JPH01130320A - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium

Info

Publication number
JPH01130320A
JPH01130320A JP62290172A JP29017287A JPH01130320A JP H01130320 A JPH01130320 A JP H01130320A JP 62290172 A JP62290172 A JP 62290172A JP 29017287 A JP29017287 A JP 29017287A JP H01130320 A JPH01130320 A JP H01130320A
Authority
JP
Japan
Prior art keywords
film
magnetic
magnetization
anisotropy
dependence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62290172A
Other languages
Japanese (ja)
Inventor
Hideaki Matsuyama
秀昭 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62290172A priority Critical patent/JPH01130320A/en
Publication of JPH01130320A publication Critical patent/JPH01130320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve magnetic characteristics such as perpendicular magnetic anisotropy and mechanical characteristics by using a perpendicularly magnetized film consisting of a Co-BN material without contg. Cr as a recording layer. CONSTITUTION:The perpendicularly magnetized film having the compsn. expressed by Co1-x(BN)x (where x denotes a weight ratio and 0.08<=x<=0.74). A sputtering method using a Co target and BN target is adopted as a method for forming the perpendicularly magnetized film of the Co-BN system. The compsn. (x) of the perpendicularly magnetized of the Co-BN system is controlled and the magnetic characteristics, etc., are controlled according to purposes by increasing and decreasing the area of the BN target. The perpendicular magnetic recording medium which has the excellent magnetic characteristics such as perpendicular magnetic anisotropy and the excellent practicable characteristics such as mechanical characteristics and lubricity is thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、記録媒体面に対して垂直方向での残留磁化を
利用して信号の記録・再生を行う、いわゆる垂直磁気記
録方式において使用される垂直磁気記録媒体に関するも
のであり、特にCo−Cr系垂直磁気記録媒体に代わる
新規な垂直磁気記録媒体に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is used in the so-called perpendicular magnetic recording method, which records and reproduces signals using residual magnetization in the direction perpendicular to the surface of the recording medium. The present invention relates to perpendicular magnetic recording media, and particularly relates to a new perpendicular magnetic recording medium that can replace Co--Cr-based perpendicular magnetic recording media.

〔発明の概要〕[Summary of the invention]

本発明は、垂直磁化膜をCo−0N系材料により構成す
ることにより、垂直磁気異方性、保磁力等の磁気特性に
優れるとともに機械的特性、潤滑性等の実用特性にも優
れた垂直磁気記録媒体を実現しようとするものである。
The present invention provides perpendicular magnetism that has excellent magnetic properties such as perpendicular magnetic anisotropy and coercive force, as well as excellent practical properties such as mechanical properties and lubricity, by constructing the perpendicular magnetization film from a Co-0N-based material. This is an attempt to realize a recording medium.

〔従来の技術〕[Conventional technology]

従来、例えばコンピュータの記憶媒体やオーディオテー
プレコーダ、ビデオテープレコーダ等の記録媒体として
使用される磁気記録媒体に対して記録再生を行うには、
基体上に被着形成される磁性層を基体面と平行な方向に
磁化(面内方向磁化)し、その面内方向での残留磁化に
より記録再生を行うのが一般的であ葛。
Conventionally, in order to perform recording and reproduction on a magnetic recording medium used as a storage medium of a computer, an audio tape recorder, a video tape recorder, etc.,
Generally, a magnetic layer deposited on a substrate is magnetized in a direction parallel to the surface of the substrate (in-plane magnetization), and recording and reproduction is performed using residual magnetization in that in-plane direction.

ところが、この面内方向磁化による記録の場合、記録信
号が短波長になるにつれ、すなわち記録密度が高まるに
つれ、媒体内の減磁界が増して残留磁束密度が減衰し、
再生出力が減少するという欠点を有する。
However, in the case of recording using in-plane direction magnetization, as the wavelength of the recording signal becomes shorter, that is, as the recording density increases, the demagnetizing field within the medium increases and the residual magnetic flux density attenuates.
This has the disadvantage that the reproduction output is reduced.

そこでさらに従来、磁気記録媒体の磁性層の厚さ方向の
磁化により記録再生を行う垂直磁気記録方式が提案され
ており、この垂直磁気記録方式によれば記録波長が短波
長になるにしたがい減磁界が小さくなり、特に高密度記
録において上述した面内方向磁化による記録よりも有利
であることから、盛んに研究が進められている。
Therefore, a perpendicular magnetic recording method has been proposed in which recording and reproduction is performed by magnetization in the thickness direction of the magnetic layer of a magnetic recording medium. According to this perpendicular magnetic recording method, as the recording wavelength becomes shorter, the demagnetizing field is reduced. Since it is advantageous over recording using in-plane direction magnetization, especially in high-density recording, it is being actively researched.

