JPH01131071A - Sintered material of nickel-molybdenum complex boride - Google Patents
Sintered material of nickel-molybdenum complex borideInfo
- Publication number
- JPH01131071A JPH01131071A JP62288449A JP28844987A JPH01131071A JP H01131071 A JPH01131071 A JP H01131071A JP 62288449 A JP62288449 A JP 62288449A JP 28844987 A JP28844987 A JP 28844987A JP H01131071 A JPH01131071 A JP H01131071A
- Authority
- JP
- Japan
- Prior art keywords
- complex boride
- sintered body
- boride
- strength
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title abstract description 5
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 title abstract description 4
- 150000004767 nitrides Chemical class 0.000 claims abstract description 19
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 230000000737 periodic effect Effects 0.000 claims abstract description 3
- -1 transition metal nitride Chemical class 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 7
- 230000035939 shock Effects 0.000 abstract description 4
- 238000005245 sintering Methods 0.000 abstract description 4
- 150000003624 transition metals Chemical class 0.000 abstract description 4
- 229910003296 Ni-Mo Inorganic materials 0.000 abstract description 3
- 229910017318 Mo—Ni Inorganic materials 0.000 abstract description 2
- 238000013329 compounding Methods 0.000 abstract 1
- 238000010276 construction Methods 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 238000010304 firing Methods 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011195 cermet Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000007657 chevron notch test Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は旧・Mo複硼化物基焼結体、さらに詳しくは強
度、靭性ならびに耐熱衝撃性に優れたN1・Mo複硼化
物基焼結体、特に靭性に優れたNi−Mo基基礎硼化物
焼結体関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a former Mo complex boride based sintered body, more specifically to an N1 Mo complex boride based sintered body having excellent strength, toughness and thermal shock resistance. The present invention relates to a Ni-Mo based boride sintered body having excellent toughness.
[従来の技術]
一般に、遷移金属を中心とする硼化物は、高融点、高硬
度で、耐食性や高温での耐酸化性に優れ、さらに電気、
熱の良導体であることから、これらの特性を利用すべく
、耐摩耗材料や部品を中心として、その応用が試みられ
ている。しかし、これら硼化物は難焼結材料であるため
通常の焼成法(無加圧焼成法)では緻密な焼結体が得ら
れない。(樋端、橋本二大阪工業技術試験所季報 18
(1967) 216)これに対し、焼結助剤を添加
したり(渡辺9石灰:粉体及び粉末冶金、 26(19
79)304 ) 、加圧焼成法(ホットプレス法など
)を利用して、緻密な焼結体を得ようとする提案がなさ
れ、はぼ100%緻密化した焼結体が得られる様にはな
って来ているが、これらを機械部品等の用途に用いるに
は、一般に強度や靭性の点で十分ではない。[Prior art] In general, borides, mainly made of transition metals, have a high melting point, high hardness, excellent corrosion resistance and oxidation resistance at high temperatures, and are also useful for electricity,
Since it is a good conductor of heat, attempts are being made to utilize its properties to make use of these properties, mainly in wear-resistant materials and parts. However, since these borides are difficult-to-sinter materials, a dense sintered body cannot be obtained by a normal firing method (pressureless firing method). (Hibata, Ni Hashimoto Osaka Industrial Technology Research Institute Quarterly Report 18
(1967) 216) In contrast, adding a sintering aid (Watanabe 9 Lime: Powder and Powder Metallurgy, 26 (19
79) 304), a proposal was made to obtain a dense sintered body using a pressure sintering method (such as a hot press method), and it was proposed that a sintered body that was almost 100% dense could be obtained. However, their strength and toughness are generally insufficient for use in mechanical parts and the like.
一方、これら難焼結性硼化物セラミックスを他の金属で
焼き固めて、硼化物の特性を生かした複合材料(サーメ
ット)にしようとする提案(木下、小潮、浜野:窯業協
会誌75 (1967)84、 B、Y、Yuridi
tskii et al : Poroshkovay
a・Metalluegiya、 No4 (232
) 198232)されている。この場合通常の焼成法
で、緻密な焼結体が得られるが、強度的には満足するも
のは得られない。On the other hand, a proposal was made to sinter these hard-to-sinter boride ceramics with other metals to create a composite material (cermet) that takes advantage of the properties of boride (Kinoshita, Koushio, Hamano: Ceramics Association Journal 75 (1967)) 84. B.Y.Yuridi
tskii et al: Poroshkovay
a・Metalluegiya, No4 (232
) 198232). In this case, a dense sintered body can be obtained by the usual firing method, but it is not possible to obtain one with satisfactory strength.
