JPH06240401A - Hard sintered material - Google Patents

Hard sintered material

Info

Publication number
JPH06240401A
JPH06240401A JP5158393A JP5158393A JPH06240401A JP H06240401 A JPH06240401 A JP H06240401A JP 5158393 A JP5158393 A JP 5158393A JP 5158393 A JP5158393 A JP 5158393A JP H06240401 A JPH06240401 A JP H06240401A
Authority
JP
Japan
Prior art keywords
phase
hard
sintered material
hard sintered
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5158393A
Other languages
Japanese (ja)
Inventor
Noritoshi Horie
則俊 堀江
Kazuo Hamashima
和雄 浜島
Yasuo Shinozaki
泰夫 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP5158393A priority Critical patent/JPH06240401A/en
Publication of JPH06240401A publication Critical patent/JPH06240401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To inhibit the production of pores and to facilitate densification by forming a hard sintered material from a hard phase having a specified compsn., a metallic bonding phase and a specified 3rd phase. CONSTITUTION:The hard sintered material is formed from a hard phase based on Mo2CrB2, a metallic bonding phase based on one or more among Ni, Fe and Co and one or more kinds of 3rd phases dispersed in the metallic bonding phase and selected among a phase contg. Ta and Cr, a phase incorporating Ti and a phase contg. Cr and oxygen. The hard phase is contained by 30wt.% to.98wt.% and the 3rd phase are contained by 0.3vol.% to <30vol.%. Oxygen is contained in the 3rd phases and Cr and/or Mo allowed to enter into solid soln. in the metallic bonding phase is contained by 5wt.% to <35wt.% each. The objective hard sintered material having satisfactory strength and hardness at high temp. can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、WC−Co系超硬合金
など既存の硬質焼結材料と比べ、硬度や強度などの物性
について室温において同等もしくは凌駕する特性を有
し、さらに既存の金属材料や硬質焼結材料では強度を維
持できない500℃以上の高温域においても優れた強度
と硬度を維持し、アルミニウムや亜鉛などの溶融金属に
対して良好な耐食性を有する硬質焼結材料に関する。
BACKGROUND OF THE INVENTION The present invention has physical properties such as hardness and strength that are equal to or superior to those of existing hard sintered materials such as WC-Co cemented carbides at room temperature. The present invention relates to a hard sintered material that maintains excellent strength and hardness even in a high temperature range of 500 ° C. or higher where strength cannot be maintained by a material or a hard sintered material, and that has good corrosion resistance to molten metals such as aluminum and zinc.

【0002】[0002]

【従来の技術】金属を結合相とする硬質焼結材料はサー
メットとも呼ばれ、セラミックスの有する優れた硬度、
耐熱性、耐食性に金属の有する優れた靭性を合せ有する
材料が実現し得るとして期待され、過去に精力的に研究
が行われた時期があった。
2. Description of the Related Art A hard sintered material having a metal as a binder phase is also called cermet, and has excellent hardness of ceramics,
It was expected that a material having both heat resistance and corrosion resistance and excellent toughness that a metal has would be realized, and there was a period of intense research in the past.

【0003】しかし、今までに実用化された硬質焼結材
料は非常に多くの組み合わせが存在するにもかかわらず
比較的少数である。実用化されている硬質焼結材料の中
で、WC−Co系超硬合金は焼結性がよく、優れた硬度
と強度を有する材料が得やすく、引き続き改良が加えら
れたこともあって、その使用量は顕著に増加し、現在で
は一つの大きなマーケットを形成している。
However, the hard-sintered materials that have been put into practical use so far are relatively small in number in spite of the large number of combinations. Among the hard sintered materials that have been put into practical use, WC-Co based cemented carbide has good sinterability, it is easy to obtain a material having excellent hardness and strength, and there are also improvements that have been made continuously. Its usage has increased significantly and now forms one large market.

【0004】WC−Co系超硬合金などは過酷な使用条
件において使用される場合が多いが、500℃以上の高
温において速やかに硬度と強度を失うという弱点を有し
ている。特に最近の目覚ましい技術の発展により、過酷
な条件下で、より優れた耐用を有する硬質焼結材料が切
に求められている。
Although WC-Co type cemented carbide is often used under severe operating conditions, it has a weak point of rapidly losing hardness and strength at high temperatures of 500 ° C. or higher. In particular, due to the recent remarkable development of technology, there is an urgent need for hard sintered materials having superior durability under severe conditions.

【0005】従来のWC−Co系超硬合金がそのまま使
用できないような用途としては、高温で使用されるダイ
カスト用などの型材や、金属加工用部材、機械部品、摺
動部材などがある。また、冷却を施せば使用できるが、
冷却を施すことが使用上不都合な場合もある。
The applications in which the conventional WC-Co type cemented carbide cannot be used as they are include die-casting materials used at high temperatures, metal working members, machine parts and sliding members. Also, it can be used if it is cooled,
It may be inconvenient to use the cooling.

【0006】Mo2 CrB2 という3元系硬質化合物
(結晶)の存在は、例えばPoroshkovaya
Metallurgiya,No.5(77),p.7
9〜87,May,1969に報告があり、Mo2 Ni
2 複硼化物系の硬質焼結材料にCrを添加すること
は、1992年金属学会秋季大会概要集p.691や特
開昭62−196353などに報告がある。
The presence of a ternary hard compound (crystal) called Mo 2 CrB 2 is due to the existence of, for example, Poroshkovaya.
Metallurgya, No. 5 (77), p. 7
9-87, May, 1969, and reports Mo 2 Ni.
The addition of Cr to a hard sintered material of B 2 compound boride system is described in 1992 Autumn Meeting of the Japan Institute of Metals, p. 691 and JP-A-62-196353.

【0007】Mo2 CrB2 を種々の金属と複合して高
靭性化し、硬質焼結材料が得られるであろうことは、こ
れらの報告から考え得ることである。しかし、実際に複
合化してみると、硬度の相当大きい焼結材料は得られる
が、原料中のCr、あるいは原料前処理中にCrと結合
する酸素が存在することにより焼結時に焼結体中に気孔
が生成し、実用性のある強度を有するものが得られない
という問題がある。
It is conceivable from these reports that Mo 2 CrB 2 will be compounded with various metals to have high toughness and a hard sintered material will be obtained. However, when actually compounded, a sintered material with considerably high hardness can be obtained, but due to the presence of Cr in the raw material or oxygen that binds to Cr during the pretreatment of the raw material, the sintered material in the sintered body is However, there is a problem in that pores are generated and a product having practical strength cannot be obtained.

【0008】この系の硬質焼結材料が大きい硬度を有し
ているのは、主な構成物質であるMo2 CrB2 が硬い
結晶相であることによるが、前述の問題が存在するため
か、Mo2 CrB2 を硬質焼結材料の硬質相として利用
する報告は見当たらない。
The reason why the hard sintered material of this system has a large hardness is that Mo 2 CrB 2 which is a main constituent substance has a hard crystal phase. There are no reports of using Mo 2 CrB 2 as the hard phase of hard sintered materials.

【0009】[0009]

【発明が解決しようとする課題】本発明は、前述の問題
点を解消して気孔の生成を抑制し、室温は勿論500℃
以上の高温においても高い強度と硬度を維持し、アルミ
ニウムなどの溶融金属に対しても耐食性のある硬質焼結
材料を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems and suppresses the formation of pores.
It is an object of the present invention to provide a hard sintered material that maintains high strength and hardness even at the above-mentioned high temperatures and has corrosion resistance against molten metal such as aluminum.

【0010】[0010]

【課題を解決するための手段】本発明は前述の課題を達
成すべくなされたものであり、本発明の硬質焼結材料
は、Mo2 CrB2 を主とする硬質相と、Ni、Fe及
びCoから選ばれる1種以上を主成分とする金属結合相
と、金属結合相中に分散しているTaとCrを含む相、
Tiを含む相およびCrと酸素を含む相から選ばれる1
種以上の第3相とから構成されていることを特徴とす
る。
The present invention has been made to achieve the above-mentioned object, and the hard sintered material of the present invention comprises a hard phase containing Mo 2 CrB 2 as a main component, Ni, Fe and A metal binder phase containing at least one selected from Co as a main component, and a phase containing Ta and Cr dispersed in the metal binder phase,
1 selected from a phase containing Ti and a phase containing Cr and oxygen
It is characterized by being composed of three or more kinds of third phases.

【0011】本発明の硬質焼結材料において、Taは硬
質相中にもMo2 CrB2 のMoと置換する形で一部分
取り込まれているが、本発明にいうMo2 CrB2 を主
とする硬質相は部分的にTaなどで置換されたものを含
む硬質相である。また、Taは金属結合相中に固溶して
いる他、TaとCrを含む相などとして金属結合相中に
分散した第3相を形成する。また、Tiは一部分が金属
結合相中に固溶する他、Tiを含む相として金属結合相
中に分散した第3相を形成する。そしてこの第3相中に
は酸素、窒素、炭素などが含まれている。
[0011] In hard sintered material of the present invention, the hard Ta is being captured portion in a manner to replace the Mo of Mo 2 CrB 2 in the hard phase, that the Mo 2 CrB 2 according to the present invention mainly The phases are hard phases including those partially substituted with Ta or the like. In addition to Ta being a solid solution in the metal binding phase, Ta forms a third phase dispersed in the metal binding phase as a phase containing Ta and Cr. Further, Ti partially forms a solid solution in the metal binding phase, and forms a third phase dispersed in the metal binding phase as a Ti-containing phase. Oxygen, nitrogen, carbon, etc. are contained in this third phase.

【0012】また、本発明にいうところのMo2 CrB
2 を主とする硬質相中にはNiやFeがCrと一部分置
換した状態で含まれているが、この化合物は後述するよ
うにX線回折によってその存在を確認できる。
Further, the Mo 2 CrB referred to in the present invention is
The hard phase mainly composed of 2 contains Ni or Fe in a state where Cr is partially substituted with Cr, and the presence of this compound can be confirmed by X-ray diffraction as described later.

【0013】金属結合相は、主成分であるNi、Fe、
Coまたはこれらの合金にMo、Cr、W、Ta、Ti
またはNbなどが固溶したものとなっており、これらの
固溶成分のうち、W、Ta、Nb、Crは金属結合相の
高温強度の向上に寄与している。
The metallic binder phase is composed of Ni, Fe, which are the main components,
Mo, Cr, W, Ta, Ti on Co or these alloys
Alternatively, Nb or the like is formed as a solid solution, and among these solid solution components, W, Ta, Nb, and Cr contribute to the improvement of the high temperature strength of the metal binding phase.

