶縁性の接着性高分子化合物また
は治具もしくは容器であることを特徴とする特許請求の
範囲第1項ないし第3項のいずれか1項記載の酸化物超
電導体コイル。
(4) The oxide superconductor according to any one of claims 1 to 3, wherein the reinforcing material is an electrically insulating adhesive polymer compound, a jig, or a container. coil.
(5)酸化物超電導体は、希土類元素を含有するペロブ
スカイト型の酸化物超電導体であることを特徴とする特
許請求の範囲第1項ないし第4項のいずれか1項記載の
酸化物超電導体コイル。
(5) The oxide superconductor according to any one of claims 1 to 4, wherein the oxide superconductor is a perovskite-type oxide superconductor containing a rare earth element. coil.
(6)酸化物超電導体は、Ln元素(Lnは、希土類元
素から選ばれた少なくとも1種の元素)、BaおよびC
uを原子比で実質的に1:2:3の割合で含有すること
を特徴とする特許請求の範囲第1項ないし第5項のいず
れか1項記載の酸化物超電導体コイル。
(6) The oxide superconductor contains Ln element (Ln is at least one element selected from rare earth elements), Ba and C
The oxide superconductor coil according to any one of claims 1 to 5, characterized in that it contains u in an atomic ratio of substantially 1:2:3.
(7)酸化物超電導体は、LnBa_2Cu_3O_7
_−_δ(δは酸素欠陥を表わす)で表わされる酸素欠
陥型ペロブスカイト構造を有することを特徴とする特許
請求の範囲第1項ないし第6項のいずれか1項記載の酸
化物超電導体コイル。
(7) The oxide superconductor is LnBa_2Cu_3O_7
The oxide superconductor coil according to any one of claims 1 to 6, characterized in that it has an oxygen-deficient perovskite structure represented by _-_δ (δ represents an oxygen defect).
JP29125087A 1987-11-18 1987-11-18 Oxide superconducting coil Pending JPH01133306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29125087A JPH01133306A (en) 1987-11-18 1987-11-18 Oxide superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29125087A JPH01133306A (en) 1987-11-18 1987-11-18 Oxide superconducting coil

Publications (1)

Publication Number Publication Date
JPH01133306A true JPH01133306A (en) 1989-05-25

Family

ID=17766429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29125087A Pending JPH01133306A (en) 1987-11-18 1987-11-18 Oxide superconducting coil

Country Status (1)

Country Link
JP (1) JPH01133306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011204A (en) * 2015-06-25 2017-01-12 新日鐵住金株式会社 Superconducting conductive element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011204A (en) * 2015-06-25 2017-01-12 新日鐵住金株式会社 Superconducting conductive element

Similar Documents

Publication Publication Date Title
EP0609921B1 (en) Oxide superconductor
JP2986871B2 (en) Oxide superconductor, oxide superconducting wire and superconducting coil
EP1039483A1 (en) Oxide superconducting wire, solenoid coil, magnetic field generator, and method of producing oxide superconducting wire
US5347085A (en) Multifilamentary oxide superconducting wires and method of manufacturing the same
EP0661762B1 (en) Multifilamentary oxide superconducting wire and coil formed by the same
US6584333B1 (en) Protected superconducting component and method for producing the same
EP0385485A2 (en) Oxide superconductor, superconducting wire and coil using the same, and method of production thereof
JP2571789B2 (en) Superconducting material and its manufacturing method
JPH01133306A (en) Oxide superconducting coil
JP2529276B2 (en) Method for manufacturing multi-layer thin film superconductor
EP0291034B1 (en) Method for producing oxide superconductor
JP2889286B2 (en) Superconducting body and superconducting coil formed using the superconducting body
JP2877367B2 (en) Superconducting wire
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP2509642B2 (en) Superconducting power lead manufacturing method
JP2835069B2 (en) Superconducting coil
JPH01143308A (en) Oxide superconducting coil
JP2653448B2 (en) Oxide superconducting element
JP2654555B2 (en) Superconducting device manufacturing method
JP2590370B2 (en) Superconducting material and manufacturing method thereof
JPH01162306A (en) Superconducting coil
JP3088833B2 (en) Oxide superconductor for current leads
JPH01161806A (en) Superconductor coil
JPH07206437A (en) Superconductor and its production
JPH01162304A (en) Oxide superconducting coil