その理由は本来、靭性を付与すべき、金属結合部が優先
的に激しく添加硼化物と反応し、例えば、FeはFeJ
、 FeB+ 2に、N1はN12B、 N1aB3.
NiBなどの脆弱な硼化物を形成してしまうためと考
えられる。The reason for this is that the metal bond, which should originally impart toughness, preferentially reacts violently with the added boride; for example, Fe
, FeB+ 2, N1 is N12B, N1aB3.
This is thought to be due to the formation of brittle borides such as NiB.
この問題点を解決しようとしたものに、特公昭56−1
5773 (東洋鋼板■)などがあり、高強度の複硼化
物サーメットを提案している。しかしこれも結合金属が
鉄ベースである事から耐食性や耐酸化性に問題があり、
特に高温での強度は硼化物の特性を生かしきれていない
。In an attempt to solve this problem, there was
5773 (Toyo Kohan ■), and we are proposing high-strength compound boride cermets. However, since the bonding metal is iron-based, there are problems with corrosion resistance and oxidation resistance.
In particular, the properties of boride cannot be fully utilized in terms of strength at high temperatures.
[発明の解決しようとする問題点]
この点について9発明者らは複硼化物からなる結合金属
をNiベースとしたサーメットを提案した。(特願昭6
l−288919)
さらにこの様な点に鑑み、本発明者らは強度、靭性、耐
熱衝撃性などの向−]二、特に 600〜1000°C
付近までの高温での強度」1昇に関して、鋭意、研究を
重ねた結果、複硼化物の一部を、特定の窒化物で置き換
える−11が効果的である事を見出し、本発明に至った
ものである。[Problems to be Solved by the Invention] Regarding this point, the nine inventors proposed a cermet in which the binding metal made of complex boride is Ni-based. (Tokugan Sho 6
1-288919) Furthermore, in view of these points, the present inventors have improved the properties of strength, toughness, thermal shock resistance, etc., particularly at temperatures of 600 to 1000°C.
As a result of intensive research on increasing the strength by 1 at high temperatures up to approximately It is something.
[問題点を解決するだめの手段]
本発明はMO2NIB2及び/又は (Mo−W) J
iB□複硼化物と結合部が主として、Mo−Niからな
る焼結体において、該複硼化物に置換する形で周期律表
4a、 5a及び/又は6a族の遷移金属窒化物の一種
以上を少なくとも添加することにより通常の無加圧焼成
法でも容易に緻密で、かつ高強度(特に〜800°C付
近での高温強度)を有する焼結体を提供するものである
。[Means for solving the problem] The present invention provides MO2NIB2 and/or (Mo-W) J
iB□ In a sintered body in which the complex boride and the bonding portion are mainly composed of Mo-Ni, one or more transition metal nitrides of Groups 4a, 5a and/or 6a of the periodic table are substituted for the complex boride. By adding at least this component, a sintered body that is easily dense and has high strength (particularly high-temperature strength at around 800° C.) can be provided even by a normal pressureless sintering method.
具体的には、例えば、所定粒度及び純度のMoB粉、
WB粉、 Mo粉、 Ni粉に所定量の4a、 5a及
び/又は5a族の窒化物を秤量配合し、エタノールなど
を溶剤として、SUSボール、 susポットを用いて
、振動ミルなどで、混合・粉砕後、金型ブレスやラバー
プレスにより成形後、所定の温度条件で無加圧真空又は
雰囲気焼成することにより得られる。Specifically, for example, MoB powder of a predetermined particle size and purity,
A predetermined amount of 4a, 5a, and/or 5a group nitride is weighed and blended with WB powder, Mo powder, and Ni powder, and mixed and mixed using a vibrating mill or the like using an SUS ball or SUS pot using ethanol as a solvent. After pulverization, it is formed by mold press or rubber press, and then baked under pressureless vacuum or atmosphere under predetermined temperature conditions.
