JPH01132740A - Steel sheet for heat treatment - Google Patents

Steel sheet for heat treatment

Info

Publication number
JPH01132740A
JPH01132740A JP28939087A JP28939087A JPH01132740A JP H01132740 A JPH01132740 A JP H01132740A JP 28939087 A JP28939087 A JP 28939087A JP 28939087 A JP28939087 A JP 28939087A JP H01132740 A JPH01132740 A JP H01132740A
Authority
JP
Japan
Prior art keywords
less
heat treatment
steel sheet
steel
hardenability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28939087A
Other languages
Japanese (ja)
Other versions
JP2618933B2 (en
Inventor
Masahiko Morita
正彦 森田
Koichi Hashiguchi
橋口 耕一
Yoshikazu Kawabata
良和 河端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62289390A priority Critical patent/JP2618933B2/en
Publication of JPH01132740A publication Critical patent/JPH01132740A/en
Application granted granted Critical
Publication of JP2618933B2 publication Critical patent/JP2618933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide a steel sheet for heat treatment which is as soft as a low-carbon steel, has good workability and has the heat treatment performance equiv. to the heat treatment performance of an ordinary high-carbon steel at the time of a hardening-tempering treatment by incorporating respectively prescribed ratios of C, Si, Mn, Al, N, P, S, and Ca into said steel sheet and consisting the balance substantially Fe. CONSTITUTION:The above-mentioned steel sheet for heat treatment is constituted by incorporating, by weight %, 0.30-l.20% C, 0.30-2.00% Si, 0.05-1.50% Mn, 0.001-0.100% Al, <=0.006% N, <=0.020% P, <=0.015% S, and 0.0010-0.0200% Ca (where 1-10 Ca/S) and the balance Fe and unavoidable impurities into the steel sheet. This steel sheet has the structure mainly composed of a ferrite phase and fine graphite grain having <=10mum diameter and has <=50kg/mm<2> tensile strength. The formability before the heat treatment is greatly improved if said steel sheet is used for various mechanical parts such as cutters, springs and wear-resistant parts and, therefore, the simplification of working stages and the complication of forming shapes are enabled and a high effect is obtainable in terms of saving of the stages, labor and cost.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、低炭素鋼板曲みの良好な加工性のもとに、
高炭素鋼板曲みの焼入性を具備ししかも焼入−焼戻し処
理後の靭性にも優れる熱処理用鋼板を提案しようとする
ものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention is based on the good workability of bending a low carbon steel plate.
The present invention aims to propose a steel plate for heat treatment that has high carbon steel plate bending hardenability and also has excellent toughness after quenching and tempering treatment.

一般に、焼入れ一焼戻し処理等の熱処理工程を経た上で
使用される炭素鋼材は、炭素を少なくとも約Q、3wt
%(以下単に%で示す)以上含有し、高炭素鋼と呼ばれ
るが、このような高炭素鋼は硬度が高く、強度および耐
摩耗性に優れているので刃物、ばね、その他の各種機械
部品の分野にて広く使用さている。
In general, carbon steel materials used after undergoing a heat treatment process such as quenching and tempering have at least about Q, 3wt of carbon.
% (hereinafter referred to simply as %), and is called high carbon steel.As such high carbon steel has high hardness, excellent strength and wear resistance, it is used for knives, springs, and other various mechanical parts. Widely used in the field.

このような用途分野において熱処理用鋼板はその熱処理
に先立って切削、打抜き、孔明け、曲げなどの各種加工
を受けるが、焼入性の高い鋼はど高強度であって上記の
ような加工が困難である。
In these application fields, steel sheets for heat treatment are subjected to various processes such as cutting, punching, drilling, and bending prior to heat treatment, but steel with high hardenability has high strength and cannot be processed as described above. Have difficulty.

これを補うために、予め球状化焼鈍などの軟質化処理を
施すのが一般的であるにしても、このような処理で得ら
れる球状化セメンタイト組織での軟質化の程度には限度
があり、到底低炭素鋼並みの加工性を得ることは難しい
In order to compensate for this, it is common to perform a softening treatment such as spheroidizing annealing in advance, but there is a limit to the degree of softening in the spheroidized cementite structure obtained by such treatment. It is difficult to obtain workability comparable to that of low carbon steel.

つまり熱処理用の高炭素鋼においては通常、焼入性の観
点から材料の成分が決定されるため、難加工性とならざ
るを得ず、在来の考え方の下で、高炭素鋼につき低炭素
鋼並みの良加工性を期待するといったようなことは側底
無理な注文と言わざるを得なかった。
In other words, the composition of high carbon steel for heat treatment is usually determined from the viewpoint of hardenability, so it has to be difficult to process. Expecting good workability on par with steel was an impossible order.

このようにして高炭素鋼を用いる場合、たとえば複雑な
形状の加工ができないと言った制約、また成形方法や、
成形用機械などの問題、さらには上記のような加工工数
および時間の増大など、製造コストの問題が生じていた
わけである。
When using high carbon steel in this way, there are constraints such as the inability to process complex shapes, as well as limitations on forming methods,
Problems such as molding machines and the like, as well as the increase in processing man-hours and time mentioned above, caused problems in manufacturing costs.

高炭素鋼における上記難点を解決する他の手段として、
複雑な成形加工を必要とする部品においては使用材料と
して加工性の良好な低炭素鋼を用いて所定形状までの加
工を施し、その後焼入性を確保するために浸炭ないしは
さらに浸窒処理などを施す方法もとられていはいるが、
このような浸炭、浸窒処理を行う方法の場合には当然な
がら工数の増加を伴い、経済的に不利益を来すことはい
うまでもない。
As another means to solve the above-mentioned difficulties in high carbon steel,
For parts that require complex forming, low-carbon steel with good workability is used and processed to the desired shape, and then carburized or further nitrided to ensure hardenability. Although methods have been adopted to
Needless to say, such carburizing and nitriding methods involve an increase in the number of man-hours, which is economically disadvantageous.

(従来の技術) 特開昭60−52551号公報においては、炭素鋼材の
加工性を、格別に面倒な工程や装置を要することなくか
つ必要な強度を確保しつつ一段と向上させるために、鋼
中P及びSの含有量をP(%)  XS(%)≦10 
X 10−’のごとく極力少なくすることによりグラフ
ァイト相の形成を導いて、フェライト相とグラファイト
相とを主体とした組織にすることの有用性が提唱されて
いる。
(Prior Art) In JP-A No. 60-52551, in order to further improve the workability of carbon steel materials without requiring particularly troublesome processes and equipment, and while ensuring the necessary strength, The content of P and S is P (%) XS (%) ≦10
It has been proposed that it is useful to induce the formation of a graphite phase by reducing X 10-' as much as possible, resulting in a structure mainly composed of a ferrite phase and a graphite phase.

この場合熱処理用鋼としての使途に適合すべきC013
%以上のいわゆる高炭素鋼領域においては引張り強さが
ほぼ50kgf/mm’から、35kgf/mm”にも
及んでいるため、加工性改善の効果はなお十分でない。
In this case, C013 should be suitable for use as heat treatment steel.
% or more, the tensile strength ranges from approximately 50 kgf/mm' to 35 kgf/mm'', so the effect of improving workability is still not sufficient.

このほかフェライトとグラファイトを主体とする組織と
した場合に加工性が改善されることについては、特開昭
60−128245号公報にも開示されている。しかし
この事例は焼入処理に供する分野の材料を対象としたも
のでなくして、組織中のグラファイト相の持つ制振性を
専ら利用する構造用材料に限られたものであって、制振
性の観点から言うと組織中に存在するグラファイト相の
粒子径は大きい程良好となるので、むしろ粗大グラファ
イト粒をもつ組織を1指しているのに反し熱処理用鋼に
あっては、このような粗大グラファイト粒をもつ組織は
次の理由によって適合しない。
In addition, JP-A-60-128245 also discloses that workability is improved when the structure is mainly composed of ferrite and graphite. However, this example is not intended for materials that are subjected to hardening treatment, but is limited to structural materials that exclusively utilize the vibration damping properties of the graphite phase in the structure. From the perspective of this, the larger the grain size of the graphite phase in the structure, the better. Structures with graphite grains are not compatible for the following reasons.