【0014】Mo2 CrB2 を主とする硬質相を生成さ
せるための出発原料としては、これらの成分元素を含む
化合物であればいずれも使用可能である。例えば、Mo
BとNi−Cr合金、CrB2 もしくはCrBとMo、
Mo、BとNi−Cr合金などの粉末原料を組み合わせ
てMo、Cr、Bなどを化学量論的組成となるように配
合すればよい。
As a starting material for producing a hard phase mainly composed of Mo 2 CrB 2 , any compound containing these constituent elements can be used. For example, Mo
B and Ni-Cr alloy, CrB 2 or CrB and Mo,
It suffices to combine Mo, B and powder raw materials such as a Ni—Cr alloy and mix Mo, Cr, B and the like so as to have a stoichiometric composition.

【0015】さらに焼結時における気孔の生成を抑制し
て硬質焼結材料を緻密なものとして特性を向上せしめる
ため、本発明ではTa系化合物および/またはTi系化
合物、たとえばTaやTiの窒化物、硼化物、水素化
物、炭化物などを加える。加えたこれらの化合物は、焼
結時に第3相を形成するとともに、気孔の原因となる酸
素などをトラップし、気孔の生成を抑制することにな
る。また、Crも酸化物となって気孔の生成を抑制する
働きをする。
Further, in order to suppress the generation of pores during sintering and improve the characteristics by making the hard sintered material dense, in the present invention, a Ta-based compound and / or a Ti-based compound, for example, a nitride of Ta or Ti is used. , Boride, hydride, carbide, etc. are added. These added compounds form a third phase during sintering, trap oxygen such as the cause of pores, and suppress the generation of pores. Further, Cr also serves as an oxide and functions to suppress the formation of pores.

【0016】本発明の硬質焼結材料を製造するには、例
えば所定の組成に調合された出発原料を、ステンレス製
ポットとステンレス製ボールを用いるポットミルに入
れ、エタノールを粉砕媒体として粉砕と混合を同時に行
う。粉砕後にボールと分離したスラリー状の原料粉体
は、加熱しつつ減圧乾燥を行い、成形用粉体とする。
In order to produce the hard sintered material of the present invention, for example, the starting materials prepared in a predetermined composition are put in a pot mill using a stainless steel pot and a stainless steel ball, and pulverized and mixed with ethanol as a pulverizing medium. Do at the same time. The slurry-like raw material powder separated from the balls after pulverization is dried under reduced pressure while being heated to obtain a molding powder.

【0017】次いで、この成形用粉体を金型プレスやC
IP(アイソスタチックプレス)成形などにより成形体
とし、真空ないし減圧雰囲気下において焼成温度を好ま
しくは1250℃から1400℃の間として緻密化す
る。ここで材料物性を確保するための重要な第3相を確
実に生成せしめるため、第3相の化合物と硬質相の生成
が始まる1000℃から液相が生じる1200℃までの
温度域で昇温速度を例えば50℃/時間以下と小さくす
るか、もしくはこの温度範囲内の一定温度で2時間以上
保持するのが好ましい。
Then, the molding powder is applied to a die press or C
A compact is formed by IP (isostatic press) molding or the like, and is densified at a firing temperature of preferably 1250 ° C. to 1400 ° C. in a vacuum or reduced pressure atmosphere. Here, in order to reliably generate the important third phase for ensuring the physical properties of the material, the rate of temperature increase in the temperature range from 1000 ° C at which the formation of the third phase compound and the hard phase begins to 1200 ° C at which the liquid phase occurs Is preferably as small as 50 ° C./hour or less, or is kept at a constant temperature within this temperature range for 2 hours or more.

【0018】このような焼成条件により気孔率が小さ
く、高硬度でかつ高強度の硬質焼結材料が容易に得られ
る。ここで粉砕と混合はポットミルに限らず振動ミル、
アトリッシヨンミルなど通常使用される各種の粉砕機が
使用できる。また、粉砕媒体も安全性と取扱の容易さか
らエタノールとしたがアセトン、ヘキサンなども使用可
能である。
Under such firing conditions, a hard sintered material having a small porosity, high hardness and high strength can be easily obtained. Here, crushing and mixing are not limited to pot mills, vibration mills,
Various commonly used crushers such as an attrition mill can be used. Also, ethanol was used as the grinding medium because of its safety and ease of handling, but acetone, hexane, etc. can also be used.

【0019】さらに、使用する原料粉体によって、粉砕
媒体を用いないでアルゴンや窒素で置換した雰囲気中で
乾式の粉砕と混合を行うことも可能である。また、ホッ
トプレスやHIP(ホットアイソスタチックプレス)な
どの加圧焼結によれば、1250℃以下の焼成温度であ
っても緻密に焼結することが可能であり、緻密で良好な
物性の焼結体が得られる。
Further, depending on the raw material powder used, it is also possible to carry out dry pulverization and mixing in an atmosphere substituted with argon or nitrogen without using a pulverizing medium. Further, by pressure sintering such as hot pressing or HIP (hot isostatic pressing), it is possible to sinter densely even at a firing temperature of 1250 ° C. or less, and to obtain dense and good physical properties. A sintered body is obtained.

【0020】また、1400℃以上で焼結しても結晶粒
子の成長による若干の物性の劣化や変形が認められるも
のの、良好な物性を有する焼結体が得られる。得られる
焼結体の物性と焼結の容易さを考慮し、好ましくは12
50〜1400℃の温度範囲で焼結を行う。
Even if sintering is performed at 1400 ° C. or higher, a sintered body having good physical properties can be obtained, although some deterioration or deformation of physical properties is observed due to growth of crystal grains. Considering the physical properties of the obtained sintered body and the ease of sintering, it is preferably 12
Sintering is performed in the temperature range of 50 to 1400 ° C.

【0021】焼結時における反応と緻密化の過程は、前
記の文献にある相図と焼結過程における化合物の組成な
どから推定して、Niを主成分とする金属結合相を有す
る硬質焼結材料の場合には次のような反応を伴うことに
より焼結が進行すると推定される。ここで、γ合金(γ
相)はMo、Cr、Taおよび/またはTiとNiの固
溶体である。
The reaction and densification process at the time of sintering are estimated from the phase diagram and the composition of the compound in the sintering process in the above-mentioned literature, and hard sintering having a metallic binder phase containing Ni as a main component. In the case of a material, it is presumed that sintering proceeds due to the following reactions. Where γ alloy (γ
Phase) is a solid solution of Mo, Cr, Ta and / or Ti and Ni.

【化1】1000℃付近:2MoB+Mo+Ni−Cr
合金+Ta化合物→Mo2 CrB2 +Ni+Mo+Cr
+Ta化合物 1250℃付近:Mo2 CrB2 +Ni+Mo+Cr+
Ta化合物→(Mo,Ta)2 CrB2 +γ合金+Ta
とCrを含む相
[Chemical formula 1] around 1000 ° C: 2MoB + Mo + Ni-Cr
Alloy + Ta compound → Mo 2 CrB 2 + Ni + Mo + Cr
+ Ta compound Around 1250 ° C .: Mo 2 CrB 2 + Ni + Mo + Cr +
Ta compound → (Mo, Ta) 2 CrB 2 + γ alloy + Ta
Phases containing Cr and Cr

【0022】これらの反応の結果として、得られる焼結
体中の生成物をX線回折法で調べると、Mo2 CrB2
を主とする硬質相と金属結合相(Mo、Cr、Ta、T
iなどが固溶したNi合金)とTaとCrを含む相、T
iを含む相およびCrと酸素を含む相から選ばれる1種
以上の第3相からなる3相構造を有する硬質焼結材料と
なっていることが分かる。この第3相の存在はSEMや
EPMAによる観察で容易に確認される他、500倍以
上の光学顕微鏡観察によっても観察できる。
As a result of these reactions, the products in the resulting sintered body were examined by X-ray diffractometry to find that Mo 2 CrB 2
Hard phase and metal bonded phase (Mo, Cr, Ta, T)
Ni alloy in which i and the like are dissolved) and a phase containing Ta and Cr, T
It can be seen that the hard sintered material has a three-phase structure including one or more third phases selected from the phase containing i and the phase containing Cr and oxygen. The presence of this third phase is easily confirmed by observation with SEM or EPMA, and can also be observed by observation with an optical microscope at a magnification of 500 times or more.

【0023】本発明の好ましい硬質焼結材料では、硬質
相を30重量%以上98重量%未満含む。硬質相の量が
30重量%未満では金属相が多くて、硬度がやや不足
し、高温における硬度と強度などの物性の低下傾向は大
きい。硬質相の量が98重量%以上では、硬度は大きく
ても結合相である金属相がわずかしか存在しないため高
い結合強度が得られず、脆い焼結体となりやすい。硬度
と靭性を含めた強度のバランスを考慮し、硬質相のより
好ましい含有量は65〜95重量%である。
The preferred hard sintered material of the present invention contains the hard phase in an amount of 30% by weight or more and less than 98% by weight. When the amount of the hard phase is less than 30% by weight, the amount of the metal phase is large and the hardness is slightly insufficient, and the physical properties such as hardness and strength at high temperature tend to be deteriorated. When the amount of the hard phase is 98% by weight or more, even if the hardness is high, only a small amount of the metallic phase as the binding phase exists, so that high binding strength cannot be obtained and the sintered body tends to be brittle. Considering the balance of strength including hardness and toughness, the more preferable content of the hard phase is 65 to 95% by weight.

【0024】本発明の他の好ましい硬質焼結材料では、
第3相を0.3体積%以上30体積%未満含む。金属結
合相中に分散している第3相の量は、0.3体積%未満
では得られる焼結体の密度が小さい場合がある。逆に、
TaとCrを含む相を30体積%以上含んでいても緻密
化と強度向上の効果はほとんどなく、焼結体の比重がは
大きくなり、Taが高価なものであることによりコスト
的にも材料の実用性が小さくなる。この第3相の体積%
は、焼結体の切断面の写真をSEMや光学顕微鏡によっ
て撮影し、切断面に現れている第3相の表面積の割合か
ら計算により求めることができる。第3相のより好まし
い含有量は、得られる焼結体の物性から、0.5〜20
体積%である。
In another preferred hard sintered material of the present invention,
The third phase is contained in an amount of 0.3% by volume or more and less than 30% by volume. If the amount of the third phase dispersed in the metal binding phase is less than 0.3% by volume, the density of the obtained sintered body may be low. vice versa,
Even if the phase containing Ta and Cr is contained in an amount of 30% by volume or more, there is almost no effect of densification and strength improvement, the specific gravity of the sintered body becomes large, and Ta is expensive, so that the material is cost effective. Is less practical. Volume% of this third phase
Can be calculated by taking a photograph of the cut surface of the sintered body with an SEM or an optical microscope and calculating the ratio of the surface area of the third phase appearing on the cut surface. The more preferable content of the third phase is 0.5 to 20 from the physical properties of the obtained sintered body.
% By volume.

【0025】TaとTiは金属結合相中に固溶して金属
結合相の室温および高温における強度と靭性を改善する
などの働きをするとともに、金属結合相中にあるCrと
結合し、かつ気孔が生成する原因である酸素をトラップ
して硬質相と金属結合相の結合強度を向上せしめること
により焼結体の緻密化と物性の向上に貢献しているもの
と考えられる。また、金属結合相中に分散している第3
相は焼結体の組織を細かくし、焼結体の物性の向上にも
寄与していると考えられる。
[0025] Ta and Ti form a solid solution in the metal binder phase to improve the strength and toughness of the metal binder phase at room temperature and high temperature, and at the same time, they bond with Cr in the metal binder phase and have pores. It is considered that the oxygen, which is the cause of the generation, is trapped to improve the bonding strength between the hard phase and the metal bonding phase, thereby contributing to the densification of the sintered body and the improvement of the physical properties. In addition, the third dispersed in the metallic binder phase
It is considered that the phases make the structure of the sintered body fine and contribute to the improvement of the physical properties of the sintered body.

【0026】本発明の他の好ましい硬質焼結材料では、
第3相中に酸素が含まれている。第3相が酸素を含む化
合物となっていることによって、焼結体中の気孔の生成
が抑制され、緻密で硬度と強度の大きい硬質焼結材料が
得られる。
In another preferred hard sintered material of the present invention,
Oxygen is contained in the third phase. Since the third phase is a compound containing oxygen, generation of pores in the sintered body is suppressed, and a dense hard sintered material having high hardness and strength can be obtained.

【0027】本発明の他の好ましい硬質焼結材料では、
金属結合相中に固溶しているCrおよび/またはMoが
それぞれ5重量%以上35重量%未満である。金属結合
相中に固溶しているMoおよびCrの量が5重量%未満
では金属結合相の固溶強化が充分でなく、硬質焼結材料
の顕著な強度と硬度の向上効果が得られない。他方、3
5重量%以上過飽和に固溶せしめると、焼結後の冷却時
もしくは実用時に脆い金属間化合物が焼結材料中に析出
し、硬質焼結材料の強度や靭性の低下をまねく傾向があ
る。金属結合相中のMo、Crなどの固溶量はX線マイ
クロアナライザーや蛍光X線分析などによって分析でき
る。
In another preferred hard sintered material of the present invention,
Cr and / or Mo which are solid-dissolved in the metal binder phase are 5% by weight or more and less than 35% by weight, respectively. When the amount of Mo and Cr which are solid-solved in the metal binder phase is less than 5% by weight, the solid solution strengthening of the metal binder phase is not sufficient, and the effect of improving the strength and hardness of the hard sintered material cannot be obtained. . On the other hand, 3
When it is solid-soluted in a supersaturated amount of 5% by weight or more, brittle intermetallic compounds are precipitated in the sintered material during cooling after sintering or during practical use, which tends to reduce the strength and toughness of the hard sintered material. The solid solution amount of Mo, Cr, etc. in the metal binding phase can be analyzed by an X-ray microanalyzer or fluorescent X-ray analysis.

【0028】[0028]

【実施例】以下、本発明を実施例によって具体的に説明
するが、本発明はこれらの実施例によってなんら限定さ
れるものではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0029】実施例1 出発原料として、ホウ素含有量が10.33重量%のM
oB粉末(平均粒径約4μm)と、ホウ素含有量が9重
量%のCrB粉末(平均粒径約10μm)に、硬質相生
成のための成分調整として若干量のMo粉末(平均粒径
約3μm)を加え、金属結合相の原料としてカーボニル
Ni粉末(平均粒径約1μm)、さらにTa源としてT
aN粉末(平均粒径約1μm)を以下のように調合し
た。
Example 1 As a starting material, M having a boron content of 10.33% by weight was used.
oB powder (average particle size of about 4 μm) and CrB powder having a boron content of 9% by weight (average particle size of about 10 μm), and a small amount of Mo powder (average particle size of about 3 μm) as a component adjustment for hard phase formation. ) Is added, and carbonyl Ni powder (average particle size of about 1 μm) is used as a raw material for the metal binding phase, and T is used as a Ta source.
An aN powder (average particle size of about 1 μm) was prepared as follows.

【0030】すなわち、MoB、CrB、Mo、Niお
よびTaNの粉末をそれぞれ29.24重量%、16.
71重量%、30.45重量%、18.83重量%およ
び4.77重量%秤取し、各原料粉末を振動ミルのステ
ンレス製ポットに入れ、ステンレス製ボールを用いてエ
タノール溶媒中で24時間の粉砕と混合を行った。
That is, powders of MoB, CrB, Mo, Ni and TaN are 29.24% by weight and 16.
71% by weight, 30.45% by weight, 18.83% by weight and 4.77% by weight, each raw material powder was put in a stainless steel pot of a vibration mill, and 24 hours in an ethanol solvent using a stainless steel ball. Was crushed and mixed.

【0031】粉砕後のスラリーをエバポレータに入れて
加熱しながら減圧下で乾燥し、140メッシュの篩を通
して成形用粉体を得た。この成形用粉体を金型プレスに
入れて200kg/cm2 の圧力で20mm×30mm
×40mmの形状に成形し、さらにCIPで1.5to
n/cm2 の加圧をして圧粉体とした。
The crushed slurry was put in an evaporator and dried under reduced pressure while heating, and passed through a 140-mesh sieve to obtain a molding powder. This molding powder is put into a die press and pressure of 200 kg / cm 2 is applied to 20 mm × 30 mm.
Molded to a shape of × 40mm, and further CIP 1.5to
N / cm 2 was pressed to obtain a green compact.

【0032】この圧粉体を雰囲気炉中で、5×10-3
mHgの真空下で焼結した。すなわち、1100℃にお
いて2時間保持した後最高温度1285℃で1時間焼結
した。得られた焼結体を切断加工してテストピースと
し、ビッカース硬度(Hv )と3点曲げ強度(テストピ
ースの寸法は3mm×4mm×30mmで、測定スパン
は20mmとした。)を測定した他、切断面の組織を光
学顕微鏡とSEMにより観察し、X線回折とEPMAに
よる組成分析を行った。
This green compact was placed in an atmosphere furnace at 5 × 10 -3 m
Sintered under vacuum of mHg. That is, after holding at 1100 ° C. for 2 hours, sintering was performed at the maximum temperature of 1285 ° C. for 1 hour. The obtained sintered body was cut and processed into a test piece, and the Vickers hardness (H v ) and the three-point bending strength (the size of the test piece was 3 mm × 4 mm × 30 mm, and the measurement span was 20 mm) were measured. In addition, the structure of the cut surface was observed by an optical microscope and SEM, and the composition was analyzed by X-ray diffraction and EPMA.

【0033】得られた焼結体の室温におけるHv は12
50kg/mm2 、曲げ強度は200kg/mm2 、8
00℃における曲げ強度は170kg/mm2 であっ
た。また、X線回折(CuKα線)により図1に示すX
線回折図を得た。すなわち、図1は本発明による硬質焼
結材料の一実施例の結晶組成を示すX線回折図であり、
回折角2θ(°)と回折強度の関係を示す。Mo2 Cr
2 を主とする硬質相の回折ピークは図中の*印を付し
たものであり、Niを主成分とする金属結合相はγ印を
付したものである。
H v at room temperature of the obtained sintered body was 12
50 kg / mm 2 , bending strength is 200 kg / mm 2 , 8
The bending strength at 00 ° C. was 170 kg / mm 2 . In addition, the X-ray shown in FIG.
A line diffraction pattern was obtained. That is, FIG. 1 is an X-ray diffraction diagram showing the crystal composition of one example of the hard sintered material according to the present invention,
The relationship between the diffraction angle 2θ (°) and the diffraction intensity is shown. Mo 2 Cr
The diffraction peak of the hard phase mainly composed of B 2 is marked with * in the figure, and the metal-bonded phase containing Ni as a main component is marked with γ.

【0034】またSEMと光学顕微鏡による組織の観察
とEPMAによる分析から、焼結体は硬質相と金属結合
相(γ相)およびTa、Crと酸素を含む第3相からな
り、硬質相中にはMo、CrおよびBの他にTaの共存
を認めた。また、金属結合相はNi、CrおよびTaと
ステンレスボールなどから導入される少量の不可避不純
物からなっていることを認めた。
Further, from the observation of the structure by SEM and an optical microscope and the analysis by EPMA, the sintered body was composed of a hard phase and a metal binding phase (γ phase) and a third phase containing Ta, Cr and oxygen. Confirmed the coexistence of Ta in addition to Mo, Cr and B. Further, it was confirmed that the metal binding phase was composed of Ni, Cr and Ta and a small amount of unavoidable impurities introduced from stainless steel balls and the like.

【0035】焼結体中の硬質相の量は配合したBがすべ
てMo2 CrB2 を主とする硬質相を形成するものとし
てその重量%を計算し、85重量%とした。第3相の含
有量は焼結体の切断面に現れた第3相の断面積から計算
して5体積%であり、金属結合相中に固溶されているC
rの量は10重量%、Niの量は25重量%であった。
また、不可避不純物の量は、1重量%以下と少量であっ
たので、以下の例ではこの量を無視して焼結体の組成を
示してある。
The amount of the hard phase in the sintered body was calculated as 85% by weight, assuming that all the compounded B form the hard phase mainly composed of Mo 2 CrB 2 . The content of the third phase was 5% by volume calculated from the cross-sectional area of the third phase appearing on the cut surface of the sintered body, and C dissolved in the metallic binder phase was dissolved.
The amount of r was 10% by weight and the amount of Ni was 25% by weight.
Since the amount of unavoidable impurities was as small as 1% by weight or less, the composition of the sintered body is shown in the following examples by ignoring this amount.

【0036】実施例2〜22および比較例1〜6 以下に他の実施例の組成と焼成温度を表1に、その物性
および構成を表2に、比較例についても同様に表3と表
4に、まとめて示した。原料粉末には、実施例1で使用
したものの他に、1μmオーダーの平均粒径を有するC
r、Co、Fe、Ti、Ni、TiN粉末を使用した。
また粉砕と混合、乾燥、成形などの条件は実施例1に準
じ、焼結は、先ず1100℃において2時間保持した
後、表1に示された焼成温度で1時間保持して焼結し
た。また、比較例6、7は既存のWC−Co系超硬合金
である。
Examples 2 to 22 and Comparative Examples 1 to 6 The compositions and firing temperatures of other examples are shown in Table 1, their physical properties and constitutions are shown in Table 2, and similarly in Comparative Examples, Tables 3 and 4 are shown. Are summarized below. In addition to the raw material powder used in Example 1, C having an average particle size of the order of 1 μm is used.
r, Co, Fe, Ti, Ni and TiN powders were used.
The conditions of crushing, mixing, drying, molding, etc. were in accordance with Example 1, and the sintering was performed by first holding at 1100 ° C. for 2 hours and then holding at the firing temperature shown in Table 1 for 1 hour to perform sintering. Comparative Examples 6 and 7 are existing WC-Co based cemented carbides.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】表1と表2に示された実施例では、室温に
おける物性は代表的なWC−Co超硬合金の物性(比較
例6、7参照)と比較して概ね同等ないし優位なレベル
にあり、800℃における曲げ強度がほとんど低下して
いないことを考慮すると、本発明による硬質焼結材料
は、特に高温において優れた物性を有する実用性のある
材料であることが分かる。
In the examples shown in Tables 1 and 2, the physical properties at room temperature are almost equal to or superior to those of typical WC-Co cemented carbides (see Comparative Examples 6 and 7). In consideration of the fact that the bending strength at 800 ° C. is hardly reduced, it is understood that the hard sintered material according to the present invention is a practical material having excellent physical properties, especially at high temperatures.

【0042】比較例1〜5の結果では、気孔の存在など
によって曲げ強度と硬度のレベルは相対的に低くなって
おり、実施例ではTaおよび/またはTiが添加されて
いることによって曲げ強度が明らかに向上しており、こ
のことは別に行った組織の観察結果とあわせて気孔が少
なく緻密化されたことによると判断された。
The results of Comparative Examples 1 to 5 show that the flexural strength and hardness levels are relatively low due to the presence of pores and the like. In the examples, the addition of Ta and / or Ti results in a flexural strength. It was clearly improved, and it was judged that this was due to the fact that it was densified with few pores together with the observation result of the structure separately performed.

【0043】[0043]

【発明の効果】Mo2 CrB2 を主とする硬質相と、N
i、Fe及びCoから選ばれる1種以上を主成分とする
金属結合相からなる硬質焼結材料は、焼結時にCr原料
に付随すると思われる酸素などにより気孔が焼結体中に
生成して緻密化が困難であったが、TaやTiを原料中
に混入しておくことによって、金属結合相中に分散して
いるTa−Cr系化合物、Ti化合物、Cr酸化物など
の第3相が形成され、気孔の生成が抑制されて緻密化が
容易になった。かくして、Mo2 CrB2 を主とする硬
質相と、鉄族金属の金属結合相とからなる、800℃の
高温においても十分な強度と硬度を有する硬質焼結材料
が得られた。
The hard phase mainly composed of Mo 2 CrB 2 and N
A hard sintered material composed of a metallic binder phase containing at least one selected from i, Fe and Co as a main component forms pores in the sintered body due to oxygen and the like which are considered to accompany the Cr raw material during sintering. Although it was difficult to densify, by mixing Ta and Ti into the raw material, the third phase such as Ta-Cr compound, Ti compound, and Cr oxide dispersed in the metallic binder phase was formed. It was formed, the generation of pores was suppressed, and the densification was facilitated. Thus, a hard sintered material having a sufficient strength and hardness even at a high temperature of 800 ° C., which is composed of a hard phase mainly composed of Mo 2 CrB 2 and a metal bonded phase of an iron group metal, was obtained.

【0044】この硬質焼結材料は、高温域における物性
が従来のWC−Co系超硬合金と比べて顕著に優れてお
り、アルミニウムなどの溶融金属に対しても耐食性があ
るので、従来WC−Co系超硬合金が使用できなかった
ような用途や使用できても耐用が短かった用途、たとえ
ば高温で使用されるダイカスト用などの型材や、金属加
工用部材、機械部品、摺動部材などに好ましく使用でき
るので、その産業上の利用効果は多大である。
This hard sintered material is remarkably excellent in physical properties in a high temperature range as compared with the conventional WC-Co type cemented carbide and has corrosion resistance against molten metal such as aluminum. For applications where Co-based cemented carbide could not be used, or applications where it could be used but had a short service life, such as mold materials for die casting used at high temperatures, metal working members, machine parts, sliding members, etc. Since it can be preferably used, its industrial utilization effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による硬質焼結材料の結晶組成の一例を
示すX線回折図。
FIG. 1 is an X-ray diffraction diagram showing an example of a crystal composition of a hard sintered material according to the present invention.

【符号の説明】[Explanation of symbols]

*:Mo2 CrB2 を主とする硬質相の回折ピーク γ:金属結合相の回折ピーク*: Diffraction peak of hard phase mainly composed of Mo 2 CrB 2 γ: Diffraction peak of metal bonded phase

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】Mo2 CrB2 を主とする硬質相と、N
i、Fe及びCoから選ばれる1種以上を主成分とする
金属結合相と、金属結合相中に分散しているTaとCr
を含む相、Tiを含む相およびCrと酸素を含む相から
選ばれる1種以上の第3相とから構成されていることを
特徴とする硬質焼結材料。
1. A hard phase mainly composed of Mo 2 CrB 2 and N
i, Fe and Co, a metal bonding phase containing at least one selected from the main components, and Ta and Cr dispersed in the metal bonding phase.
A hard sintered material comprising a phase containing Ti, a phase containing Ti, and one or more third phases selected from a phase containing Cr and oxygen.
【請求項2】硬質相を30重量%以上98重量%未満含
む、請求項1の硬質焼結材料。
2. The hard sintered material according to claim 1, which contains a hard phase in an amount of 30% by weight or more and less than 98% by weight.
【請求項3】第3相を0.3体積%以上30体積%未満
含む、請求項1または2の硬質焼結材料。
3. The hard sintered material according to claim 1, which contains a third phase in an amount of 0.3% by volume or more and less than 30% by volume.
【請求項4】第3相中に酸素が含まれている、請求項
1、2または3の硬質焼結材料。
4. The hard sintered material according to claim 1, 2 or 3, wherein oxygen is contained in the third phase.
【請求項5】金属結合相中に固溶されているCrおよび
/またはMoがそれぞれ5重量%以上35重量%未満で
ある、請求項1、2、3または4の硬質焼結材料。
5. The hard sintered material according to claim 1, wherein the solid solution of Cr and / or Mo in the metallic binder phase is 5% by weight or more and less than 35% by weight, respectively.
【請求項6】金属結合相がNiを主成分とするものであ
る、請求項1、2、3、4または5の硬質焼結材料。
6. The hard sintered material according to claim 1, 2, 3, 4, or 5, wherein the metal binder phase has Ni as a main component.
JP5158393A 1993-02-17 1993-02-17 Hard sintered material Pending JPH06240401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5158393A JPH06240401A (en) 1993-02-17 1993-02-17 Hard sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5158393A JPH06240401A (en) 1993-02-17 1993-02-17 Hard sintered material

Publications (1)

Publication Number Publication Date
JPH06240401A true JPH06240401A (en) 1994-08-30

Family

ID=12890966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5158393A Pending JPH06240401A (en) 1993-02-17 1993-02-17 Hard sintered material

Country Status (1)

Country Link
JP (1) JPH06240401A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221940A (en) * 2013-05-14 2014-11-27 山陽特殊製鋼株式会社 Ni BASED BORIDE-DISPERSED CORROSION RESISTANT WEAR RESISTANT ALLOY HAVING AGE HARDENABILITY
JPWO2021201106A1 (en) * 2020-03-31 2021-10-07

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221940A (en) * 2013-05-14 2014-11-27 山陽特殊製鋼株式会社 Ni BASED BORIDE-DISPERSED CORROSION RESISTANT WEAR RESISTANT ALLOY HAVING AGE HARDENABILITY
JPWO2021201106A1 (en) * 2020-03-31 2021-10-07
WO2021201106A1 (en) * 2020-03-31 2021-10-07 日立金属株式会社 Ni-cr-mo alloy member, ni-cr-mo alloy powder, and composite member

Similar Documents

Publication Publication Date Title
US5045512A (en) Mixed sintered metal materials based on borides, nitrides and iron binder metals
JP3717525B2 (en) Hard sintered alloy
JP2660455B2 (en) Heat resistant hard sintered alloy
JP2668955B2 (en) Double boride-based sintered body and method for producing the same
JP4149623B2 (en) Double boride hard sintered alloy and screw for resin processing machine using the alloy
JP4282298B2 (en) Super fine cemented carbide
JPH06240401A (en) Hard sintered material
JP4265853B2 (en) Hard sintered alloy excellent in corrosion resistance and thermal shock resistance against molten metal, and member for molten metal using the alloy
Mishra et al. Effect of nickel on sintering of self-propagating high-temperature synthesis produced titanium carbide
JPH03193623A (en) Production of conjugated boride powder in as mo2feb2-base
JPH06340941A (en) Nano-phase composite hard material and its production
JP3213903B2 (en) Tantalum carbide based sintered body and method for producing the same
JP2001059146A (en) High rigidity steel and its production
JPH06299282A (en) Hard material
JP4048410B2 (en) Boride sintered body
JPS63143236A (en) Composite boride sintered body
JP2564857B2 (en) Nickel-Morbuden compound boride sintered body
JPH03290355A (en) Al2o3-wc-based high-strength-high-toughness sintered material
JP2004114163A (en) Alumina group ceramic tool and production method for the same
JPS593073A (en) Sialon base sintered material for cutting tool and antiabrasive tool
JP2023048855A (en) Hard sintered body, method for producing hard sintered body, cutting tool, wear-resistant tool and high-temperature member
JPH02258948A (en) Ceramic grain reinforced titanium composite material
JPS6119593B2 (en)
Selchert et al. Reaction Synthesis of Refractory Metal‐Ceramic Composites
JP2004076111A (en) Boride sintered compact