ここで用いる出発原料はMoB、 WB、 Mo、1粉
でも、Mo、 W (WB) 、 N i−B粉などで
も、特に問題はなく、これら原料粉に所定量の窒化物を
添加すれば良い。さらに原料粉末は出来る限り、高純度
で、又、微細なものが最終焼結体の様々な特性に対して
、有利であることは言うまでもない。The starting materials used here may be MoB, WB, Mo, 1 powder, Mo, W (WB), Ni-B powder, etc., there is no particular problem, and it is sufficient to add a predetermined amount of nitride to these raw material powders. . Furthermore, it goes without saying that it is advantageous for the raw material powder to be as pure as possible and as fine as possible for various properties of the final sintered body.
焼成反応は、上記原料がまず第一段階では、MoJiB
2や(Mo、 W) JiB2を主結晶とする複硼化物
を生成し、第二段階で、これら複硼化物と残ったMo−
Ni との共晶反応により緻密な焼結体が得られる。焼
成後のMo−Ni結合部量は5〜70重量%で好ましく
は、10〜60重量%、さらにこの中でも10〜30重
量%で特に高強度焼結体が得られる。In the calcination reaction, in the first step, the above raw materials are MoJiB
2 and (Mo, W) A complex boride with JiB2 as the main crystal is produced, and in the second step, these complex borides and the remaining Mo-
A dense sintered body is obtained by the eutectic reaction with Ni. The amount of Mo--Ni bonded parts after firing is 5 to 70% by weight, preferably 10 to 60% by weight, and particularly 10 to 30% by weight to obtain a particularly high-strength sintered body.
添加窒化物量は硬質相を形成する複硼化物との含量中に
おける比(原料配合時における)で0.05〜25体積
%好ましくは 05〜20体積%特に2〜10体積%で
強度向」−への効果が顕著である。すなわち添加量が少
な過ぎると焼結体強度の改善に及ばず効果が余り見られ
ず、逆に多過ぎると焼成中、窒化物の分解による脱窒に
よりボアの多い合金となり、見かけの強度が低下する。The amount of added nitride is 0.05 to 25% by volume, preferably 05 to 20% by volume, especially 2 to 10% by volume, in terms of the content ratio (at the time of raw material blending) to the complex boride that forms the hard phase. The effect on In other words, if the amount added is too small, the strength of the sintered body will not be improved and the effect will not be seen much. On the other hand, if the amount added is too large, denitrification due to decomposition of nitrides during firing will result in an alloy with many holes, reducing the apparent strength. do.
しかしこの場合、窒素分圧を制御し、窒化物の分解を抑
制させる条件下での雰囲気焼成を行なえば最適添加量の
」1限は広がる。However, in this case, if the nitrogen partial pressure is controlled and firing is performed in an atmosphere under conditions that suppress the decomposition of nitrides, the optimum amount of addition can be expanded.
添加窒化物の種類は、Ta、 Nb、 V、 Ti、
Zrなどの4a、 5a、 6a族遷移金属窒化物であ
ればいずれも室温、並びに高温強度の改善に有効である
が、本発明者らの検討範囲では特にTaNが強度向」二
の効果に秀でていることが見い出された。The types of added nitrides are Ta, Nb, V, Ti,
All nitrides of group 4a, 5a, and 6a transition metals such as Zr are effective in improving strength at room temperature and high temperature, but in the scope of our study, TaN is particularly effective in improving strength. It was discovered that there is.
窒化物添加が室温及び高温域(〜1000°C)で強度
上界をもたらす理由は次の様に考えられる。添加窒化物
(M N 、 M : 4a、5a、6a族遷移金属、
N:窒素)の一部又はほとんどは焼成中、金属(M)と
窒素(N)に分解し、(窒素の一部はN2の形でガスと
して、放出されている。)Niバインダー中で溶解する
。The reason why the addition of nitride brings about an upper limit in strength at room temperature and in the high temperature range (~1000°C) is thought to be as follows. Additive nitride (M N , M: 4a, 5a, 6a group transition metal,
During firing, part or most of the nitrogen (N: nitrogen) decomposes into the metal (M) and nitrogen (N) (some of the nitrogen is released as a gas in the form of N2) and is dissolved in the Ni binder. do.