ところで、この種の記録方式に用いられる垂直磁気記録
媒体としては、非磁性支持体上にCo−Cr系合金材料
等により垂直磁化膜を記録層として形成したものが主に
研究されている。これは、このCo−Cr系垂直磁化膜
が垂直磁気異方性や保磁力等の磁気特性の点で非常に優
れたものであるためである。
By the way, as perpendicular magnetic recording media used in this type of recording system, those in which a perpendicularly magnetized film formed of a Co--Cr alloy material or the like on a non-magnetic support as a recording layer have been mainly studied. This is because this Co--Cr-based perpendicularly magnetized film has very excellent magnetic properties such as perpendicular magnetic anisotropy and coercive force.

しかしながら、Co−Cr系垂直磁化膜は膜が硬く内部
応力が非常に大きい等、機械的特性に問題点が多く、実
用化に至っていない。
However, Co--Cr based perpendicular magnetization films have many problems in mechanical properties, such as being hard and having very large internal stress, and have not been put into practical use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、Co−Cr系垂直磁化膜は磁気特性には優
れる反面、磁気記録媒体とするための実用特性に劣り、
したがってCo−Cr系垂直磁化膜に代わる新たな垂直
磁化膜の実現が待たれるところである。
As described above, although the Co-Cr-based perpendicular magnetization film has excellent magnetic properties, it has poor practical properties for use as a magnetic recording medium.
Therefore, the realization of a new perpendicular magnetization film to replace the Co--Cr-based perpendicular magnetization film is awaited.

そこで本発明は、上述の従来の実情に鑑みて提案された
ものであり、垂直磁気異方性等の磁気特性は勿論のこと
、機械的特性や潤滑性等の実用特性にも優れた垂直磁気
記録媒体を提供することを目的とする。
Therefore, the present invention has been proposed in view of the above-mentioned conventional situation, and is a perpendicular magnetic material that has excellent not only magnetic properties such as perpendicular magnetic anisotropy but also practical properties such as mechanical properties and lubricity. The purpose is to provide recording media.

〔問題点を解決するための手段〕[Means for solving problems]

上述のCo−Cr系垂直磁化膜が硬い原因の一つとして
Crが多量に含まれていることが挙げられる。
One of the reasons why the above-mentioned Co--Cr-based perpendicular magnetization film is hard is that it contains a large amount of Cr.

そこで本発明者は、Crを用いずに良好な垂直磁気異方
性を示す垂直磁化膜を開発せんものと鋭意研究を重ね、
GoとBN(窒化ボロン)を含むCo−BN系材料が所
定の組成範囲で垂直磁化膜として機能することを見出し
た。
Therefore, the present inventor has conducted extensive research to develop a perpendicularly magnetized film that exhibits good perpendicular magnetic anisotropy without using Cr.
It has been found that a Co-BN-based material containing Go and BN (boron nitride) functions as a perpendicularly magnetized film within a predetermined composition range.

本発明は、かかる知見に基づいて完成されたものであっ
て、基体上にCO+−x(B N)x (但しXは重量
比を表し、0.08≦x≦0.74である。)なる組成
を有する垂直磁化膜(以下、Co−BN系垂直磁化膜と
称する。)が形成されたことを特徴とするものである。
The present invention was completed based on this knowledge, and includes CO+-x(BN)x (where X represents a weight ratio and satisfies 0.08≦x≦0.74). The present invention is characterized in that a perpendicular magnetization film (hereinafter referred to as a Co-BN-based perpendicular magnetization film) having the following composition is formed.

本発明の垂直磁気記録媒体において、上記G。In the perpendicular magnetic recording medium of the present invention, the above G.

−BN系垂直磁化膜中にBNの占める割合Xは、0.0
8≦x≦0.74の範囲内であることが必要で、この範
囲を外れると垂直磁気異方性を示さず、特にXの値が0
.75を越えると非磁性となる。
-The ratio X of BN in the BN-based perpendicular magnetization film is 0.0
It is necessary that the range is 8≦x≦0.74, and if it is outside this range, perpendicular magnetic anisotropy will not be exhibited, especially when the value of X is 0.
.. When it exceeds 75, it becomes non-magnetic.