一般に鋼をオーステナイト化温度まで加熱した時、鋼中
のCのオーステナイト相への溶は込みやすさは、Cがセ
メンタイトの状態になっている場合に比べて、グラファ
イトの状態になっている方が劣り、ことにこの傾向はグ
ラファイト粒が粗大であればある程強くなるからである
。このように、オーステナイトへのCの溶解性が劣る場
合には、オーステナイト化後の焼入の際に所定の焼入硬
度を得られなくなるので、熱処理用鋼として使用できな
いわけである。
Generally, when steel is heated to the austenitizing temperature, it is easier for C in the steel to dissolve into the austenite phase when it is in the graphite state than when it is in the cementite state. In particular, this tendency becomes stronger as the graphite grains become coarser. As described above, if the solubility of C in austenite is poor, it will not be possible to obtain a predetermined quench hardness during quenching after austenitization, so the steel cannot be used as a heat treatment steel.

(発明が解決しようとする問題点) 熱処理用鋼における以上の諸問題点に鑑み、切削、打抜
き、孔明は及び曲げなどの場合には低炭素鋼並みに軟質
であって、良好な加工性を有しているだけでなく、浸炭
、浸窒など手間のかさむ処理を施すことなくして、焼入
−焼戻処理を行う場合には通常の高炭素鋼並みの熱処理
性能を併せて具備する熱処理用鋼板を提供することがこ
の発明の目的である。
(Problems to be Solved by the Invention) In view of the above-mentioned problems with steel for heat treatment, a steel that is as soft as low carbon steel and has good workability in cutting, punching, drilling, bending, etc. In addition to this, it also has heat treatment performance comparable to that of ordinary high carbon steel when quenching and tempering is performed without the need for time-consuming processes such as carburizing and nitriding. It is an object of this invention to provide a steel plate.

(問題点を解決するための手段) 上記の目的は次の事項を骨子とする構成によって有利に
実現される。
(Means for Solving the Problems) The above object can be advantageously achieved by a configuration having the following points as its main points.

C: 0.30〜1.20% Si: 0.30〜2、00% Mn: 0.05〜1.50% A Il :0.001〜0.100%N : 0.0
060%以下 P : 0.020%以下 S : 0.015%以下及び Ca: 0.0010〜0.0200%ただしCa/s
 1〜10、を含み残部Feおよび不可避的不純物の組
成になり、フェライト相と直径が10μm以下の微細グ
ラファイト粒を主体とする組織を有し、引張り強さ50
kgf/mm2以下であって、加工性と焼入性に優れ、
かつ焼入−焼戻し処理後の靭性にも優れることを特徴と
する熱処理用鋼板(第1発明)。
C: 0.30-1.20% Si: 0.30-2.00% Mn: 0.05-1.50% AIl: 0.001-0.100% N: 0.0
060% or less P: 0.020% or less S: 0.015% or less and Ca: 0.0010 to 0.0200% but Ca/s
1 to 10, with the balance being Fe and unavoidable impurities, and has a structure mainly composed of a ferrite phase and fine graphite grains with a diameter of 10 μm or less, and has a tensile strength of 50
kgf/mm2 or less, with excellent workability and hardenability,
A steel plate for heat treatment (first invention), characterized in that it also has excellent toughness after quenching and tempering treatment.

C: 0.30〜1.20%、 Si: 0.30〜2、00%、 Mn: 0.05〜1.50%、 八β:0,001〜0.100 % N : 0.0060%以下、 P : 0.020%以下、 S : 0.015%以下及び Ca: 0.0010〜0.0200wt%ただしCa
/S1〜1O1B : 0.0005〜0.0500%
、を含み残部Feおよび不可避的不純物の組成になり、
フェライト相と直径が10μm以下の微細グラファイト
粒を主体とする組織を有し、引張り強さ50kgf/m
m2以下であって、加工性と焼入性に優れ、かつ焼入−
焼戻し処理後の靭性にも優れることを特徴とする熱処理
用鋼板(第2発明)。
C: 0.30-1.20%, Si: 0.30-2.00%, Mn: 0.05-1.50%, Eight β: 0.001-0.100% N: 0.0060% Hereinafter, P: 0.020% or less, S: 0.015% or less, and Ca: 0.0010 to 0.0200wt%, however, Ca
/S1~1O1B: 0.0005~0.0500%
, with the remainder being Fe and unavoidable impurities,
It has a structure consisting mainly of ferrite phase and fine graphite grains with a diameter of 10 μm or less, and has a tensile strength of 50 kgf/m.
m2 or less, has excellent workability and hardenability, and is hardenable.
A steel plate for heat treatment (second invention) characterized by having excellent toughness after tempering treatment.

C: 0.30〜1.20%、 Si: 0.30〜2、00%、 Mn: 0.05〜1.50%、 A N :0.001〜0.100% N : 0.0060%以下、 P : 0.020%以下、 S : 0.015%以下、 Ca: 0.0010〜0.0200wt%ただしCa
/Sl−10、を含みかつ Cr、 Mo及びNiよりなる群のうちから選んだ1種
又は2種以上:0.20〜l、9wt%を含有して残部
Feおよび不可避的不純物の組成になり、フェライト相
と直径が10μm以下の微細グラファイト粒を主体とす
る組織を有し、引張り強さ50kgf/mm”以下であ
って、加工性と焼入性に優れ、かつ焼入−焼戻し処理後
の靭性にも優れることを特徴とする熱処理用鋼板(第3
発明)。
C: 0.30-1.20%, Si: 0.30-2.00%, Mn: 0.05-1.50%, AN: 0.001-0.100% N: 0.0060% Hereinafter, P: 0.020% or less, S: 0.015% or less, Ca: 0.0010 to 0.0200wt%, but Ca
/Sl-10, and one or more selected from the group consisting of Cr, Mo, and Ni: 0.20 to 1, 9 wt%, with the balance being Fe and unavoidable impurities. , has a structure mainly consisting of a ferrite phase and fine graphite grains with a diameter of 10 μm or less, has a tensile strength of 50 kgf/mm” or less, has excellent workability and hardenability, and has a hardening-tempering treatment. Steel plate for heat treatment (No. 3), which is characterized by excellent toughness
invention).

C: 0.30〜1.20% S+: 0.30〜2、00% Mn: 0.05〜1.50% Aβ:0.001〜0.100% N : 0.0060%以下 P : 0.020%以下 S : 0.015%以下 Ca: 0.0010〜0.0200wt%ただしCa
/S1〜1O1B : 0.0005〜0.0500%
を含みかつ、 Cr、 Mo及びNiよりなる群のうちから選んだ1種
又は2種以上: 0.20〜l、9wt%を含有して残
部Feおよび不可避的不純物の組成になり、フェライト
相と直径が10μm以下の微細グラファイト粒を主体と
する組織を有し、引張り強さ50kgf/mm”以下で
あって、加工性と焼入性に優れ、かつ焼入−焼戻し処理
後の靭性にも優れることを特徴とする熱処理用鋼板(第
4発明)。
C: 0.30-1.20% S+: 0.30-2.00% Mn: 0.05-1.50% Aβ: 0.001-0.100% N: 0.0060% or less P: 0 .020% or less S: 0.015% or less Ca: 0.0010-0.0200wt% However, Ca
/S1~1O1B: 0.0005~0.0500%
and one or more selected from the group consisting of Cr, Mo, and Ni: 0.20 to 1, 9 wt%, the balance being Fe and inevitable impurities, and forming a ferrite phase. It has a structure mainly composed of fine graphite grains with a diameter of 10 μm or less, has a tensile strength of 50 kgf/mm” or less, has excellent workability and hardenability, and has excellent toughness after quenching and tempering. A steel plate for heat treatment (fourth invention).

第1〜4各発明は素材の材質特性として加工に際しては
低炭素鋼並みの軟質で良好な加工性をもたらし、しかも
熱処理に際しては通常の高炭素鋼並みに良好な焼入性を
有し、熱処理後の材料の靭性耐摩耗性および強度特性に
優れた鋼板であって、このような材質特性を達成するた
めに鋼のミクロ組織を、ファライト相中に微細グラファ
イト相が均一に分散した組織(以下フェライト・グラフ
ァイト組織と呼ぶ)に調整するのであり、そしてこのよ
うなミクロ組織を得るために鋼の化学成分の調整と、必
要によっては熱間圧延時の圧延条件の調整に加えてその
後の焼鈍条件の調整を行うのである。
Each of the inventions 1 to 4 has the material characteristics of a material that is soft and has good workability on par with low carbon steel when processed, and has good hardenability on the same level as ordinary high carbon steel when heat treated. This is a steel sheet with excellent toughness, wear resistance, and strength properties.In order to achieve these material properties, the microstructure of the steel is changed to a structure in which a fine graphite phase is uniformly dispersed in a phalrite phase (hereinafter referred to as In order to obtain such a microstructure, the chemical composition of the steel must be adjusted, and if necessary, the rolling conditions during hot rolling must be adjusted, as well as the subsequent annealing conditions. Adjustments are made.

上に列記した何れの熱処理用鋼板も、所定の熱間圧延を
行った上で、ミクロ組織をフェライト・グラファイト組
織とする焼鈍処理を経た熱延板の形で得ることができる
ほか、またこのような熱延板を素材として圧延温度範囲
500℃以下の条件で温間ないしは冷間の圧延を施した
上で、やはり上記の焼鈍処理を加えた冷延板の形でも得
ることができ、このときとくに冷間圧延の際の加工性に
優れることがら冷間圧延操業上の負荷が軽減され有利で
あるが、上記の熱間圧延を経て直接、通例どおりの工程
で温間ないし冷間の圧延に供し、これに焼鈍処理を施し
冷延板としてもよい。
Any of the steel sheets for heat treatment listed above can be obtained in the form of a hot-rolled sheet that has been subjected to a prescribed hot rolling process and then annealed to change the microstructure to a ferrite-graphite structure. It can also be obtained in the form of a cold-rolled plate by applying the above-mentioned annealing treatment after hot or cold rolling using a hot-rolled plate as a raw material at a rolling temperature range of 500°C or less. In particular, the excellent workability during cold rolling reduces the load on cold rolling operations, which is advantageous. It is also possible to provide a cold-rolled sheet by subjecting it to annealing treatment.

熱間圧延はとくに熱延過程で1粒をできるだけ微細化し
得る条件とすることより、1粒の再結晶微細化を進めて
おくことが微細グラファイトの均一分散のためによりの
ぞましい。
In hot rolling, it is more desirable to advance recrystallization of each grain in order to uniformly disperse the fine graphite, rather than setting conditions that allow each grain to be made as fine as possible during the hot rolling process.

温間ないし冷間圧延は20%以上の圧下率で所定板厚に
仕上げる。
In warm or cold rolling, the sheet is finished to a predetermined thickness at a rolling reduction of 20% or more.

焼鈍処理条件は、500℃〜750℃より望ましくは6
50℃〜A1変態点間で1〜200hr保持で適合する
The annealing treatment conditions are 500°C to 750°C, preferably 6
Suitable for holding between 50°C and A1 transformation point for 1 to 200 hours.

(作 用) 上記の各発明で数値限定した理由について以下に詳述す
る。
(Function) The reasons for numerical limitations in each of the above inventions will be explained in detail below.

Cは、焼入性を確保する上で不可欠の元素であり、上掲
した熱処理用鋼板を使用して製造した各種製品の耐摩耗
性あるいは硬度、強度特性などの要請から0.30%以
上必要である。1.20%を上限とする理由は、これを
こえるC量で焼入性は飽和するばかりでなく、焼入前の
オーステナイト化時に不溶解のセメンタイト、あるいは
グラファイト相の量が増加し、焼入処理後の耐衝撃特性
の劣化をもたらすからである。
C is an essential element to ensure hardenability, and 0.30% or more is required due to requirements such as wear resistance, hardness, and strength characteristics of various products manufactured using the heat-treated steel sheets listed above. It is. The reason why the upper limit is set at 1.20% is that a C content exceeding this not only saturates the hardenability, but also increases the amount of undissolved cementite or graphite phase during austenitization before quenching. This is because it causes deterioration of impact resistance properties after treatment.

Siは、次の二つの理由によりやはり不可欠の元素であ
る。
Si is still an essential element for the following two reasons.

先ず第一には固溶硬化によって鋼素地を強化し、焼入処
理後においてCによる焼入硬化だけでは達成できない範
囲の高強度を得やすくし、これによって耐摩耗性の向上
、高硬度化を図ることができるためである。
First of all, the steel base is strengthened by solid solution hardening, and after quenching, it is easier to obtain high strength that cannot be achieved by quench hardening with carbon alone, thereby improving wear resistance and increasing hardness. This is because it is possible to achieve this goal.

第二には、良好な微細グラフエイト組織を得るためであ
る。すなわち、上記したように高炭素鋼の熱延ままのミ
クロ組織は、フェライトとパーライト、又はこれらにベ
イナイトを含む組織であって通常、非常に高強度である
ため、成形加工性が著しく悪い。これを改善するために
は焼鈍によってミクロ組織を所期のフェライト・グラフ
ァイト組織に変えるわけであるが、Siはこの焼鈍の際
、セメンタイトをグラファイト粒に変化し易くするよう
に作用して、焼鈍後にフェライト・グラファイト組織を
得られ易くし、これによる軟質化と加工性の改善に寄与
する。なおSlはさらに焼入前の加熱に際してこんどは
グラファイト粒のオーステナイトへの溶解性改善を通し
て焼入性を向上するのにも役立つ。
The second reason is to obtain a good fine graphite structure. That is, as described above, the microstructure of high carbon steel as hot-rolled is a structure containing ferrite and pearlite, or bainite therein, and usually has very high strength, so that its formability is extremely poor. In order to improve this, the microstructure is changed to the desired ferrite/graphite structure by annealing, but Si acts to make it easier to change cementite into graphite grains during annealing, and after annealing, It makes it easier to obtain a ferrite/graphite structure, which contributes to softening and improving workability. Furthermore, Sl also serves to improve the hardenability by improving the solubility of graphite grains in austenite during heating before hardening.

ここに81がセメンタイトのグラファイトへの変換を助
長する機構は次の通りである。
The mechanism by which 81 promotes the conversion of cementite into graphite is as follows.

Slは非炭化物生成元素であるから平衡的にはセメンタ
イトには溶解し難いが、非平衡的に溶解した状態の場合
には、セメンタイトを非常に不安定化する。熱延後のA
r、変態によるセメンタイトの生成速度は非常に速いの
で生成したセメンタイトの組成は変態前の母相の組成比
を濃厚に引き継ぎ、そのため平衡溶解度以上の過剰なS
iを含有することになる。母材のSi含有量が多いもの
程、セメンタイト中における過剰Sl量も増加するから
、セメンタイトの不安定化度合が増大して、グラファイ
トへの変換が容易になるのである。
Since Sl is a non-carbide forming element, it is difficult to dissolve in cementite in an equilibrium state, but when it is dissolved in a non-equilibrium state, it greatly destabilizes cementite. A after hot rolling
r, the production rate of cementite due to transformation is very fast, so the composition of the produced cementite heavily inherits the composition ratio of the parent phase before transformation, and as a result, excess S above the equilibrium solubility
It will contain i. As the Si content of the base material increases, the amount of excess Sl in cementite also increases, which increases the degree of destabilization of cementite and facilitates its conversion into graphite.

以上述べた二つの効果を有利に得るためにはSiは0.
3〜2、0%とすることが必要であり、2、0%以下に
限定する理由は製造コストの観点、すなわち2、0%を
超えて添加しても固溶硬化に関係した耐摩耗性の改善に
ついても、また焼鈍時のグラファイト化促進作用に関し
ても飽和し、製造コストが増加するのみだからである。
In order to advantageously obtain the above two effects, Si should be 0.
It is necessary to set the content to 3 to 2.0%, and the reason for limiting it to 2.0% or less is from the viewpoint of manufacturing costs, that is, even if it is added in excess of 2.0%, the wear resistance related to solid solution hardening will decrease. This is because the improvement in graphitization during annealing is saturated, and the manufacturing cost only increases.

Mnは焼入性を向上させる元素であり、とくに焼入処理
工程での臨界冷却速度を下げる効果が大きいので、Mn
を増量した場合、焼入歪防止等の観点から焼入時の冷却
速度を遅くすることが可能となり、この観点からは有効
な元素であるとも云えるが、一方においてMnは、セメ
ンタイト中に溶解し易く、その量が多くなるとセメンタ
イトを著しく安定化して、グラファイト化を阻害し、1
.5%を超えるとこのような悪影響が著しく大きくなっ
て、焼鈍時のグラファイト化が遅滞し、所望のフェライ
ト・グラファイト組織が得難くなるので、上限を1.5
%とした。
Mn is an element that improves hardenability, and has a particularly great effect of lowering the critical cooling rate in the hardening process.
If the amount of Mn is increased, it becomes possible to slow down the cooling rate during quenching from the perspective of preventing quenching distortion, and from this perspective it can be said that it is an effective element. When the amount is large, it significantly stabilizes cementite and inhibits graphitization.
.. If it exceeds 5%, such adverse effects will become significant, and graphitization during annealing will be delayed, making it difficult to obtain the desired ferrite-graphite structure, so the upper limit should be set to 1.5%.
%.

また、Mnの下限を0.05%として定めたのは、これ
よりもMnが低くなると不純物元素としてのSの固定が
不十分となり、熱間脆性を惹起し易くなるからである。
Furthermore, the lower limit of Mn was set as 0.05% because if the Mn content is lower than this, fixation of S as an impurity element becomes insufficient and hot embrittlement is likely to occur.

Afは、脱酸元素として鋼の清浄度を改善することおよ
びAI!Nとしてグラファイト化を阻害する固溶N低減
効果を期待するためには0.001%以上必要であるが
、この効果は0.100%を超えると飽和するため、0
.001〜0.100%の範囲とする。
Af improves the cleanliness of steel as a deoxidizing element and AI! In order to expect the effect of reducing solid solution N that inhibits graphitization, N is required to be 0.001% or more, but this effect is saturated when it exceeds 0.100%, so 0.
.. The range is 0.001% to 0.100%.

Nはセメンタイト中のCと置換する形で溶解し、これを
著しく安定化さす作用がありそのため、焼鈍の際にフェ
ライト・グラファイト組織を得難くすることから0.0
060%以下にしなければならない。
N dissolves in the form of replacing C in cementite and has the effect of significantly stabilizing it, making it difficult to obtain a ferrite-graphite structure during annealing.
Must be below 0.060%.

Pは、鋼の変態特性に及ぼす影響ならびに偏析の点から
、焼入性および加工性のいずれに対しても悪影響をあよ
ぼすことが第1の理由、またPはセメンタイト中に微量
溶解してこれを安定化する作用があるため焼鈍に際して
フェライト・グラファイト組織の生成を阻害する作用を
示すことが第2の理由で好ましくなく、このようなPの
悪影響を避けるためには0.020%以下にしなければ
ならない。しかし経済性をこえてまでむやみに低くする
ことは必要でなく、0.002%程度よりも低くなくて
もよい。
The first reason is that P has an adverse effect on both hardenability and workability due to its influence on the transformation characteristics and segregation of steel, and P is dissolved in small amounts in cementite. Because it has the effect of stabilizing this, it is undesirable for the second reason to show an effect of inhibiting the formation of ferrite/graphite structures during annealing.In order to avoid such adverse effects of P, the content should be 0.020% or less. There must be. However, it is not necessary to unnecessarily lower it beyond economical efficiency, and it is not necessary to lower it to less than about 0.002%.

Sは非金属介在物を作り易く、加工性を悪化させるとと
もに、焼鈍の際にグラファイト化を阻害する作用もある
ので、0.015%以下にしなけばならない。しかしS
についてもPと同じ理由で0.0005%程度よりも低
くしなくてもよい。
S tends to form non-metallic inclusions, worsening workability, and has the effect of inhibiting graphitization during annealing, so it must be kept at 0.015% or less. However, S
For the same reason as for P, it is not necessary to lower it below about 0.0005%.

Caはとくに重要な役割を持つ元素であり、以下の作用
を有する。まず第1は、CaSとして硫化物の形態を加
工性に悪影響のない球状に制御する作用である。次に第
2はCaSとしてSを固定することによってグラファイ
ト化に対して悪影響の大きい微量の7IJ−3の弊害を
除去する作用である。
Ca is an element that plays a particularly important role and has the following effects. The first effect is to control the shape of the sulfide as CaS into a spherical shape that does not adversely affect workability. The second effect is to fix S as CaS to eliminate the harmful effects of a trace amount of 7IJ-3, which has a large negative effect on graphitization.

さらに第3はCaSがグラファイト化に際してのグラフ
ァイト核としての作用を発揮し、グラファイト化速度の
増大ならびにグラファイト粒の微細化と均一化を向上す
る作用である。
Thirdly, CaS acts as a graphite nucleus during graphitization, increasing the speed of graphitization and improving the refinement and uniformity of graphite grains.

このような効果を得るためにはCa添加量とCa/Sの
比を適正範囲に制御することが重要である。
In order to obtain such effects, it is important to control the amount of Ca added and the Ca/S ratio within an appropriate range.

Ca量は少なくとも0.0010%以上なければ、上記
効果を得ることが出来ない。しかし、0.0200%以
上ではその効果は飽和するとともに、Ca系非金属介在
物の量が増大して、逆に加工性が劣化するので好ましく
ない。
The above effects cannot be obtained unless the amount of Ca is at least 0.0010% or more. However, if it exceeds 0.0200%, the effect will be saturated and the amount of Ca-based nonmetallic inclusions will increase, which will conversely deteriorate workability, which is not preferable.

また、Ca/Sの比が1未満の場合、CaSとしてのS
の固定が不十分になり、フリーSが残り、これがセメン
タイト中に溶解してその安定性を増し、グラファイト化
を阻害するとともに、CaSの量が少なくなるのでグラ
ファイト化核作用が減じて所期の効果が得られない。し
かしCa/Sの比が10を超えて大きくなるとCaSが
凝集、粗大化し、偏在するようになるから核サイトとし
ての数が減じ、しかも分布状態が悪化するので得られる
最終のグラファイト粒の分散性が悪くなり、狙いとする
均一、微細なグラファイト組織が得られなくなる。
In addition, when the Ca/S ratio is less than 1, S as CaS
The fixation of CaS becomes insufficient, and free S remains, which dissolves in cementite and increases its stability, inhibiting graphitization.At the same time, since the amount of CaS decreases, the graphitization nucleation effect decreases and the desired result is not achieved. No effect is obtained. However, when the Ca/S ratio exceeds 10, CaS aggregates, becomes coarser, and becomes unevenly distributed, reducing the number of nuclear sites and worsening the distribution state of the final graphite grains. As a result, the desired uniform and fine graphite structure cannot be obtained.

Bもまた有用な元素である。即ち、その作用のまず第1
は従来知られているように焼入性の向上を図るために有
用な元素となること、そして第2は鋼中のNと結びつい
てBNとなり、グラファイト化を阻害するフIJ−Nを
減じ、グラファイト化促進に必要なセメンタイトの不安
定化を助長すること、第3はBNやFe23 (CB)
 6のような析出物がグラファイト化に際しての核作用
として働くことなどの効果を発揮する。
B is also a useful element. That is, the first effect is
As is conventionally known, it is a useful element for improving hardenability, and the second is that it combines with N in steel to form BN, reducing IJ-N that inhibits graphitization. The third is promoting the destabilization of cementite, which is necessary to promote graphitization, and the third is BN and Fe23 (CB).
Precipitates such as No. 6 exhibit effects such as acting as a nucleus during graphitization.

以上の効果を期待するにはBは少なくとも0.0005
%以上必要である。しかし0.0500を超えて添加し
てもその効果は飽和し、かえって経済的に不利益を招く
のみである。
To expect the above effect, B is at least 0.0005
% or more is required. However, if the amount is added in excess of 0.0500, the effect will be saturated and this will only cause economic disadvantage.

Cr、 Moはいずれも焼入性ならびに、焼入れ後の焼
戻し軟化抵抗を増大するので、適量の範囲で用いれば鋼
の熱処理性能を増す。しかし、一方においては熱延後の
セメンタイト中のFeと置換、固溶し、これを安定化す
る作用を有するのでグラファイト化を阻害する作用をも
有する。熱処理性能の改善を図るためにはいずれの元素
においても0.20%以上の添加が望ましいが、1.0
%を超えるとグラファイト化が著しく悪化して狙いとす
るフェライト+微細グラファイト組織が得られなくなる
ので1.0%を上限とした。
Both Cr and Mo increase the hardenability and resistance to temper softening after quenching, so if used in an appropriate amount, they increase the heat treatment performance of the steel. However, on the other hand, it has the effect of substituting with Fe in the hot-rolled cementite and forming a solid solution therein, thereby stabilizing it, and therefore also having the effect of inhibiting graphitization. In order to improve heat treatment performance, it is desirable to add 0.20% or more of any element, but 1.0% or more is desirable.
If it exceeds 1.0%, graphitization will deteriorate significantly and the desired ferrite+fine graphite structure will not be obtained, so 1.0% is set as the upper limit.

Niは特に焼入時の臨界冷却速度を小さくする効果があ
るので、焼入性の向上に寄与すること、ならびに炭化物
を形成せず、上記CrやMoの如きグラファイト化に悪
影響を及ぼさず、むしろ逆に若干ながら助長をもたらす
作用を有する点で有用な元素である。この効果を得るた
めには少なくとも0.20%以上の添加が必要であるが
、高価な元素であり、1.0%を超えると経済的に不利
益になるので、上限を1.0%とした。
Ni has the effect of reducing the critical cooling rate during hardening, so it contributes to improving hardenability, does not form carbides, does not have a negative effect on graphitization like the above-mentioned Cr and Mo, and is rather On the contrary, it is a useful element in that it has a slightly supportive effect. In order to obtain this effect, it is necessary to add at least 0.20%, but it is an expensive element and if it exceeds 1.0% it will be economically disadvantageous, so the upper limit is set at 1.0%. did.

ここにCr、 Mo及びNiは、焼入性の向上に寄与す
る点で同効成分である。
Here, Cr, Mo, and Ni are the same effective components in that they contribute to improving hardenability.

次に上述のように加工性と焼入性を同時に満足させるた
め各発明を通じて、フェライト・グラファイト組織を有
することが限定され、その理由は発明者らの研究成果に
基づいて以下に説明するとおりである。
Next, as mentioned above, in order to simultaneously satisfy workability and hardenability, each invention is limited to having a ferrite/graphite structure, and the reason for this is as explained below based on the inventors' research results. be.

第1図はC:0.62%、 Si:1.62%、 Mn
:0,78%。
Figure 1 shows C: 0.62%, Si: 1.62%, Mn
:0.78%.

A R:0.015%、  N :0.0023%、 
 P :0.007%。
AR: 0.015%, N: 0.0023%,
P: 0.007%.

S:0.001%及びCa : 0.0015%の成分
組成になるgmm厚さの熱延鋼帯より採取した小試片を
用い、種々の方法により、組織中のグラファイト化比率
を変化させて、フェライトと微細フェライトを主体とし
残りのCについては球状化したセメンタイトよりなる組
織に調整して、引張り特性とシャルピー衝撃特性を調査
した結果である。
Using a small specimen taken from a gmm thick hot rolled steel strip with a composition of S: 0.001% and Ca: 0.0015%, the graphitization ratio in the structure was changed by various methods. , the tensile properties and Charpy impact properties were investigated by adjusting the structure to consist mainly of ferrite and fine ferrite, with the remaining C being spheroidized cementite.

また第2図はグラファイト粒子径が異なった場合の焼入
性の違いを示すものである。この焼入性の評価は、グラ
ファイト化率が80%以上のものであって、平均グラフ
ァイト粒子径が種々に異なる場合について、860℃で
の加熱保持時間を種々変更しその保持後50℃/sec
の冷却速度で焼入れをした場合の断面平均硬度で示しで
ある。
Moreover, FIG. 2 shows the difference in hardenability when the graphite particle diameter is different. This evaluation of hardenability was carried out for cases where the graphitization rate was 80% or more and the average graphite particle diameter was variously different, and the heating and holding time at 860°C was varied variously.
The average hardness of the cross section is shown when quenching is performed at a cooling rate of .

第1図および第2図の結果に従って、 (1)引張り特性、衝撃特性はグラファイト化比率に依
存し、このグラファイト化比率が80%をこえる場合に
は引張り強度が低く、伸び並びにtit特性も良好であ
ること (2)一方、焼入性に関してはグラファイトの平均粒子
径に依存し、10μmを超える大きいグラファイト粒の
場合オーステナイト化に要する加熱時間は著しく長くな
ること (3)  このように、グラファイト化比率を高め、か
つその平均粒径を10μm以下に調整した微細ゲラフィ
トがフェライトと混在した組織とすることによって、加
工性と焼入性とを同時に満たす特1虫を持つこと の知見が得られた。
According to the results shown in Figures 1 and 2, (1) Tensile properties and impact properties depend on the graphitization ratio, and if this graphitization ratio exceeds 80%, the tensile strength is low and the elongation and tit properties are also good. (2) On the other hand, hardenability depends on the average particle size of graphite, and in the case of large graphite grains exceeding 10 μm, the heating time required for austenitization is significantly longer (3) In this way, graphite formation It was found that by increasing the ratio and creating a structure in which fine gelaphyte, whose average grain size was adjusted to 10 μm or less, is mixed with ferrite, a special feature that satisfies workability and hardenability at the same time was obtained. .

ここにグラファイト化焼鈍条件の範囲は十分な軟質化の
もとて加工性に最も有利な焼鈍組織を得ること、および
焼鈍コストが安いことの2つの観点から選択するのが実
際的である。例えば焼鈍温度範囲が500℃未満のよう
に低温焼鈍では軟化の進行が著しく遅くなり、また75
0℃を超えると焼鈍中にオーステナイト相となる割合が
大きくなって、この部分が焼鈍後にパーライト相として
残り、軟質化組織の均一性を阻害する原因となり好まし
くない。そのため焼鈍温度範囲として500〜750℃
が推奨され、また焼鈍時間としては約1〜200時間程
度が適当であるが、焼鈍温度が低い稈長時間を必要とす
る。
Here, it is practical to select the range of graphitization annealing conditions from two viewpoints: obtaining an annealed structure most advantageous for workability through sufficient softening, and low annealing cost. For example, in low-temperature annealing where the annealing temperature range is less than 500°C, the progress of softening is extremely slow;
If the temperature exceeds 0°C, the proportion of the austenite phase during annealing increases, and this portion remains as a pearlite phase after annealing, which is undesirable as it becomes a cause of inhibiting the uniformity of the softened structure. Therefore, the annealing temperature range is 500 to 750℃.
is recommended, and the appropriate annealing time is about 1 to 200 hours, but the annealing temperature is low and the culm requires a long time.

なお、材質的にみた場合焼鈍温度の最適な範囲は650
℃〜A1変態点の範囲であり、特にA1変態点直下の温
度を選択すれば短時間の焼鈍で良好な材質が得られる。
In addition, from the viewpoint of the material, the optimal range of annealing temperature is 650
C to the A1 transformation point, and in particular, if a temperature just below the A1 transformation point is selected, a good material can be obtained with short annealing.

また、焼鈍サイクルとして例えばいったんα+γ2相温
度領域となる温度まで加熱した後、非常に遅い冷却速度
でA1変態点以下の温度域で保持するとか、の方法を採
用しても焼鈍時間の短縮および材質の改善が図れる。
In addition, even if an annealing cycle is adopted, for example, once heated to a temperature in the α + γ two-phase temperature region, and then held at a temperature below the A1 transformation point at a very slow cooling rate, the annealing time can be shortened and the material quality can be improved.

次にこのグラファイト化焼鈍に先立って冷間ないしは温
間圧延を施す場合にあっては、焼入性と冷間加工性の観
点から、フェライトと微細均一なグラファイト粒からな
るミクロ組織を一層効率的に得る手段となる。すなわち
化学成分中にグラファイト化核として作用するように鋼
中S量に応じ適量のCaを添加した熱延板に、グラファ
イト化焼鈍に先立ち冷間ないしは温間圧延を実施するこ
とでグラファイト化焼鈍に際して、グラファイト化核作
用が一層顕著になり、グラファイト化速度が増大するの
で容易にグラファイト粒が微細均一に分布する最終ミク
ロ組織が得られる。
Next, when performing cold or warm rolling prior to this graphitization annealing, from the viewpoint of hardenability and cold workability, it is possible to improve the microstructure consisting of ferrite and fine uniform graphite grains more efficiently. It becomes a means to obtain. In other words, a hot-rolled sheet with an appropriate amount of Ca added to the chemical composition according to the amount of S in the steel so as to act as graphitization nuclei is subjected to cold or warm rolling prior to graphitization annealing. , the graphitization nucleation effect becomes more pronounced and the graphitization rate increases, so that a final microstructure in which graphite grains are finely and uniformly distributed can be easily obtained.

ところで、このグラファイト化過程はまず最初にグラフ
ァイトの核生成があって、ついでセメンタイトの分解、
Cの素地への固溶、グラファイト粒への拡散の順に粒成
長が進む。この中では核生成過程が非常に重要な要素で
あって、核生成サイトが多く、しかも均一に分布してい
るもの程、最終のグラファイト粒が微細化し、かつ均一
化する。
By the way, this graphitization process first involves nucleation of graphite, then decomposition of cementite,
Grain growth progresses in the order of solid solution of C into the matrix and diffusion into graphite grains. The nucleation process is a very important factor in this, and the more nucleation sites there are and the more uniformly they are distributed, the finer and more uniform the final graphite grains will be.

また、核が増加すればセメンタイト分解後のCの拡散距
離も短くて済むのでグラファイト成長速度も増大する。
Furthermore, if the number of nuclei increases, the diffusion distance of C after cementite decomposition becomes shorter, so that the graphite growth rate increases.

またB添加の場合はBNあるいはFe23(CB)6等
の析出物がグラファイト化核として作用するわけであっ
て、冷間もしくは温間圧延をこれに加えた場合、これら
の析出物の周辺においてミクロ的に転位密度が著しく増
加し、その核作用を増すことになる。
In addition, in the case of B addition, precipitates such as BN or Fe23(CB)6 act as graphitization nuclei, and when cold or warm rolling is added to this, microscopic formation occurs around these precipitates. As a result, the dislocation density increases significantly, increasing the nucleation effect.

また、それ以外にも冷間もしくは温間圧延によって導入
される多量の点欠陥が核サイトとなるので、さら核生成
が容易となる。
In addition, since a large number of point defects introduced by cold or warm rolling serve as nucleation sites, nucleation becomes even easier.

加えるに、セメンタイトが上記圧延によって不安定化し
、分解し易くなること、さらに圧延によって導入された
転位が、素地に固溶したCの拡散の経路として作用する
ので、グラファイトの成長速度をも増進するのである。
In addition, cementite is destabilized by the above-mentioned rolling and becomes easily decomposed, and furthermore, the dislocations introduced by rolling act as a diffusion path for C dissolved in the matrix, thereby increasing the growth rate of graphite. It is.

また、上記のような冷間ないしは温間圧延による転位密
度の増大は、次工程の焼鈍に際してフェライト粒再結晶
核の数を増大させるので、焼鈍後のフェライト相素地の
結晶粒の微細化が達成される。その結果靭性および強度
−伸びバランスの向上にも寄与する。このような複合的
効果の積み重ねによって、効果が一層顕在化され、極め
て有効かつ、良好な結果が得られるのである。
In addition, the increase in dislocation density due to cold or warm rolling as described above increases the number of ferrite grain recrystallization nuclei during the next step of annealing, so that grain refinement of the ferrite phase matrix after annealing is achieved. be done. As a result, it also contributes to improving toughness and strength-elongation balance. By accumulating such multiple effects, the effects become even more apparent and extremely effective and good results can be obtained.

このような効果を発揮せしめるためには500℃以下で
の温間ないしは冷間圧延温度領域で20%以上の圧下率
が必要である。この圧延温度は500℃を超えると、圧
延後に歪の回復やフェライト素地の再結晶によって、有
効に作用する転位や点欠陥の数が減少して、所期した効
果が十分に発揮されなくなるためである。また圧下率2
0%未満では圧延によって導入される点欠陥、転位の割
合が少な過ぎるため、やはり効果が得られ難い。
In order to exhibit such an effect, a reduction ratio of 20% or more is required in the warm or cold rolling temperature range of 500° C. or less. If this rolling temperature exceeds 500°C, the number of effectively acting dislocations and point defects will decrease due to strain recovery and recrystallization of the ferrite matrix after rolling, and the desired effect will not be fully exerted. be. Also, rolling reduction rate 2
If it is less than 0%, the proportion of point defects and dislocations introduced by rolling is too small, so it is difficult to obtain any effect.

実施例 1 表1に化学成分を示した鋼を用いて、通常の方法で熱間
圧延を行い、8mm厚の熱延鋼帯とし、続いてこの熱延
鋼帯に所定の焼鈍を施した。表2にこれらについての焼
鈍条件と焼鈍後の引張り特性、シャルピー特性、および
焼入−焼戻し後の硬度と靭性の成績を示す。
Example 1 A steel whose chemical composition is shown in Table 1 was hot-rolled in a conventional manner to obtain a hot-rolled steel strip with a thickness of 8 mm, and then this hot-rolled steel strip was annealed in a prescribed manner. Table 2 shows the annealing conditions, tensile properties after annealing, Charpy properties, and hardness and toughness results after quenching and tempering.

なお、引張り特性は3mm厚のJIS 5号引張り試験
片での成績、そして硬度は850℃で30m1n加熱後
、70℃/secの冷却速度で油焼入れ後、250℃で
60m1nの焼戻し処理を施した後の成績である。
The tensile properties were measured using a 3mm thick JIS No. 5 tensile test piece, and the hardness was determined by heating at 850°C for 30ml, oil quenching at a cooling rate of 70°C/sec, and then tempering at 250°C for 60ml. This is the later result.

この発明に従うミクロ組織上の特徴であるフェライト・
グラファイト組織による材質的特徴を明確にするため表
2に示した引張り強さと焼入−焼戻し後の硬度の関係を
第3図に、また引張り強度と伸びの関係を第4図に比較
して示す。
Ferrite, which is a microstructural feature according to this invention.
In order to clarify the material characteristics due to the graphite structure, the relationship between the tensile strength shown in Table 2 and the hardness after quenching and tempering is shown in Figure 3, and the relationship between tensile strength and elongation is shown in Figure 4 for comparison. .

第3図、第4図からこの発明では引張り強度が50kg
f/mm2以下であって、高炭素鋼でありながら引張り
特性は、低炭素鋼並の低強度、高延性の特性を示し、し
かも焼入−焼戻し後の硬度は比較鋼のフェライト・球状
化セメンタイト組織鋼と変わらない焼入性を有すること
がわかる。また焼入性はCr、 tJo、 Niを含有
することによってさらに向上する。
From Figures 3 and 4, the tensile strength of this invention is 50 kg.
f/mm2 or less, and although it is a high carbon steel, its tensile properties show low strength and high ductility comparable to low carbon steel, and the hardness after quenching and tempering is comparable to the ferrite and spheroidized cementite of the comparative steels. It can be seen that it has the same hardenability as structural steel. Furthermore, the hardenability is further improved by containing Cr, tJo, and Ni.

さらに表2から発明鋼は比較鋼の球状化セメンタイト組
織鋼に比べて衝撃特性が著しく優れ、とくにこの効果は
Bを添加した場合においてより著しいことがわかる。
Further, from Table 2, it can be seen that the invention steel has significantly superior impact properties compared to the comparison steel, which is a steel with a spheroidized cementite structure, and this effect is particularly significant when B is added.

(発明の効果) この発明によれば、従来加工性に乏しかった熱処理用途
の高炭素鋼を低炭素鋼並の軟質、良加工性の機械的性質
と、従来の高炭素鋼と変わらない優れた焼入性を併せ有
する鋼が得られる。本発明鋼を刃物、ばね、耐摩耗性部
品等の各種機械部品用として用いれば、熱処理前の成形
加工性が著しく改善されるので、加工工程の簡略化、成
形形状の複雑化が可能となり、省工程、省力、省コスト
の面で大きな効果が得られる。
(Effects of the Invention) According to the present invention, high carbon steel for heat treatment, which conventionally had poor workability, has mechanical properties of softness and good workability comparable to low carbon steel, and excellent mechanical properties equivalent to conventional high carbon steel. A steel with good hardenability can be obtained. If the steel of the present invention is used for various mechanical parts such as knives, springs, and wear-resistant parts, the formability before heat treatment will be significantly improved, making it possible to simplify the processing process and make the formed shape more complex. Significant effects can be obtained in terms of process, labor and cost savings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はグラファイト比率が機械的性質および焼入性に
及ぼす影響を示すグラフ、 第2図はグラファイト粒の大きさが焼入性に及ぼす影響
を示すグラフ、 第3図は引張り強度と焼入−焼戻し後の硬度の比較を示
すグラフであり、 第4図は発明鋼と比較鋼の引張り強度と伸びの関係を示
すグラフである。
Figure 1 is a graph showing the effect of graphite ratio on mechanical properties and hardenability. Figure 2 is a graph showing the effect of graphite grain size on hardenability. Figure 3 is a graph showing tensile strength and hardenability. - A graph showing a comparison of hardness after tempering; FIG. 4 is a graph showing the relationship between tensile strength and elongation of the invention steel and comparative steel.

Claims (1)

【特許請求の範囲】 1、C:0.30〜1.20wt%、 Si:0.30〜2.00wt%、 Mn:0.05〜1.50wt%、 Al:0.001〜0.100wt%、 N:0.0060wt%以下、 P:0.020wt%以下、 S:0.015wt%以下及び Ca:0.0010〜0.0200wt%ただしCa/
s1〜10を含み残部Feおよび不可避的不純物の組成
になり、フェライト相と直径が10μm以下の微細グラ
ファイト粒を主体とする組織を有し、引張り強さ50k
gf/mm^2以下であって、加工性と焼入性に優れ、
かつ焼入−焼戻し処理後の靭性にも優れることを特徴と
する熱処理用鋼板。 2、C:0.30〜1.20wt%、 Si:0.30〜2、00wt%、 Mn:0.05〜1.50wt%、 Al:0.001〜0.100wt%、 N:0.0060wt%以下、 P:0.020wt%以下、 S:0.015wt%以下、 Ca:0.0010〜0.0200wt%ただしCa/
s1〜10、B:0.0005〜0.0500wt%、 を含み残部Feおよび不可避的不純物の組成になり、フ
ェライト相と直径が10μm以下の微細グラファイト粒
を主体とする組織を有し、引張り強さ50kgf/mm
^2以下であって、加工性と焼入性に優れ、かつ焼入−
焼戻し処理後の靭性にも優れることを特徴とする熱処理
用鋼板。 3、C:0.30〜1.20wt% Si:0.30〜2.00wt% Mn:0.05〜1.50wt% Al:0.001〜0.100wt%、 N:0.0060wt%以下 P:0.020wt%以下 S:0.015wt%以下 Ca:0.0010〜0.0200wt%ただしCa/
s1〜10、を含みかつ、 Cr、Mo及びNiよりなる群のうちから選んだ1種又
は2種以上:0.20〜1.0wt% を含有して残部Feおよび不可避的不純物の組成になり
、フェライト相と直径が10μm以下の微細グラファイ
ト粒を主体とする組織を有し、引張り強さ50kgf/
mm^2以下であって、加工性と焼入性に優れ、かつ焼
入−焼戻し処理後の靭性にも優れることを特徴とする熱
処理用鋼板。 4、C:0.30〜1.20wt% Si:0.30〜2.00wt% Mn:0.05〜1.50wt% Al:0.001〜0.100wt%、 N:0.0060wt%以下 P:0.020wt%以下 S:0.015wt%以下および Ca:0.001〜0.0200wt%ただしCa/S
1〜10、B:0.0005〜0.0500wt% を含みかつ Cr、Moe及びNiよりなる群のうちから選んだ1種
又は2種以上:0.2〜1.0wt% を含有して残部Feおよび不可避的不純物の組成になり
、フェライト相と直径が10μm以下の微細グラファイ
ト粒を主体とする組織を有し、引張り強さ50kgf/
mm^2以下であって、加工性と焼入性に優れ、かつ焼
入−焼戻し処理後の靭性にも優れることを特徴とする熱
処理用鋼板。
[Claims] 1. C: 0.30 to 1.20 wt%, Si: 0.30 to 2.00 wt%, Mn: 0.05 to 1.50 wt%, Al: 0.001 to 0.100 wt% %, N: 0.0060 wt% or less, P: 0.020 wt% or less, S: 0.015 wt% or less, and Ca: 0.0010 to 0.0200 wt%, but Ca/
It has a composition of s1 to s10 with the balance being Fe and unavoidable impurities, has a structure mainly composed of a ferrite phase and fine graphite grains with a diameter of 10 μm or less, and has a tensile strength of 50K.
gf/mm^2 or less, with excellent workability and hardenability,
A steel plate for heat treatment, which is characterized by having excellent toughness after quenching and tempering. 2, C: 0.30-1.20 wt%, Si: 0.30-2,00 wt%, Mn: 0.05-1.50 wt%, Al: 0.001-0.100 wt%, N: 0. 0060wt% or less, P: 0.020wt% or less, S: 0.015wt% or less, Ca: 0.0010 to 0.0200wt%, but Ca/
s1~10, B: 0.0005~0.0500wt%, the balance is Fe and unavoidable impurities, it has a structure mainly composed of ferrite phase and fine graphite grains with a diameter of 10 μm or less, and has a tensile strength. 50kgf/mm
^2 or less, has excellent workability and hardenability, and is hardenable.
A steel plate for heat treatment that is characterized by excellent toughness after tempering. 3. C: 0.30-1.20wt% Si: 0.30-2.00wt% Mn: 0.05-1.50wt% Al: 0.001-0.100wt%, N: 0.0060wt% or less P: 0.020wt% or less S: 0.015wt% or less Ca: 0.0010 to 0.0200wt% However, Ca/
s1 to 10, and one or more selected from the group consisting of Cr, Mo, and Ni: 0.20 to 1.0 wt%, with the balance being Fe and unavoidable impurities. , has a structure consisting mainly of a ferrite phase and fine graphite grains with a diameter of 10 μm or less, and has a tensile strength of 50 kgf/
A steel plate for heat treatment, which is characterized by having a hardness of less than mm^2, excellent workability and hardenability, and excellent toughness after quenching and tempering. 4, C: 0.30-1.20wt% Si: 0.30-2.00wt% Mn: 0.05-1.50wt% Al: 0.001-0.100wt%, N: 0.0060wt% or less P: 0.020wt% or less S: 0.015wt% or less and Ca: 0.001 to 0.0200wt% However, Ca/S
1 to 10, B: 0.0005 to 0.0500 wt%, and one or more selected from the group consisting of Cr, Moe, and Ni: 0.2 to 1.0 wt%, the remainder It has a composition of Fe and unavoidable impurities, has a structure mainly composed of a ferrite phase and fine graphite grains with a diameter of 10 μm or less, and has a tensile strength of 50 kgf/
A steel plate for heat treatment, which is characterized by having a hardness of less than mm^2, excellent workability and hardenability, and excellent toughness after quenching and tempering.
JP62289390A 1987-11-18 1987-11-18 Steel plate for heat treatment Expired - Lifetime JP2618933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62289390A JP2618933B2 (en) 1987-11-18 1987-11-18 Steel plate for heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62289390A JP2618933B2 (en) 1987-11-18 1987-11-18 Steel plate for heat treatment

Publications (2)

Publication Number Publication Date
JPH01132740A true JPH01132740A (en) 1989-05-25
JP2618933B2 JP2618933B2 (en) 1997-06-11

Family

ID=17742602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62289390A Expired - Lifetime JP2618933B2 (en) 1987-11-18 1987-11-18 Steel plate for heat treatment

Country Status (1)

Country Link
JP (1) JP2618933B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140411A (en) * 1989-10-12 1991-06-14 Thyssen Stahl Ag Improvement of cold working ability of heat treated steel
EP2163657A1 (en) * 2007-05-25 2010-03-17 Kabushiki Kaisha Kobe Seiko Sho Steel for high-cleanliness springs excellent in fatigue characteristics and high-cleanliness springs
US8183729B2 (en) 2007-10-16 2012-05-22 Seiko Epson Corporation Electrically powered device
CN106756486A (en) * 2016-12-14 2017-05-31 安徽瑞研新材料技术研究院有限公司 A kind of wear resistant corrosion resistant mine alloy liner plate and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052551A (en) * 1983-08-31 1985-03-25 Sumitomo Metal Ind Ltd Steel having high ductility and high workability and its production
JPS60128245A (en) * 1983-12-16 1985-07-09 Kobe Steel Ltd Vibration damping steel sheet having superior formability and its manufacture
JPS6126726A (en) * 1984-07-17 1986-02-06 Nippon Steel Corp Manufacture of over 80 kilo high-strength hot-rolled steel sheet having excellent elongation and tensibility
JPS61130454A (en) * 1984-11-28 1986-06-18 Kobe Steel Ltd High-strength hot-rolled steel sheet having superior suitability to stretch flanging and ferrite-bainite structure and its manufacture
JPS6487748A (en) * 1987-09-30 1989-03-31 Aisin Seiki Belt block for non-stage transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052551A (en) * 1983-08-31 1985-03-25 Sumitomo Metal Ind Ltd Steel having high ductility and high workability and its production
JPS60128245A (en) * 1983-12-16 1985-07-09 Kobe Steel Ltd Vibration damping steel sheet having superior formability and its manufacture
JPS6126726A (en) * 1984-07-17 1986-02-06 Nippon Steel Corp Manufacture of over 80 kilo high-strength hot-rolled steel sheet having excellent elongation and tensibility
JPS61130454A (en) * 1984-11-28 1986-06-18 Kobe Steel Ltd High-strength hot-rolled steel sheet having superior suitability to stretch flanging and ferrite-bainite structure and its manufacture
JPS6487748A (en) * 1987-09-30 1989-03-31 Aisin Seiki Belt block for non-stage transmission

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140411A (en) * 1989-10-12 1991-06-14 Thyssen Stahl Ag Improvement of cold working ability of heat treated steel
EP2163657A1 (en) * 2007-05-25 2010-03-17 Kabushiki Kaisha Kobe Seiko Sho Steel for high-cleanliness springs excellent in fatigue characteristics and high-cleanliness springs
EP2163657A4 (en) * 2007-05-25 2011-04-27 Kobe Steel Ltd Steel for high-cleanliness springs excellent in fatigue characteristics and high-cleanliness springs
US8187530B2 (en) 2007-05-25 2012-05-29 Kobe Steel, Ltd. Steel for high-cleanliness spring with excellent fatigue characteristics and high-cleanliness spring
US8183729B2 (en) 2007-10-16 2012-05-22 Seiko Epson Corporation Electrically powered device
CN106756486A (en) * 2016-12-14 2017-05-31 安徽瑞研新材料技术研究院有限公司 A kind of wear resistant corrosion resistant mine alloy liner plate and preparation method thereof

Also Published As

Publication number Publication date
JP2618933B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
JPH03188217A (en) Production of high carbon sheet
US20230203611A1 (en) 780 mpa-class cold-rolled and annealed dual-phase steel and manufacturing method therefor
US4609410A (en) Method for producing high-strength deep-drawable dual-phase steel sheets
JP3932995B2 (en) Induction tempering steel and method for producing the same
CN110172636A (en) A kind of low-carbon hot forming steel and preparation method thereof
JPH1161272A (en) Manufacture of high carbon cold-rolled steel plate excellent in formability
JPH01259121A (en) Manufacture of ultrahigh strength steel stock excellent in ductility
JPH01132740A (en) Steel sheet for heat treatment
JPH11269541A (en) Manufacture of high strength steel excellent in fatigue characteristic
JP2518873B2 (en) Steel plate for heat treatment
CN111647803B (en) Copper-containing high-strength steel and preparation method thereof
JPH09324212A (en) Production of hot rolled high carbon steel strip excellent in hardenability and cold workability
JPH04371547A (en) Production of high strength and high toughness steel
JP2004124190A (en) Induction-tempered steel having excellent twisting property
KR20200075456A (en) High carbon boron added steel and manufacturing method thereof
JPH04297548A (en) High strength and high toughness non-heat treated steel and its manufacture
JP7368692B2 (en) Manufacturing method of medium carbon steel plate
JPH1088237A (en) Production of cold rolled high carbon steel strip
JPH02175817A (en) Manufacture of hot-rolled high-tensile steel plate having dual-phase structure and excellent in workability
JPH01177338A (en) Non-heat treated steel for nitriding
KR101977502B1 (en) Steel wire rod for cold heading having excellent deformation characteristics and tensile strength after cold heading and method of manufacturing the same
KR100479993B1 (en) A method for producing a high carbon steel strip with high elongation and hardenability
KR102075642B1 (en) High strenghth hot-rolled plated steel sheet having excellent hole flangeability, and method of manufacturing the same
KR100584765B1 (en) Method for manufacturing high strength working product having delayed fracture resistance and enlongation percentage
JPH02179841A (en) Non-heattreated steel for induction hardening and its manufacture