金属元素(M)はXMA、 AES分析などから複硼化
物硬質相、バインダー相、さらに硬質相とバインダー相
の界面に分布、存在する事が確認され、これら各部分の
強化に有効に作用し、主として、室温での強度」1昇に
寄与していると考えられる。窒素(N)は特にバインダ
ー相中に固溶し、高温域での強度保持に寄与している。It has been confirmed from XMA and AES analysis that the metal element (M) is distributed and exists in the complex boride hard phase, the binder phase, and the interface between the hard phase and the binder phase, and it acts effectively to strengthen each of these parts. It is thought that this mainly contributes to an increase in strength by 1 at room temperature. Nitrogen (N) is particularly dissolved in the binder phase and contributes to maintaining strength in a high temperature range.
一方、窒化物添加は合金組織への影響も大きく、複硼化
物硬質相粒径を均質化させ、異常粒成長を抑制する効果
も確認されている。これらの効果も強度の上昇、安定化
に寄与していると考えられる。On the other hand, the addition of nitrides has a large effect on the alloy structure, and it has been confirmed that the addition of nitrides has the effect of homogenizing the grain size of the complex boride hard phase and suppressing abnormal grain growth. It is thought that these effects also contribute to the increase and stabilization of strength.
窒化物の添加方法としては、例えば、
(Ti、Ta)Nなどの複窒化物としても、」−述の様
な効果が認められる。さらに、内部窒化法などの手段で
、窒化物を添加(固溶)させる方法もあるが目的とする
試料形状が大型化、複雑化した場合、均質な組織が得ら
れにくい欠点がある。As for the method of adding nitride, for example, by adding a double nitride such as (Ti, Ta)N, the effects as described above can be observed. Furthermore, there is a method of adding nitride (solid solution) using means such as internal nitriding, but this method has the disadvantage that it is difficult to obtain a homogeneous structure when the target sample shape becomes large or complex.
なお、本発明焼結体においてそのほかの成分は可及的に
含まれないことが望ましいが、[」的を損なわない程度
の少量含まれることは差し支えない。Although it is desirable that other components be contained in the sintered body of the present invention as little as possible, they may be contained in small amounts that do not impair the objective.
また原料粉砕工程に用いる溶剤としては、取り扱いやす
さや人体への有害度の少ないことなどからエタノールが
適しているが、メタノール、IPA、アセトン、ヘキサ
ンなどを用いても特性への影響はなく、粉砕装置も短時
間で有効な、効率の良い振動ミルが適しているが、回転
(ボール)ミルやアトライターなどを使用しても良く、
いずれも原料粉の粉砕されやすさ、最終合金の組織、特
性に差はなかった。Ethanol is suitable as a solvent for the raw material grinding process because it is easy to handle and is less harmful to the human body, but methanol, IPA, acetone, hexane, etc. can also be used without affecting the properties of the grinder. As for equipment, a highly efficient vibration mill that is effective in a short time is suitable, but a rotary (ball) mill or attritor may also be used.
There was no difference in the ease of pulverization of the raw material powder and the structure and properties of the final alloy.
以下、実施例によって、より詳細に説明を行なう。A more detailed explanation will be given below using examples.
[実施例]
(1) MoB粉末(純度99.5%、平均粒径4.5
μm)48重量%、 WB粉末(純度99.5%、平均
粒径3.5 μm ) 9重量%、 Mo粉末(純度9
9.5%、平均粒径2.7μm ) 4.8重量%、
Ni粉末(純度99.7%、平均粒径2.5μm )
33.2重量%を基本組成として、これに5重量%のT
aNを添加し、振動ミルを用いて、24hrエタノール
中、湿式混合、粉砕した。[Example] (1) MoB powder (purity 99.5%, average particle size 4.5
μm) 48% by weight, WB powder (purity 99.5%, average particle size 3.5 μm) 9% by weight, Mo powder (purity 9
9.5%, average particle size 2.7 μm) 4.8% by weight,
Ni powder (purity 99.7%, average particle size 2.5 μm)
33.2% by weight as the basic composition, and 5% by weight of T
aN was added, and the mixture was wet mixed and ground in ethanol for 24 hours using a vibration mill.