上述のCo−BN系垂直磁化膜の成膜方法としては、C
oターゲット及びBNターゲットを用いたスパッタリン
グ法が採用される。ここで、BNターゲットの面積を増
減することにより得られるCo−BN系垂直磁化膜の組
成Xを制御することができ、目的に応じて磁気特性等を
コントロールすることができる。この場合、垂直磁化膜
として機能させるためには、垂直異方性磁場Hkが20
0 (Oe)以上となるように制御することが好ましい
As a method for forming the above-mentioned Co-BN perpendicular magnetization film, C
A sputtering method using an o target and a BN target is employed. Here, the composition X of the Co-BN-based perpendicular magnetization film obtained can be controlled by increasing or decreasing the area of the BN target, and the magnetic properties etc. can be controlled depending on the purpose. In this case, in order to function as a perpendicularly magnetized film, the perpendicular anisotropy magnetic field Hk must be 20
It is preferable to control it so that it is 0 (Oe) or more.

なお、成膜方法としては、この他に窒素雰囲気中での反
応スパッタも考えられるが、この場合には所定のmi特
性等を確保することが難しく、好ましい方法とは言えな
い。
Although reactive sputtering in a nitrogen atmosphere is also considered as a film forming method, in this case it is difficult to ensure predetermined mi characteristics, etc., and it cannot be said to be a preferable method.

このような手法で形成されるCo−BN系垂直磁化膜は
、X線回折を行った際にピークが見られないこと、結晶
化温度を有すること等から、非晶質膜であると考えられ
る。
The Co-BN-based perpendicular magnetization film formed by this method is considered to be an amorphous film because no peaks are observed when performing X-ray diffraction and it has a crystallization temperature. .

一方、基体の材質としては何ら制約されるものではなく
、従来この種の媒体の基体材料として用いられているも
のがいずれも使用でき、例示するならばポリエステル頻
、ポリオレフィン類、セルロース誘導体、ビニル系樹脂
、ポリイミド類、ポリアミド類、ポリカーボネート等に
代表されるような高分子材料により形成される高分子支
持体や、アルミニウム合金、チタン合金等からなる金属
基板、アルミナガラス等からなるセラミクス基板、ガラ
ス基板等である。
On the other hand, there are no restrictions on the material of the substrate, and any materials conventionally used as substrate materials for this type of media can be used. Examples include polyester, polyolefins, cellulose derivatives, and vinyl. Polymer supports made of polymer materials such as resins, polyimides, polyamides, polycarbonates, etc., metal substrates made of aluminum alloys, titanium alloys, etc., ceramic substrates made of alumina glass, etc., and glass substrates. etc.

〔作用〕[Effect]

本発明の垂直磁気記録媒体において、記録層となるCo
−BN系垂直磁化膜は、組成によって良好な垂直磁気異
方性を示すとともに、C「を含有しないことから膜が比
較的軟らかく内部応力も小さい。
In the perpendicular magnetic recording medium of the present invention, Co serves as the recording layer.
The -BN-based perpendicularly magnetized film exhibits good perpendicular magnetic anisotropy depending on its composition, and since it does not contain C, the film is relatively soft and has low internal stress.

また、垂直磁化膜の構成要素として′潤滑性を有するB
Nが含まれることから、重要な実用特性の一つである走
行性が確保される。
In addition, as a component of the perpendicularly magnetized film, B, which has lubricating properties, is also used.
Since N is included, runnability, which is one of the important practical properties, is ensured.

〔実施例〕〔Example〕

以下、本発明を具体的な実験結果に基づいて説明する。 The present invention will be explained below based on specific experimental results.

以下に示す成膜条件を基本条件として種々の実験を行っ
た。
Various experiments were conducted using the film formation conditions shown below as basic conditions.

底皿条註 成膜方法  j R−Fマグネトロンスパッタ法ターゲ
ット :Co(直径3インチ)+BNペレット(5■角
) スパッタガス=Ar スパッタ圧カニ 1.5 X 10−”〜3 X 10
−’TorrRF出力  150W(一部55W〜27
0W)基板冷却  :水冷(一部加熱 24〜300℃
)ターゲット基板間距ill:約5.7 cm到達圧力
  : 5 X 10−’Torr以下基板    ニ
ガラス 膜厚    :1000〜2000人 先ず、BN組成及びスパッタ圧力を変えてC。
Film formation method with bottom plate stripes j R-F magnetron sputtering target: Co (3 inches in diameter) + BN pellets (5 squares) Sputtering gas = Ar Sputter pressure crab 1.5 x 10-” to 3 x 10
-'TorrRF output 150W (some 55W~27
0W) Substrate cooling: Water cooling (partial heating 24-300℃)
) Distance between target substrates: approximately 5.7 cm Ultimate pressure: 5 x 10-'Torr or less Substrate film thickness: 1,000 to 2,000 First, C by changing the BN composition and sputtering pressure.

−BN系垂直磁化膜を作製した。第1図は、BN組成及
びスパッタ圧力をそれぞれ縦軸、横軸にとり、そのとき
に得られた膜の磁気特性を示すものである0図中、O印
が各測定点で、Fは強磁性を示すもの、Nは非磁性であ
るものをそれぞれ表す。
- A BN-based perpendicular magnetization film was produced. Figure 1 shows the magnetic properties of the film obtained by plotting the BN composition and sputtering pressure on the vertical and horizontal axes, respectively. , and N represents non-magnetic.

また、図中斜線領域が垂直異方性を示す領域である。Furthermore, the shaded area in the figure is an area exhibiting vertical anisotropy.

この第1図より、Go−BN系垂直磁化膜中のBNの占
める割合Xが0.08≦x≦0.74の範囲内である場
合で特に低スパツタ圧力側で、強磁性で且つ垂直磁気異
方性を示すことが理解できる。
From this Figure 1, when the proportion X of BN in the Go-BN-based perpendicularly magnetized film is within the range of 0.08≦x≦0.74, especially on the low sputtering pressure side, it becomes ferromagnetic and perpendicularly magnetic. It can be understood that it exhibits anisotropy.

次に、垂直磁気異方性を示す膜の代表的なヒステリシス
ループを第2図に示す、この膜の組成はCOts、 1
ss(B N)o、 s4s (但し数値4;!組成ヲ
1量比で表す、以下同じ、)であり、成膜時のスパッタ
圧力は1.5 X 10−”Torrである。
Next, Figure 2 shows a typical hysteresis loop of a film exhibiting perpendicular magnetic anisotropy.The composition of this film is COts, 1
ss(BN)o, s4s (however, the numerical value is 4; !The composition is expressed as a ratio of 1 to 1, the same applies hereinafter), and the sputtering pressure during film formation is 1.5 x 10-'' Torr.

第2図中、//は面内方向でのヒステリシスループ(面
内ヒステリシスループ)を表し、土は垂直方向でのヒス
テリシスループを表す。
In FIG. 2, // represents a hysteresis loop in the in-plane direction (in-plane hysteresis loop), and soil represents a hysteresis loop in the vertical direction.

これらヒステリシスループより求めた飽和磁化Msは4
70 emu/cc、面内方向の保磁力Hcは50 (
Oe)、垂直方向の保磁力Hcは350 (Oe)であ
った、また、面内ヒステリシスループより求めた垂直異
方性磁場Hk = 1880 (Oe)であり、垂直磁
化膜として良好な値を示すことが確認された。
The saturation magnetization Ms obtained from these hysteresis loops is 4
70 emu/cc, coercive force Hc in the in-plane direction is 50 (
The perpendicular coercive force Hc was 350 (Oe), and the perpendicular anisotropy magnetic field Hk determined from the in-plane hysteresis loop was 1880 (Oe), which is a good value for a perpendicularly magnetized film. This was confirmed.

先のヒステリシスループにおいて、特に面内ヒステリシ
スループより、Co−BN系垂直磁化膜には、垂直異方
性を持つ部分と垂直異方性を持たない部分があることが
示唆された。すなわち、第3図に模式的に示すヒステリ
シスループにおいて、磁化が飽和する前の傾斜箇所は垂
直異方性を持つ部分由来し、保磁力付近の磁化ジャンプ
箇所は垂直異方性を持たない部分に由来するものと考え
られる。
In the above hysteresis loop, especially from the in-plane hysteresis loop, it was suggested that the Co-BN-based perpendicularly magnetized film has a portion with perpendicular anisotropy and a portion without perpendicular anisotropy. In other words, in the hysteresis loop schematically shown in Figure 3, the slope before the magnetization saturates comes from a part with perpendicular anisotropy, and the magnetization jump near the coercive force comes from a part without perpendicular anisotropy. It is thought to have originated from

そこで、第5図中0印で示す飽和磁気モーメントとΔ印
で示す面内磁気モーメントの膜厚依存性を調べた。なお
、膜組成はCOo、 ass(B N)o、 sasで
あり、成膜時のスパッタ圧力は3 X 10−’Tor
rである。
Therefore, the film thickness dependence of the saturation magnetic moment indicated by 0 in FIG. 5 and the in-plane magnetic moment indicated by Δ was investigated. The film compositions were COo, ass(BN)o, and sas, and the sputtering pressure during film formation was 3 x 10-'Tor.
It is r.

その結果、第4図に示すように、膜厚が増えても面内磁
気モーメントが増加しないのに対して、膜厚の増加とと
もに飽和磁気モーメントが次第に大きくなることが明ら
かとなった。
As a result, as shown in FIG. 4, it was found that the in-plane magnetic moment did not increase even if the film thickness increased, but the saturation magnetic moment gradually increased as the film thickness increased.

さらに、面内方向での保磁力Hcと垂直異方性磁場Hk
に関しても膜厚依存性を調べた。第5図中0印でプロッ
トした曲線が保磁力Hcの膜厚依存性を示し、Δ印でプ
ロットした曲線が垂直異方性磁場Hkの膜厚依存性を示
す、この第5図によれば、保磁力には膜厚依存性はほと
んど見られず、垂直異方性磁場のみが膜厚の増加ととも
に上昇している。
Furthermore, the coercive force Hc in the in-plane direction and the perpendicular anisotropy magnetic field Hk
The film thickness dependence was also investigated. According to this figure, the curve plotted with the 0 mark in Fig. 5 shows the film thickness dependence of the coercive force Hc, and the curve plotted with the Δ mark shows the film thickness dependence of the perpendicular anisotropy magnetic field Hk. , the coercive force shows almost no film thickness dependence, and only the perpendicular anisotropy field increases with increasing film thickness.

したがって、これら第4図及び第5図より、垂直異方性
を持たない部分の磁気モーメント及び保磁力には膜厚依
存性がないことになり、このことからスパッタ初期層(
約300人)は垂直異方性を持たないとの結論を得た。
Therefore, from FIGS. 4 and 5, it can be seen that the magnetic moment and coercive force of the portion without perpendicular anisotropy have no dependence on the film thickness, and from this, the sputtering initial layer (
(approximately 300 people) concluded that they do not have vertical anisotropy.

次に、Co−BN系垂直磁化膜を成膜する際のスパッタ
圧力が得られる膜の磁気特性に及ぼす影響を調べた。な
お、この実験においても膜組成はC001is(BN)
。、、4Sとした。
Next, the influence of the sputtering pressure upon forming a Co-BN-based perpendicularly magnetized film on the magnetic properties of the resulting film was investigated. In this experiment, the film composition was C001is(BN).
. ,,4S.

第6図は飽和磁化Ms及び初期層磁気モーメントのスパ
ッタ圧力依存性を示すもので、第7図は垂直異方性磁場
Hk及び保磁力Hcのスパッタ圧力依存性を示すもので
ある。
FIG. 6 shows the dependence of the saturation magnetization Ms and the initial layer magnetic moment on the sputtering pressure, and FIG. 7 shows the dependence of the perpendicular anisotropy magnetic field Hk and the coercive force Hc on the sputtering pressure.

これら第6図及び第7図より、スパッタ圧力が低いほど
磁気特性、特に垂直異方性磁場Hkが向上し、また垂直
異方性を持たない初期層の厚さも薄くなることがわかる
It can be seen from FIGS. 6 and 7 that the lower the sputtering pressure, the better the magnetic properties, especially the perpendicular anisotropy magnetic field Hk, and the thinner the initial layer without perpendicular anisotropy.

さらに、BN組成による磁気特性の相違を調べた。スパ
ッタ圧力は3 X 10−’Torrである。  、第
8図は垂直異方性磁場Hk及び初期層厚のBN組成依存
性を示すもので、第9図は飽和磁化Ms及び面内方向の
保磁力HcのBN組成依存性を示すものである。
Furthermore, differences in magnetic properties depending on BN composition were investigated. Sputter pressure is 3 x 10-'Torr. , Fig. 8 shows the dependence of the perpendicular anisotropy magnetic field Hk and the initial layer thickness on the BN composition, and Fig. 9 shows the dependence of the saturation magnetization Ms and the coercive force Hc in the in-plane direction on the BN composition. .

その結果、先ず第8図より、BN組成が51重量%のと
きに垂直異方性磁場Hkが極大値(1900(Oe) 
)となり、同時に初期層厚が極小となることが判明した
。一方、第9図からは、BN!成が75重量%を越える
と磁性が消失し、非磁性膜となることがわかった。
As a result, first of all, from Fig. 8, when the BN composition is 51% by weight, the vertical anisotropy magnetic field Hk has a maximum value (1900 (Oe)
), and at the same time it was found that the initial layer thickness became extremely small. On the other hand, from Figure 9, BN! It was found that when the composition exceeds 75% by weight, magnetism disappears and the film becomes a non-magnetic film.

次にスパッタ条件の最適値を決定するべく、スパッタの
際のRF比出力基板バイアス電圧、基板温度等による磁
気特性の変化を調べた。なお、これら実験における膜組
成はCOo、4ss(B N)o、s4s、成膜時のス
パッタ圧力は3 X 10−”Torrである。
Next, in order to determine the optimal values for sputtering conditions, changes in magnetic properties due to RF specific output substrate bias voltage, substrate temperature, etc. during sputtering were investigated. Note that the film composition in these experiments was COo, 4ss(BN)o, s4s, and the sputtering pressure during film formation was 3 x 10-'' Torr.

先ず、RF比出力ついて言えば、第10図及び第11図
から明らかなように、RF比出力小さいほど垂直異方性
磁場Hkが大きくなり、同時に初期層磁気モーメント(
すなわち初期層厚)が小さくなる。したがって、RF比
出力できるだけ小さい方が有利である。
First, regarding the RF specific output, as is clear from Figs. 10 and 11, the smaller the RF specific output, the larger the perpendicular anisotropy magnetic field Hk, and at the same time the initial layer magnetic moment (
In other words, the initial layer thickness) becomes smaller. Therefore, it is advantageous to have the RF specific output as small as possible.

基板バイアス電圧V、は、第12図に示す如く飽和磁化
Msや保磁力Haにはほとんど影響を与えないが、第1
3図に示すように垂直異方性磁場Hkには大きな影響を
与える。すなわち、基板バイアス電圧■8を約100V
としたときに垂直異方性磁場Hkは極大値2900 (
Oe)となる、同時に第13図に示すように、初期層磁
気モーメントは、基板バイアス電圧V、を50V以上と
したときに消失する。
As shown in FIG. 12, the substrate bias voltage V has almost no effect on the saturation magnetization Ms or the coercive force Ha, but the first
As shown in Fig. 3, it has a large effect on the perpendicular anisotropy magnetic field Hk. In other words, the substrate bias voltage ① is approximately 100V.
When the perpendicular anisotropy magnetic field Hk has a maximum value of 2900 (
At the same time, as shown in FIG. 13, the initial layer magnetic moment disappears when the substrate bias voltage V is set to 50 V or more.

第14図は基板バイアス電圧V、を約100vとしたと
きに得られるCo−BN系垂直磁化膜のヒステリシスル
ープである0図中、実線が面、内ヒステリシスループ、
破線が垂直方向でのヒステリシスループであり、飽和磁
化Msは400 el+u/cc、垂直方向の保磁力は
250 (Oe)、垂直異方性磁場Hkは2900(O
e)である。
Figure 14 shows the hysteresis loop of a Co-BN perpendicular magnetization film obtained when the substrate bias voltage V is about 100V.
The broken line is the hysteresis loop in the vertical direction, the saturation magnetization Ms is 400 el+u/cc, the vertical coercive force is 250 (Oe), and the perpendicular anisotropy magnetic field Hk is 2900 (Oe).
e).

得られる膜の保磁力Hcは250 (Oe)と小さいが
、垂直方向での残留磁化M 、 1と面内方向での残留
磁化M、の比(M、I/M、りは1.6であり、垂直磁
化膜であることが確認された。
The coercive force Hc of the obtained film is as small as 250 (Oe), but the ratio of the residual magnetization M in the perpendicular direction to the residual magnetization M in the in-plane direction (M, I/M, is 1.6). It was confirmed that the film was perpendicularly magnetized.

基板温度については、第15図及び第16図に示す測定
結果より、飽和磁化Ms及び保磁力Hcに関してはさほ
ど影響を及ぼさないことがわかるが、垂直異方性磁場T
(kに関しては基板温度が高いほど大きくなり、基板温
度200℃でほぼ飽和する。一方、初期層磁気モーメン
トは、基板温度100°Cまでは大きくなり、さらに高
温になるにつれ小さくなる。
Regarding the substrate temperature, the measurement results shown in FIGS. 15 and 16 show that it does not have much influence on the saturation magnetization Ms and the coercive force Hc, but the perpendicular anisotropy magnetic field T
(K increases as the substrate temperature increases, and is almost saturated at a substrate temperature of 200°C. On the other hand, the initial layer magnetic moment increases up to a substrate temperature of 100°C, and becomes smaller as the temperature further increases.

最後に、Co−BN系垂直磁化膜を形成する際の下地膜
の影響について調べた。
Finally, the influence of the base film upon forming the Co-BN-based perpendicular magnetization film was investigated.

本実験例では下地膜材料としてTiを選び、このTI下
地膜上に膜組成C001ss(BN)。、、43、成膜
時のスパッタ圧力3 X 10−’Torrなる条件で
Go−BN系垂直磁化膜を成膜し、Ti下地膜の膜厚に
よる磁気特性の変化を調べた。
In this experimental example, Ti was selected as the base film material, and a film composition C001ss (BN) was formed on the TI base film. , 43. A Go-BN-based perpendicularly magnetized film was formed under the conditions of a sputtering pressure of 3 x 10-'Torr during film formation, and changes in magnetic properties depending on the thickness of the Ti underlayer were investigated.

第17図は飽和磁化Ms及び初期層磁気モーメントのT
f下地Wl!膜厚依存性を示す特性図であり、第18図
は垂直異方性磁場Hk及び保磁力HcのTi下地膜膜厚
依存性を示す特性図である。
Figure 17 shows the saturation magnetization Ms and the initial layer magnetic moment T.
f Base Wl! FIG. 18 is a characteristic diagram showing the film thickness dependence, and FIG. 18 is a characteristic diagram showing the dependence of the perpendicular anisotropy magnetic field Hk and the coercive force Hc on the Ti underlayer film thickness.

これら第17図及び第18図より明らかなように、飽和
磁化Ms、初期層磁気モーメント、保磁力Hcに関して
はT?下地膜の膜厚による影響はほとんど見られず、T
i下地膜の膜厚が7000Å以上の場合に垂直異方性磁
場Hkの若干の上昇が見られる。
As is clear from these FIGS. 17 and 18, regarding the saturation magnetization Ms, initial layer magnetic moment, and coercive force Hc, T? There is almost no effect of the thickness of the base film, and T
When the thickness of the i-base film is 7000 Å or more, a slight increase in the perpendicular anisotropy magnetic field Hk is observed.

以上、本発明を具体的な実験結果に基づいて説明したが
、本発明がこれに限定されるものでないことは言うまで
もない。
Although the present invention has been described above based on specific experimental results, it goes without saying that the present invention is not limited thereto.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明においてはC
「を含まないCo−BN系材料よりなる垂直磁化膜を記
録層としているので、垂直磁気異方性等の磁気特性に優
れるとともに、機械的特性に優れた垂直磁気記録媒体を
提供することが可能である。
As is clear from the above explanation, in the present invention, C
Since the recording layer is a perpendicularly magnetized film made of a Co-BN-based material that does not contain any It is.

また、本発明においては、垂直磁化膜中に潤滑剤として
使用されるBNが含まれてセリ、摩擦係数が低減され走
行性、耐久性に優れた垂直磁気記録媒体の提供が可能で
ある。
Further, in the present invention, it is possible to provide a perpendicular magnetic recording medium that contains BN used as a lubricant in the perpendicular magnetization film, reduces warp and friction coefficient, and has excellent running performance and durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はBN組成及びスパッタ圧力による膜特性の分布
を示す特性図であり、第2図は垂直磁気異方性を有する
Co−BN系垂直磁化膜のヒステリシスループの一例を
示す特性図、第3図はC0−BN系垂直磁化膜のヒステ
リシスループの模式図、第4図はCo−BN系垂直磁化
膜における飽和磁気モーメントと面内磁気モーメントの
膜厚依存性を示す特性図、第5図は保磁力Hc及び垂直
異方性磁場Hkの膜厚依存性を示す特性図、第6図は飽
和磁化Ms及び初期層磁気モーメントのスパッタ圧力依
存性を示す特性図、第7図は垂直異方性磁場Hk及び保
磁力Heのスパッタ圧力依存性を示す特性図、第8図は
垂直異方性磁場Hk及び初期層厚のBNf[成依存性を
示す特性図、第9図は飽和磁化Ms及び面内方向での保
磁力HcのBN組成依存性を示す特性図、第10図は飽
和磁化Ms及び初期層磁気モーメントのRF出力依存性
を示す特性図、第11図は垂直異方性磁場Hk及び面内
方向での保磁力HcのRF出力依存性を示す特性図、第
12図は飽和磁化Ms及び保磁力Hcの基板バイアス電
圧依存性を示す特性図、第13図は垂直異方性磁場Hk
及び初期層磁気モーメントの基板バイアス電圧依存性を
示す特性図、第14図は基板バイアス電圧100Vとし
たときに得られるCo−BN系垂直磁化膜のヒステリシ
スループを示す特性図、第15図は飽和磁化Ms及び初
期層磁気モーメントの基板温度依存性を示す特性図、第
16図は垂直異方性磁場Hk及び面内方向での保磁力H
cの基板温度依存性を示す特性図、第17図は飽和磁化
Ms及び初期層磁気モーメントのTi下地膜膜厚依存性
を示す特性図、第18図は垂直異方性磁場Hk及び面内
方向での保磁力HcのTi下地膜膜厚依存性を示す特性
図である。
FIG. 1 is a characteristic diagram showing the distribution of film properties depending on the BN composition and sputtering pressure, and FIG. Figure 3 is a schematic diagram of the hysteresis loop of a Co-BN perpendicular magnetization film, Figure 4 is a characteristic diagram showing the film thickness dependence of the saturation magnetic moment and in-plane magnetic moment in the Co-BN perpendicular magnetization film, and Figure 5 is a characteristic diagram showing the dependence of coercive force Hc and perpendicular anisotropy magnetic field Hk on film thickness, FIG. 6 is a characteristic diagram showing dependence of saturation magnetization Ms and initial layer magnetic moment on sputtering pressure, and FIG. 7 is a characteristic diagram showing perpendicular anisotropy. Figure 8 is a characteristic diagram showing the dependence of the perpendicular anisotropic magnetic field Hk and the coercive force He on the sputtering pressure. A characteristic diagram showing the dependence of the coercive force Hc on the BN composition in the in-plane direction, FIG. 10 is a characteristic diagram showing the dependence of the saturation magnetization Ms and the initial layer magnetic moment on the RF output, and FIG. 11 is a characteristic diagram showing the dependence of the perpendicular anisotropy magnetic field Hk. FIG. 12 is a characteristic diagram showing the dependence of coercive force Hc on RF output in the in-plane direction. FIG. 12 is a characteristic diagram showing the dependence of saturation magnetization Ms and coercive force Hc on substrate bias voltage. FIG. Hk
FIG. 14 is a characteristic diagram showing the hysteresis loop of the Co-BN perpendicular magnetization film obtained when the substrate bias voltage is 100 V, and FIG. 15 is a characteristic diagram showing the dependence of the initial layer magnetic moment on the substrate bias voltage. A characteristic diagram showing the dependence of magnetization Ms and initial layer magnetic moment on substrate temperature, Fig. 16 shows the perpendicular anisotropy magnetic field Hk and coercive force H in the in-plane direction.
Fig. 17 is a characteristic diagram showing the dependence of saturation magnetization Ms and initial layer magnetic moment on Ti underlayer film thickness, and Fig. 18 is a characteristic diagram showing the dependence of saturation magnetization Ms and initial layer magnetic moment on the substrate temperature. FIG. 3 is a characteristic diagram showing the dependence of the coercive force Hc on the thickness of the Ti underlayer film.

Claims (1)

【特許請求の範囲】[Claims] 基体上にCo_1_−_x(BN)_x(但しxは重量
比を表し、0.08≦x≦0.74である。)なる組成
を有する垂直磁化膜が形成されたことを特徴とする垂直
磁気記録媒体。
A perpendicular magnetism characterized in that a perpendicular magnetization film having a composition of Co_1_−_x(BN)_x (where x represents a weight ratio and satisfies 0.08≦x≦0.74) is formed on a substrate. recoding media.
JP62290172A 1987-11-17 1987-11-17 Perpendicular magnetic recording medium Pending JPH01130320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62290172A JPH01130320A (en) 1987-11-17 1987-11-17 Perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290172A JPH01130320A (en) 1987-11-17 1987-11-17 Perpendicular magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH01130320A true JPH01130320A (en) 1989-05-23

Family

ID=17752681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290172A Pending JPH01130320A (en) 1987-11-17 1987-11-17 Perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01130320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071040A (en) * 2007-09-13 2009-04-02 Ulvac Japan Ltd Manufacturing apparatus for semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071040A (en) * 2007-09-13 2009-04-02 Ulvac Japan Ltd Manufacturing apparatus for semiconductor device

Similar Documents

Publication Publication Date Title
JPH01158618A (en) Magnetic recording medium
JPH11149628A (en) Perpendicular magnetic recording medium
US4711810A (en) Magnetic medium for horizontal magnetization recording and method for making same
JP2991672B2 (en) Magnetic recording media
JPH01130320A (en) Perpendicular magnetic recording medium
JP2001101644A (en) Vertical magnetic recording medium and magnetic recording device
JPH0517608B2 (en)
JPH0230104A (en) Vertically magnetized film
JPH0513323B2 (en)
Tachibana et al. Challenge of Media Noise Suppression With Oxidation Control in Granular Structure for CoPtCr-Based Sputtered Tape Toward 400 Gb/in 2
JP2642656B2 (en) Magneto-optical recording medium
JP2715783B2 (en) Magnetic recording media
JPH053050B2 (en)
JPH04143947A (en) Magneto-optical recording medium
JP2824998B2 (en) Magnetic film
JP2763913B2 (en) Magnetic film and method of manufacturing the same
JPH071535B2 (en) Magnetic recording medium
JPS6124011A (en) Vertical magentic recording medium
JPH0268712A (en) Thin film magnetic recording medium
JPH06103555A (en) Perpendicular magnetic recording medium
JPH04281212A (en) Magnetic recording medium and its production
JPH03116516A (en) Magnetic film
JPH0570205B2 (en)
Ouchi et al. Perpendicular magnetic recording media
JPS5975428A (en) Vertically magnetized magnetic recording medium

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090412

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees