JPH01132779A - Hard carbon film-coated metallic substrate - Google Patents

Hard carbon film-coated metallic substrate

Info

Publication number
JPH01132779A
JPH01132779A JP62290416A JP29041687A JPH01132779A JP H01132779 A JPH01132779 A JP H01132779A JP 62290416 A JP62290416 A JP 62290416A JP 29041687 A JP29041687 A JP 29041687A JP H01132779 A JPH01132779 A JP H01132779A
Authority
JP
Japan
Prior art keywords
hard carbon
carbon film
thin film
metal substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62290416A
Other languages
Japanese (ja)
Other versions
JP2623611B2 (en
Inventor
Hiroyuki Sugimura
博之 杉村
Makoto Itagaki
誠 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP62290416A priority Critical patent/JP2623611B2/en
Publication of JPH01132779A publication Critical patent/JPH01132779A/en
Application granted granted Critical
Publication of JP2623611B2 publication Critical patent/JP2623611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain the title metallic substrate coated with a hard carbon film with high adhesion and having excellent resistance to wear and corrosion by forming the thin film consisting of Si, C, and O between the metallic substrate and the hard carbon film. CONSTITUTION:The hard carbon film such as a diamond-like carbon film is formed on a metallic substrate to obtain a hard carbon-coated metallic substrate. In this case, the thin film of the compd. of Si, C, and O is formed between the metallic substrate and the hard carbon film. The thin film can be formed by vacuum deposition, etc. In that case, the O content of one surface of the thin film in contact with the metallic substrate is preferably made higher than that of the other surface in contact with the hard carbon film. When the thin film is formed in multiple layers, the O content of the other surface can be substantially decreased to zero. An alloy such as a cemented carbide based on Fe, Ni, Ti, and Al is used as the metallic substrate. The adhesion between the metallic substrate and the hard carbon film can be improved by the thin film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属基体の耐摩耗性・耐腐食性の向上に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to improving the wear resistance and corrosion resistance of a metal substrate.

〔従来の技術〕[Conventional technology]

ダイヤモンド状炭素膜、アイ・カーボン膜、アモルファ
ス・カーボン膜等と呼ばれる硬質炭素膜は、優れた耐摩
耗性、化学的安定性を持つために、金属基板を覆うこと
により、金属基板の耐摩耗性や耐腐食性を向上させると
いう効果が得られる。
Hard carbon films called diamond-like carbon films, i-carbon films, amorphous carbon films, etc. have excellent wear resistance and chemical stability. The effect of improving corrosion resistance and corrosion resistance can be obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、硬質炭素膜はシリコンやゲルマニウムの
ような半導体材料には強く密着するが、他の材料たとえ
ばアルミニウムからなる金属基板に対しては密着性が悪
く、金属基板に被覆してもすぐはがれてしまうために、
金属基板を保護することができないという欠点があった
However, although hard carbon films adhere strongly to semiconductor materials such as silicon and germanium, they have poor adhesion to other materials, such as metal substrates made of aluminum, and easily peel off even when coated on metal substrates. for,
There was a drawback that the metal substrate could not be protected.

そこで、本発明は上記欠点を解決し、半導体材料以外の
材料からなる金属基板と、硬質炭素膜との密着性を向上
させることを目的とする。
Therefore, an object of the present invention is to solve the above-mentioned drawbacks and improve the adhesion between a metal substrate made of a material other than a semiconductor material and a hard carbon film.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的を達成するために、本発明の第1実施例に対応
する第1図を用いて説明すると、金属基体(1)上に硬
質炭素膜(3)を形成した硬質炭素膜を施した金属基体
(1)に於いて、金属基体(1)と硬質炭素膜(3)と
の間に、シリコン、炭素および酸素の化合物からなる薄
膜(2)を形成したことを技術的要件としている。
In order to achieve the above object, a description will be given with reference to FIG. 1 corresponding to the first embodiment of the present invention. The technical requirement is that, in the base body (1), a thin film (2) made of a compound of silicon, carbon, and oxygen is formed between the metal base body (1) and the hard carbon film (3).

尚、前記薄膜(2)は真空蒸着、スパッタリング、CV
D、プラズマCVD、イオンビーム等のドライプロセス
、もしくは塗布等のウェット・プロセスによって設ける
ことができる。
Note that the thin film (2) is formed by vacuum evaporation, sputtering, CV
It can be provided by a dry process such as D, plasma CVD or ion beam, or a wet process such as coating.

〔作用〕 以上によれば、金属基板(1)と硬質炭素膜(3)との
間に前記薄111(2)を形成したために、前記薄膜(
2)により前記金属基板(1)と硬質炭素膜(3)との
密着性を強化し、金属基板(1)を硬質炭素膜(3)に
よって被覆することができる。その結果、金属基板(1
)を低摩擦化し、その耐摩耗性・耐腐食性などを向上さ
せることができる。硬質炭素膜(3)の性質を変えるこ
とにより、硬質炭素膜(3)の表面を半導電性から絶縁
性にしたり、その表面を黒色化することも可能である。
[Function] According to the above, since the thin film 111 (2) is formed between the metal substrate (1) and the hard carbon film (3), the thin film (
2) can strengthen the adhesion between the metal substrate (1) and the hard carbon film (3), and cover the metal substrate (1) with the hard carbon film (3). As a result, the metal substrate (1
) can reduce friction and improve its wear resistance, corrosion resistance, etc. By changing the properties of the hard carbon film (3), it is also possible to change the surface of the hard carbon film (3) from semiconductive to insulating, or to make the surface black.

上記薄膜(2)は通常−層で十分であるが、場合によっ
ては多層構造にすることにより、より一層の効果を得る
ことができる。その際、前記薄膜(2)と金属基板(1
)との接続面付近の酸素濃度が、前記薄膜(2)と硬質
炭素膜(3)との接続面付近の酸素濃度よりも大きいと
、効果がさらに高くなることが分り、また多層構造にし
た場合、硬質炭素膜(3)に接続する一層は酸素を含ま
なくても密着性が向上する。
Although it is usually sufficient for the thin film (2) to have a single layer, in some cases, even more effects can be obtained by forming it into a multilayer structure. At that time, the thin film (2) and the metal substrate (1
) It was found that the effect is even higher when the oxygen concentration near the connection surface between the thin film (2) and the hard carbon film (3) is higher than the oxygen concentration near the connection surface between the thin film (2) and the hard carbon film (3). In this case, the adhesion is improved even if the layer connected to the hard carbon film (3) does not contain oxygen.

前述の多層構造において、はっきりした境界をもたず、
組成が連続的に変化し、金属基板(1)との接続面から
硬質炭素膜(3)との接続面に向かって酸素濃度が連続
的に減少する薄膜でも同様な効果が得られる。この場合
にも硬質炭素膜(3)と薄膜との接続面が酸素を含まな
くても密着性が向上することが確認できた。
In the multilayer structure mentioned above, there are no clear boundaries,
A similar effect can be obtained with a thin film in which the composition changes continuously and the oxygen concentration continuously decreases from the connection surface with the metal substrate (1) to the connection surface with the hard carbon film (3). In this case as well, it was confirmed that the adhesion was improved even if the connection surface between the hard carbon film (3) and the thin film did not contain oxygen.

〔実施例〕〔Example〕

第1図は本発明の第1実施例であって、金属基板1は5
tlS304研慶品または、その研磨後、無電解でN1
−Pメツキしたものを用い、金属基板1の上面に低酸素
濃度の薄#2を厚さ0.5μmで形成し、さらに薄膜2
の上に厚さ2.0μmの硬質炭素膜3を形成した。
FIG. 1 shows a first embodiment of the present invention, in which a metal substrate 1 has five
tlS304 polished product or after polishing, electroless N1
A thin film #2 with a low oxygen concentration is formed to a thickness of 0.5 μm on the upper surface of the metal substrate 1 using a P-plated material.
A hard carbon film 3 having a thickness of 2.0 μm was formed thereon.

第2図は本発明の第2実施例であって、第1実施例と同
様に用いた金属基板1の上面に、高酸素濃度の薄膜4を
厚さ0.5μmで形成し、その上に低酸素濃度の薄膜2
を厚さ0.5μmで形成し、さらにその上に厚さ2.0
μmの硬質炭素膜3を順次形成した。
FIG. 2 shows a second embodiment of the present invention, in which a thin film 4 with a high oxygen concentration is formed to a thickness of 0.5 μm on the upper surface of the metal substrate 1 used in the same manner as in the first embodiment. Thin film with low oxygen concentration 2
is formed with a thickness of 0.5 μm, and on top of that a layer with a thickness of 2.0 μm is formed.
A hard carbon film 3 having a thickness of μm was sequentially formed.

第3図は本発明の第3実施例であって、第1実施例と同
様に用いた金属基板1の上面に、高酸素濃度の薄膜4を
厚さ0.5μmで形成し、その上に酸素を含まない無酸
素濃度の薄膜5を厚さ0.5μmで形成し、さらにその
上に厚さ2.0μmの硬質炭素1113を順次形成した
FIG. 3 shows a third embodiment of the present invention, in which a thin film 4 with a high oxygen concentration is formed to a thickness of 0.5 μm on the upper surface of the metal substrate 1 used in the same manner as in the first embodiment. A thin film 5 containing no oxygen and having an oxygen-free concentration was formed to a thickness of 0.5 μm, and a hard carbon 1113 having a thickness of 2.0 μm was successively formed thereon.

第4図は本発明の第4実施例であって、第1実施例と同
様に用いた金属基板lの上面に、酸素濃度が連続的に変
化する薄膜6を厚さ1.0μmで形成し、その上に厚さ
2.0μmの硬質炭素膜3を形成した。前記薄膜6は金
属基板lとの接続面での酸素濃度が高く、硬質炭素膜3
との接続面に向かって酸素濃度が連続的に減少し、硬質
炭素膜との接続面では酸素濃度はほぼ零になるようにし
た。
FIG. 4 shows a fourth embodiment of the present invention, in which a thin film 6 with a thickness of 1.0 μm in which the oxygen concentration changes continuously is formed on the upper surface of the metal substrate l used in the same manner as in the first embodiment. A hard carbon film 3 having a thickness of 2.0 μm was formed thereon. The thin film 6 has a high oxygen concentration at the connection surface with the metal substrate l, and the hard carbon film 3
The oxygen concentration decreased continuously toward the connection surface with the hard carbon film, and reached almost zero at the connection surface with the hard carbon film.

第5図は、前記実施例と比較するための第1比較例で、
第1実施例と同様に用いた金属基板1の上面に、厚さ2
.0μmの硬質炭素膜3を形成した。
FIG. 5 shows a first comparative example for comparison with the above embodiment,
A layer with a thickness of 2
.. A hard carbon film 3 with a thickness of 0 μm was formed.

第6図は、前記実施例と比較するための第2比較例で、
第1実施例と同様に用いた金属基板1の上面に、酸素を
含まない無酸素薄膜5を厚さ0.5μmで形成し、その
上に厚さ2.0μmの硬質炭素膜3を形成した。
FIG. 6 shows a second comparative example for comparison with the above embodiment,
An oxygen-free thin film 5 containing no oxygen was formed with a thickness of 0.5 μm on the upper surface of the metal substrate 1 used in the same manner as in the first example, and a hard carbon film 3 with a thickness of 2.0 μm was formed thereon. .

第7図は、前記実施例と比較するための第3比較例で、
第1実施例と同様に用いた金属基板冒の上面に、厚さ0
.5μmの酸化シリコン層7を形成し、その上に厚さ2
.0μmの硬質炭素膜3を形成した。
FIG. 7 shows a third comparative example for comparison with the above embodiment,
A thickness of 0 was applied to the upper surface of the metal substrate used in the same manner as in the first embodiment.
.. A silicon oxide layer 7 with a thickness of 5 μm is formed, and a layer 7 with a thickness of 2 μm is formed on it.
.. A hard carbon film 3 with a thickness of 0 μm was formed.

各実施例および各比較例の薄膜2.4〜6、硬質炭素膜
3は、高周波プラズマCVD法によって形成された。薄
膜の形成には、原料に有機シリコン化合物蒸気を用い、
硬質炭素膜の形成には有機炭素化合物蒸気を用いる0表
1は各薄膜の形成条件と、その組成を示す。
The thin films 2.4 to 6 and the hard carbon film 3 of each Example and each Comparative Example were formed by high frequency plasma CVD. To form a thin film, organic silicon compound vapor is used as a raw material,
Organic carbon compound vapor is used to form the hard carbon film. Table 1 shows the conditions for forming each thin film and its composition.

TMS :テトラメチルシラン 表1 組成はSiCとOとの比をX線光電子法により、Cとt
rとの比は膜の酸素/ヘリウム混合ガス中での燃焼ガス
をガスクロマトグラフィーにより分析して得た。
TMS: Tetramethylsilane Table 1 The composition was determined by X-ray photoelectron method using the ratio of SiC and O.
The ratio to r was obtained by analyzing the combustion gas of the membrane in an oxygen/helium mixed gas by gas chromatography.

第4実施例(第4図参照)において、酸素濃度が連続的
に変化する薄膜6は、最初TMSと酸素との流量をそれ
ぞれ203CC11% 50secmでスタートし、酸
素の濃度を徐々に減らしていった。X線光電子分光によ
り、深さ方向の組成変化を調べたところ、酸素濃度が金
属基板1に近いほど高くなっていた。
In the fourth embodiment (see Fig. 4), the thin film 6 in which the oxygen concentration was continuously changed was formed by starting the flow rate of TMS and oxygen at 203 CC 11% 50 sec each, and gradually reducing the oxygen concentration. . When the composition change in the depth direction was investigated by X-ray photoelectron spectroscopy, it was found that the closer the oxygen concentration was to the metal substrate 1, the higher it was.

本実施例では、原料にテトラメチルシランを用いたが1
.ヘキサメチレジシロキサンのようなシロキサン化合物
、ヘキサメチルジシラザンのようなシラザン化合物、テ
トラエトキシシランのようなフルコキシシランを用いて
もよい。
In this example, tetramethylsilane was used as the raw material, but 1
.. Siloxane compounds such as hexamethylenedisiloxane, silazane compounds such as hexamethyldisilazane, and flukoxysilanes such as tetraethoxysilane may also be used.

また硬質炭素膜3の製造には、メタン/水素の混合ガス
を圧力0.I Torrs高周波数電力300Wにて作
製した。
In addition, to manufacture the hard carbon membrane 3, a mixed gas of methane/hydrogen is used at a pressure of 0. It was produced using I Torrs high frequency power of 300W.

第3比較例(第7図参照)の酸化シリコン膜7はスパッ
タ法により作製した。
The silicon oxide film 7 of the third comparative example (see FIG. 7) was produced by a sputtering method.

各実施例および各比較例の密着性試験を、■純水中での
超音波洗争試験、016時間中のCASS試験による2
つの方法で行い、その試験結果を、表2に示す。
The adhesion tests of each Example and each Comparative Example were conducted by ■ an ultrasonic washing test in pure water, and a CASS test during 016 hours.
The test results are shown in Table 2.

表2 表2により、○印は!AMなしを、Δ印は硬質炭素膜だ
けの剥離を、x印は全ての剥離を示す、従って、シリコ
ン、炭素および酸素を主成物とする薄膜は、金属基板1
と硬質炭素膜3との密着性を高める中間層として有用で
あることが確認できた。
Table 2 According to Table 2, the circle is marked! No AM, Δ mark indicates peeling of only the hard carbon film, and x mark indicates peeling of all parts. Therefore, the thin film mainly composed of silicon, carbon, and oxygen is not attached to the metal substrate 1.
It was confirmed that it is useful as an intermediate layer that enhances the adhesion between the carbon film and the hard carbon film 3.

以上の実施例によれば、前記薄膜を介して硬質炭素膜3
に被覆された金属基板lは、硬質炭素膜3のために、耐
擦傷性や耐摩耗性などが向上でき、それによって軸受け
、ステージ、カバーなどの耐久性部品や、海水中、酸・
アルカリ等の薬品にも使用することができる。
According to the above embodiment, the hard carbon film 3
Because of the hard carbon film 3, the coated metal substrate l has improved scratch resistance and abrasion resistance, which makes it suitable for durable parts such as bearings, stages, and covers, as well as for use in seawater, acids,
It can also be used for chemicals such as alkalis.

また、硬質炭素膜3の表面は化学的に不活性であるため
に、本発明による金属基体を合成樹脂やガラス等の成形
金型に用いれば、成形材料と金型が反応して成形品や金
型を変質することを防げる。
In addition, since the surface of the hard carbon film 3 is chemically inert, if the metal substrate according to the present invention is used in a mold for molding synthetic resin, glass, etc., the molding material and the mold will react to form a molded product. Prevents deterioration of the mold.

同様に、化学的不活性のために吸着物質が少なく、真空
中でのガス放出が極めて少ない。従って真空装置用部品
としても有用である。特に、硬質炭素膜として黒色な膜
を使用すれば、真空中で使用でき、かつ光の反射を防ぐ
ための部品として、例えば真空分光器等の真空光学装置
用部品として有用である。
Similarly, due to chemical inertness, there is less adsorbed material and very little outgassing in vacuum. Therefore, it is useful as a part for vacuum equipment. In particular, if a black film is used as the hard carbon film, it can be used in a vacuum and is useful as a component for preventing light reflection, for example, as a component for a vacuum optical device such as a vacuum spectrometer.

〔発明の効果〕〔Effect of the invention〕

以上の本発明によれば、金属基板と硬質炭素膜との間に
シリコン、炭素および酸素を主成分とする薄膜を形成し
たために、半導体材料以外の材料からなる金属基板と硬
質炭素膜との密着性を向上させることができる。
According to the present invention, since a thin film mainly composed of silicon, carbon, and oxygen is formed between the metal substrate and the hard carbon film, the metal substrate made of a material other than a semiconductor material and the hard carbon film are in close contact with each other. can improve sex.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例で、金属基板1上に、低酸
素濃度の112および硬質炭素膜3を順次形成した状態
を示す断面図である。 第2図は本発明の第2実施例で、金属基板1上に、高酸
素濃度の薄膜4、低酸素濃度の薄膜2および硬質炭素膜
3を順次形成した状態を示す断面図である。 第3図は本発明の第3実施例で、金属基板1上に、高酸
素濃度の薄膜4、無酸素濃度の薄膜5および硬質炭素膜
3を順次形成した状態を示す断面図である。 第4図は本発明の第4実施例で、金属基板1上に、酸素
濃度が連続的に変化する薄膜6および硬質炭素膜3を順
次形成した状態を示す断面図である。 第5図は本発明の第1比較例で、金属基板1上に、硬質
炭素膜3を形成した状態を示す断面図である。 第6図は本発明の第2比較例で、金属基板1上に、無酸
素薄膜5および硬質炭素膜3を順次形成した状態を示す
断面図である。 第7図は本発明の第3比較例で、金属基板1上に、酸化
シリコン膜7および硬質炭素膜3を順次形成した状態を
示す断面図である。 〔主要部分の符号の説明〕 ト・−・・・−・−金属基体   2.4〜G−−−−
−−−−一薄膜3−・−−一−−−−・−硬質炭素脱 出、願人 日本光学工業株式会社
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention in which a low oxygen concentration film 112 and a hard carbon film 3 are sequentially formed on a metal substrate 1. FIG. 2 is a cross-sectional view showing a second embodiment of the present invention, in which a thin film 4 with a high oxygen concentration, a thin film 2 with a low oxygen concentration, and a hard carbon film 3 are sequentially formed on a metal substrate 1. FIG. 3 is a cross-sectional view showing a third embodiment of the present invention, in which a thin film 4 with a high oxygen concentration, a thin film 5 with an oxygen-free concentration, and a hard carbon film 3 are sequentially formed on a metal substrate 1. FIG. 4 is a cross-sectional view showing a fourth embodiment of the present invention, in which a thin film 6 whose oxygen concentration changes continuously and a hard carbon film 3 are successively formed on a metal substrate 1. FIG. 5 is a first comparative example of the present invention, which is a sectional view showing a hard carbon film 3 formed on a metal substrate 1. FIG. 6 is a sectional view showing a second comparative example of the present invention, in which an oxygen-free thin film 5 and a hard carbon film 3 are sequentially formed on a metal substrate 1. FIG. 7 is a third comparative example of the present invention, and is a cross-sectional view showing a state in which a silicon oxide film 7 and a hard carbon film 3 are sequentially formed on a metal substrate 1. [Explanation of symbols of main parts] G - - - Metal base 2.4 - G - - -
−−−−Thin film 3−・−−1−−−−・−Hard carbon escape, applicant Nippon Kogaku Kogyo Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)金属基体上に硬質炭素膜を形成した硬質炭素膜被
覆を施した金属基体に於いて、 金属基体と硬質炭素膜との間に、シリコン、炭素および
酸素の化合物からなる薄膜を形成したことを特徴とする
硬質炭素膜被覆を施した金属基体。
(1) A hard carbon film is formed on a metal substrate.A thin film made of a compound of silicon, carbon, and oxygen is formed between the metal substrate and the hard carbon film on a metal substrate coated with a hard carbon film. A metal substrate coated with a hard carbon film characterized by:
(2)前記薄膜に於いて、金属基体と接触する前記薄膜
の一面の酸素含有量は、硬質炭素膜と接触する前記薄膜
の他面の酸素含有量よりも多く、前記薄膜の他面の酸素
含有量は実質的に零であることを特徴とする特許請求の
範囲第1項記載の硬質炭素膜被覆を施した金属基体。
(2) In the thin film, the oxygen content on one side of the thin film that is in contact with the metal substrate is higher than the oxygen content on the other side of the thin film that is in contact with the hard carbon film, and the oxygen content on the other side of the thin film that is in contact with the hard carbon film is A metal substrate coated with a hard carbon film according to claim 1, wherein the content is substantially zero.
(3)前記薄膜は水素を含んでいることを特徴とする特
許請求の範囲第1項記載の硬質炭素膜被覆を施した金属
基体。
(3) A metal substrate coated with a hard carbon film according to claim 1, wherein the thin film contains hydrogen.
(4)前記金属基体は鉄系合金、ニッケル系合金、超硬
合金、チタン合金、アルミニウム合金のいずれかである
ことを特徴とする特許請求の範囲第1項、又は第2項記
載の金属基体。
(4) The metal substrate according to claim 1 or 2, wherein the metal substrate is any one of an iron alloy, a nickel alloy, a cemented carbide, a titanium alloy, and an aluminum alloy. .
JP62290416A 1987-11-17 1987-11-17 Metal substrate coated with hard carbon film Expired - Lifetime JP2623611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62290416A JP2623611B2 (en) 1987-11-17 1987-11-17 Metal substrate coated with hard carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290416A JP2623611B2 (en) 1987-11-17 1987-11-17 Metal substrate coated with hard carbon film

Publications (2)

Publication Number Publication Date
JPH01132779A true JPH01132779A (en) 1989-05-25
JP2623611B2 JP2623611B2 (en) 1997-06-25

Family

ID=17755743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290416A Expired - Lifetime JP2623611B2 (en) 1987-11-17 1987-11-17 Metal substrate coated with hard carbon film

Country Status (1)

Country Link
JP (1) JP2623611B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199376A (en) * 1989-12-27 1991-08-30 Shimadzu Corp Formation of hard carbon film
EP0550752A1 (en) * 1990-09-28 1993-07-14 Citizen Watch Co. Ltd. Reed for high speed loom
JPH07316818A (en) * 1994-05-31 1995-12-05 Sanyo Electric Co Ltd Head carbon coating film covered substrate and its formation
US5511587A (en) * 1990-09-28 1996-04-30 Citizen Watch Co., Ltd. Wear-resistant reed for a high-speed loom
JPH10500609A (en) * 1994-03-03 1998-01-20 モンサント カンパニー High wear resistance and flexible coatings for flexible substrates
US5712000A (en) * 1995-10-12 1998-01-27 Hughes Aircraft Company Large-scale, low pressure plasma-ion deposition of diamondlike carbon films
WO2000015869A1 (en) * 1998-09-11 2000-03-23 Commissariat A L'energie Atomique Part based on aluminium coated with amorphous hard carbon
JP2005068387A (en) * 2003-08-28 2005-03-17 National Institute Of Advanced Industrial & Technology Method for manufacturing carbon-based two-layered film excellent in peeling resistance under water
JP2012004871A (en) * 2010-06-17 2012-01-05 Yasuo Kondo Ultrasonic horn
JP2015227493A (en) * 2014-06-02 2015-12-17 地方独立行政法人山口県産業技術センター Composite hard film member and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842472A (en) * 1981-09-07 1983-03-11 Semiconductor Energy Lab Co Ltd Thermal head
JPS59182300A (en) * 1983-03-30 1984-10-17 Mitsubishi Metal Corp Vapor-phase synthesis method of diamond
JPS61106469A (en) * 1984-10-25 1986-05-24 株式会社 伊藤喜工作所 Refractory heat-insulative wall
JPS61106478A (en) * 1984-10-29 1986-05-24 東芝タンガロイ株式会社 Diamond coated part
JPS61106494A (en) * 1984-10-29 1986-05-24 Kyocera Corp Member coated with diamond and its production
JPS62116776A (en) * 1985-11-14 1987-05-28 Mitsubishi Chem Ind Ltd Production of thin film
JPS62247076A (en) * 1986-04-18 1987-10-28 Hitachi Ltd Method for coating plastic pipe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842472A (en) * 1981-09-07 1983-03-11 Semiconductor Energy Lab Co Ltd Thermal head
JPS59182300A (en) * 1983-03-30 1984-10-17 Mitsubishi Metal Corp Vapor-phase synthesis method of diamond
JPS61106469A (en) * 1984-10-25 1986-05-24 株式会社 伊藤喜工作所 Refractory heat-insulative wall
JPS61106478A (en) * 1984-10-29 1986-05-24 東芝タンガロイ株式会社 Diamond coated part
JPS61106494A (en) * 1984-10-29 1986-05-24 Kyocera Corp Member coated with diamond and its production
JPS62116776A (en) * 1985-11-14 1987-05-28 Mitsubishi Chem Ind Ltd Production of thin film
JPS62247076A (en) * 1986-04-18 1987-10-28 Hitachi Ltd Method for coating plastic pipe

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199376A (en) * 1989-12-27 1991-08-30 Shimadzu Corp Formation of hard carbon film
EP0550752A1 (en) * 1990-09-28 1993-07-14 Citizen Watch Co. Ltd. Reed for high speed loom
EP0550752A4 (en) * 1990-09-28 1994-01-26 Citizen Watch Co. Ltd.
US5511587A (en) * 1990-09-28 1996-04-30 Citizen Watch Co., Ltd. Wear-resistant reed for a high-speed loom
JPH10500609A (en) * 1994-03-03 1998-01-20 モンサント カンパニー High wear resistance and flexible coatings for flexible substrates
JPH07316818A (en) * 1994-05-31 1995-12-05 Sanyo Electric Co Ltd Head carbon coating film covered substrate and its formation
US5712000A (en) * 1995-10-12 1998-01-27 Hughes Aircraft Company Large-scale, low pressure plasma-ion deposition of diamondlike carbon films
WO2000015869A1 (en) * 1998-09-11 2000-03-23 Commissariat A L'energie Atomique Part based on aluminium coated with amorphous hard carbon
JP2005068387A (en) * 2003-08-28 2005-03-17 National Institute Of Advanced Industrial & Technology Method for manufacturing carbon-based two-layered film excellent in peeling resistance under water
JP2012004871A (en) * 2010-06-17 2012-01-05 Yasuo Kondo Ultrasonic horn
JP2015227493A (en) * 2014-06-02 2015-12-17 地方独立行政法人山口県産業技術センター Composite hard film member and method for manufacturing the same

Also Published As

Publication number Publication date
JP2623611B2 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
US7816011B2 (en) Structural material of diamond like carbon composite layers
JP5096371B2 (en) Article having relatively soft support material and relatively hard decorative layer, and method for producing the same
US5227196A (en) Method of forming a carbon film on a substrate made of an oxide material
JPH04311569A (en) Hard multilayered film assembled body and its manufacture
US4601950A (en) Magnetic recording medium and manufacturing method thereof
RU2553803C2 (en) Tribology combined with corrosion resistance: new family of pvd- and pacvd coatings
WO2010021285A1 (en) Nitrogen-containing amorphous carbon film, amorphous carbon layered film, and sliding member
CN110777335B (en) Temperature resistant carbon coating
JPH01132779A (en) Hard carbon film-coated metallic substrate
JP2004169137A (en) Sliding member
JPH06116430A (en) Water-and oil-repellent film and production thereof
US8518534B2 (en) Coating, article coated with coating, and method for manufacturing article
KR20170133191A (en) HIGH HARDNESS TaC COATED CARBON MATERIAL AND MANUFACTURING METHOD FOR SAME
US20210016417A1 (en) Cmp pad conditioner and method for manufacturing the same
CN114959575B (en) Insulating wear-resistant protective coating for film sensor, preparation method and application thereof
JPH03153876A (en) Silicon carbide member
JPH0649645A (en) Hard multilayered film formed body and its production
JP2002348668A (en) Amorphous hard carbon film and manufacturing method therefor
CN112458417A (en) Growth process of multi-element layered hardened coating
Iwamori et al. Characterization and tribological properties of two polyimide thin films sputtered onto a copper substrate
JPH01234566A (en) Colored article
CN115216726B (en) High-performance film material and preparation method thereof
JPS6252028B2 (en)
JPH05202211A (en) Abrasion-resistant plastic molding and its production
JPH09228050A (en) Ceramics member coated with carbon hard film