乾燥後、プレス成形して、xlO−3torr真空中、
1275℃で1時間焼成した。得られた焼結体は、硬質
相が(Mo、 Iv) JiB2及びMO2NIB2か
らなり、結合部がNi、Mo、Taからなる緻密なもの
であった。またこの焼結体は相対密度99.9%で、機
械的特性としては、室温三点曲げ強度220kg/mm
2゜800℃では220kg/mm2、破壊靭性値K
、c= 18.5MN/m3/2 (シェブロンノツチ
法、ノツチ角度90″)で、Hvは室温1025kg/
mm2.800°Cでも900kg/mm2であった。After drying, press molding in xlO-3torr vacuum,
It was baked at 1275°C for 1 hour. The obtained sintered body was dense, with the hard phase consisting of (Mo, Iv) JiB2 and MO2NIB2, and the bonding portion consisting of Ni, Mo, and Ta. In addition, this sintered body has a relative density of 99.9%, and its mechanical properties include a room temperature three-point bending strength of 220 kg/mm.
220kg/mm2 at 2°800℃, fracture toughness value K
, c = 18.5MN/m3/2 (Chevron notch method, notch angle 90''), Hv is 1025kg/m3/2 at room temperature.
mm2.Even at 800°C, it was 900 kg/mm2.
本発明品でCuの押出し用金型を作成し実際に丸棒の押
出しを行なったところ、従来の超硬合金製のものに比べ
3倍の寿命が得られ、さらに、製品の表面性状は良好で
あった。When a Cu extrusion mold was created using the product of the present invention and a round bar was actually extruded, the lifespan was three times longer than that of conventional cemented carbide molds, and the surface quality of the product was good. Met.
(2)各種原料配合組成物と焼結条件をかえて行なった
結果を法衣に示ず。なお、本発明品に相当する焼結体の
組織はいずれも(Mo、WIJiBz及び又はMoJi
B2からなる硬質相と、主として、Ni、Moからなる
結合部からなり、特に硬質相は添加された窒化物により
異常成長粒のない分離、独立した均質化された組織から
なっている。(2) The results of various raw material blend compositions and sintering conditions are not shown on the robe. Note that the structures of the sintered bodies corresponding to the products of the present invention are all (Mo, WIJiBz and/or MoJi
It consists of a hard phase consisting of B2 and a bond mainly consisting of Ni and Mo. In particular, the hard phase consists of a separated and independent homogenized structure without abnormally grown grains due to the added nitride.
[発明の効果]
このように、本発明焼結体は高密度で、高強度に加えて
高靭性を兼ね備えており、さらに、十分な硬度、耐熱衝
撃性や耐酸化性も有している材料で特に〜1000°C
付近までの人気中での特性は従来なかったものであるた
め、各種金型や機械構成部材、特に高耐熱性のこれらの
部材などに最適である。[Effects of the Invention] As described above, the sintered body of the present invention is a material that has high density, high strength, and high toughness, and also has sufficient hardness, thermal shock resistance, and oxidation resistance. Especially at ~1000°C
Because it has such popular properties that have never been seen before, it is ideal for various molds and machine component parts, especially those parts with high heat resistance.
また、耐食性、導電性にも本質的に優れているため、高
温耐食性部材、電極などの広い用途にも使用できるもの
で硼化物の特質をまさに有効に発揮しつることを可能と
なしたものであって、その実用的価値は多大である。In addition, it is inherently excellent in corrosion resistance and conductivity, so it can be used in a wide range of applications such as high-temperature corrosion-resistant parts and electrodes, making it possible to effectively demonstrate the characteristics of boride. Therefore, its practical value is enormous.
Claims (5)
硼化物を硬質相とし、結合部が、主として、Mo,Ni
からなる焼結体において、該複硼化物の一部が、周期律
表4a,5a及び/又は6a族の遷移金属窒化物の一種
以上によって、少なくとも置き換えられた事を特徴とす
る高強度、高靭性の焼結体。(1) Ni, Mo complex boride and/or Ni, Mo, W complex boride is used as a hard phase, and the bonding part is mainly composed of Mo, Ni
A sintered body consisting of a high-strength, high-strength sintered body characterized in that a part of the complex boride is replaced by at least one kind of transition metal nitride of Groups 4a, 5a and/or 6a of the periodic table. Tough sintered body.
1項記載の焼結体。(2) The sintered body according to claim 1, wherein the bonded portion is 5 to 70% by weight.
第2項記載の焼結体。(3) The sintered body according to claim 2, wherein the bonded portion is 10 to 60% by weight.
質相を100体積%としたとき、0.05〜25体積%
を占める量である事を特徴とする特許請求の範囲第1〜
3項のいずれか1つに記載の焼結体。(4) Replacement nitride is 0.05 to 25% by volume when the hard phase consisting of complex boride and nitride is 100% by volume.
Claims 1 to 2 are characterized in that the amount occupies
The sintered body according to any one of Item 3.
徴とする特許請求の範囲第4項記載の焼結体。(5) The sintered body according to claim 4, wherein a part of the complex boride is replaced with TaN.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62288449A JP2564857B2 (en) | 1987-11-17 | 1987-11-17 | Nickel-Morbuden compound boride sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62288449A JP2564857B2 (en) | 1987-11-17 | 1987-11-17 | Nickel-Morbuden compound boride sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01131071A true JPH01131071A (en) | 1989-05-23 |
JP2564857B2 JP2564857B2 (en) | 1996-12-18 |
Family
ID=17730354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62288449A Expired - Fee Related JP2564857B2 (en) | 1987-11-17 | 1987-11-17 | Nickel-Morbuden compound boride sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2564857B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006515049A (en) * | 2003-01-16 | 2006-05-18 | コミツサリア タ レネルジー アトミーク | Sealed joint with plate-like internal structure for use at very high temperatures |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5792158A (en) * | 1980-11-27 | 1982-06-08 | Agency Of Ind Science & Technol | Boride cermet material containing m2b5 type boride |
JPS62196353A (en) * | 1986-02-24 | 1987-08-29 | Toyo Kohan Co Ltd | Hard sintered alloy having high corrosion resistance |
-
1987
- 1987-11-17 JP JP62288449A patent/JP2564857B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5792158A (en) * | 1980-11-27 | 1982-06-08 | Agency Of Ind Science & Technol | Boride cermet material containing m2b5 type boride |
JPS62196353A (en) * | 1986-02-24 | 1987-08-29 | Toyo Kohan Co Ltd | Hard sintered alloy having high corrosion resistance |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006515049A (en) * | 2003-01-16 | 2006-05-18 | コミツサリア タ レネルジー アトミーク | Sealed joint with plate-like internal structure for use at very high temperatures |
Also Published As
Publication number | Publication date |
---|---|
JP2564857B2 (en) | 1996-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5302965B2 (en) | Hard powder, method for producing hard powder, and sintered hard alloy | |
JP2660455B2 (en) | Heat resistant hard sintered alloy | |
JP2668955B2 (en) | Double boride-based sintered body and method for producing the same | |
FR2583777A1 (en) | CERMET FRITTE CONTAINING ZRB2 | |
JP2001089823A (en) | Double boride sintered hard alloy, and screw for resin processing machine using the alloy | |
JPH01131071A (en) | Sintered material of nickel-molybdenum complex boride | |
JP3266200B2 (en) | Silicon nitride based sintered body | |
JPH0579627B2 (en) | ||
JPH0411506B2 (en) | ||
JPS58157926A (en) | Manufacture of tough cermet of titan nitride base | |
JPS63143236A (en) | Composite boride sintered body | |
JPH08176696A (en) | Production of diamond dispersed ceramic composite sintered compact | |
JP2677287B2 (en) | Nickel-molybdenum compound boride-based sintered body | |
JPS6059195B2 (en) | Manufacturing method of hard sintered material with excellent wear resistance and toughness | |
JP4058807B2 (en) | Hard molybdenum alloy, wear-resistant alloy, wear-resistant sintered alloy and method for producing the same | |
JP3213903B2 (en) | Tantalum carbide based sintered body and method for producing the same | |
JPH08134570A (en) | Composite material having high corrosion resistance and wear resistance | |
JPS58189345A (en) | Manufacture of tough cermet | |
JPH0122233B2 (en) | ||
JPH05294739A (en) | Titanium diboride-based sintered compact and its production | |
JPS61270265A (en) | High strength high tougness tib2 base composite sintered body | |
JPH07157835A (en) | Sintered titanium-aluminum alloy and production thereof | |
JP2001146474A (en) | Ceramic sintered compact of titanium diboride and production method | |
JPH06264158A (en) | Production of tungsten carbide base sintered hard alloy having high strength and high hardness | |
JPH0428840A (en) | Nickel-molybdenum series double boride cermet sintered body and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |