JPH0112772Y2 - - Google Patents

Info

Publication number
JPH0112772Y2
JPH0112772Y2 JP17276782U JP17276782U JPH0112772Y2 JP H0112772 Y2 JPH0112772 Y2 JP H0112772Y2 JP 17276782 U JP17276782 U JP 17276782U JP 17276782 U JP17276782 U JP 17276782U JP H0112772 Y2 JPH0112772 Y2 JP H0112772Y2
Authority
JP
Japan
Prior art keywords
collector
heat
heat sink
traveling wave
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17276782U
Other languages
Japanese (ja)
Other versions
JPS5976061U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17276782U priority Critical patent/JPS5976061U/en
Publication of JPS5976061U publication Critical patent/JPS5976061U/en
Application granted granted Critical
Publication of JPH0112772Y2 publication Critical patent/JPH0112772Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Microwave Tubes (AREA)

Description

【考案の詳細な説明】 本考案は、進行波管コレクタ部の放熱体構造に
関するものである。
[Detailed Description of the Invention] The present invention relates to a heat sink structure of a traveling wave tube collector section.

進行波管コレクタ部には、陰極からでた高速度
な電子流が、流入する。この時、該電子流のもつ
運動エネルギーは、熱損失となつて、前記コレク
タを加熱する。この際、該コレクタが許容限度以
上に加熱されると、進行波管の特性に有害な影響
を与える。この為、従来より、前記コレクタ周辺
部に熱伝導の良い金属を放熱体として施し、空冷
及び水冷によつて、前記コレクタが許容限度以上
に加熱されないよう工夫されている。例えば第1
図a,bに、コレクタが接地点より電気的に絶縁
された従来のコレクタ部放熱体構造を示す。第1
図a,bにおいて、嵌合穴4を有する放熱ブロツ
ク3は側面にすり割り5が設けられ、すり割り5
上部に配置された2個のネジ8で嵌合穴4に挿入
された円筒状絶縁石にすり割り6を施した絶縁管
2とそれに収納されているコレクタ1とが締結固
定される構造となつている。即ち絶縁管2のすり
割り6を放熱ブロツク3のすり割り5と対応する
位置に合わせ、この状態ですり割り5上部のねじ
8を締付けると、放熱ブロツク3の上部が下方に
変形して収納されている絶縁管2を圧縮しその内
周面が絶縁管2に挿入されているコレクタ1の外
周面と密着し締結固定される。コレクタ1が取付
けられた後、放熱ブロツク3は、ケース基板7に
取付ねじ9で固定される。かかるコレクタ部放熱
体構造においては、コレクタ1で発生した熱はコ
レクタ1を電気的に絶縁する為の絶縁管2を通
り、放熱ブロツク3から更にケース基板7へ伝導
し放熱される。熱放散効果を高くする為には、前
記絶縁管2に熱伝導率の良い材質例えばベリリア
等を用いると共に、放熱ブロック3と絶縁管2、
絶縁管2とコレクタ1間相互の接触面積を大きく
し熱抵抗を低減しなければならない。しかしなが
ら従来のコレクタ部放熱体構造においては、次の
ような欠点があつた。
A high-velocity electron flow from the cathode flows into the traveling wave tube collector section. At this time, the kinetic energy of the electron flow becomes heat loss and heats the collector. At this time, if the collector is heated beyond the permissible limit, it will have a detrimental effect on the characteristics of the traveling wave tube. For this reason, conventionally, a metal with good thermal conductivity is applied as a heat radiator around the collector to prevent the collector from being heated beyond an allowable limit by air cooling or water cooling. For example, the first
Figures a and b show a conventional collector heat sink structure in which the collector is electrically insulated from the ground point. 1st
In Figures a and b, a heat dissipation block 3 having a fitting hole 4 is provided with a slot 5 on the side surface.
The structure is such that the insulating tube 2, which is made by slotting 6 in a cylindrical insulating stone inserted into the fitting hole 4, and the collector 1 housed therein are fastened and fixed by two screws 8 placed at the top. ing. That is, when the slot 6 of the insulating tube 2 is aligned with the slot 5 of the heat dissipation block 3 and the screw 8 on the top of the slot 5 is tightened in this state, the top of the heat dissipation block 3 is deformed downward and stored. The insulating tube 2 is compressed, and its inner circumferential surface is brought into close contact with the outer circumferential surface of the collector 1 inserted into the insulating tube 2, and is fastened and fixed. After the collector 1 is attached, the heat dissipation block 3 is fixed to the case substrate 7 with mounting screws 9. In such a collector part heat radiator structure, the heat generated in the collector 1 passes through the insulating tube 2 for electrically insulating the collector 1, is further conducted from the heat radiating block 3 to the case substrate 7, and is radiated. In order to enhance the heat dissipation effect, a material with good thermal conductivity, such as beryllia, is used for the insulating tube 2, and the heat dissipation block 3 and the insulating tube 2,
The mutual contact area between the insulating tube 2 and the collector 1 must be increased to reduce thermal resistance. However, the conventional collector heat sink structure has the following drawbacks.

コレクタ1外周面と絶縁管2内周面及び絶縁管
2外周面と放熱ブロツク3の内周面との間には、
少なからず隙間が生じて熱抵抗を増大させると共
に、隙間の多少による放熱効果のバラツキが大き
くなる。また、これ等隙間の出来る状態は絶縁管
2外周部に加わる不均一な力によつて絶縁管2を
割れやすくし、接地電位である放熱ブロツクとコ
レクタ間の絶縁を低下させる要因となつていた。
このようなコレクタ部放熱体構造では、構成する
部品間の熱抵抗を低減し、かつ所定の絶縁性を確
保する為には、各部品の寸法精度を高め、嵌合部
のクリアランスを極力小さくして、ほとんど真円
に近い状態で締結する必要があるが、これには高
い機械加工精度が要求され、さらにコレクタ電力
が大電力となる進行波管には絶縁管2として放熱
性の良効でないアルミナ(熱伝導率0.075calcm/
seccm2℃)は使用できず、高価でかつ有害なベリ
リア(0.445calcm/seccm2℃)の使用が要求され、
部品が高価格となる欠点があつた。
Between the outer circumferential surface of the collector 1 and the inner circumferential surface of the insulating tube 2, and between the outer circumferential surface of the insulating tube 2 and the inner circumferential surface of the heat dissipation block 3,
A considerable amount of gaps are generated, increasing thermal resistance, and the heat dissipation effect varies greatly depending on the amount of gaps. In addition, the presence of such gaps made the insulating tube 2 prone to cracking due to uneven force applied to the outer circumference of the insulating tube 2, and was a factor in reducing the insulation between the heat dissipation block, which is at ground potential, and the collector. .
In such a collector part heat sink structure, in order to reduce the thermal resistance between the constituent parts and ensure the specified insulation properties, it is necessary to increase the dimensional accuracy of each part and minimize the clearance of the mating part. Therefore, it is necessary to fasten them in an almost perfect circle, but this requires high machining precision, and in addition, for traveling wave tubes where the collector power is large, the insulating tube 2 does not have good heat dissipation properties. Alumina (thermal conductivity 0.075calcm/
seccm 2 °C) cannot be used, and the use of expensive and harmful beryllia (0.445calcm/seccm 2 °C) is required.
The drawback was that the parts were expensive.

本考案は、以上に述べた従来のコレクタ部放熱
体構造の欠点を除去し、安価で電気的絶縁性が高
く、放熱性に優れ、かつ絶縁管として、汎用性が
高く、公害上問題とならないアルミナ・セラミツ
クを使用した進行波管コレクタ部の放熱体構造を
提供することを目的とする。
The present invention eliminates the drawbacks of the conventional collector part heat radiator structure mentioned above, is inexpensive, has high electrical insulation, has excellent heat dissipation, and is highly versatile as an insulated tube, and does not cause pollution problems. The purpose of this invention is to provide a heat sink structure for a traveling wave tube collector section using alumina ceramic.

本考案による進行波管コレクタ部の放熱体構造
を第3図に示した。即ち、本考案による該放熱体
構造は、コレクタ11とアルミナ絶縁管12との
接合面及び該絶縁管12と放熱ブロツク13との
接合面に金属酸化物が充填されたシリコーン・コ
ンパウンド14が塗布されていることを特徴とす
る。次に本考案による放熱体構造の効果につい
て、アルミナ絶縁管12とコレクタ11及び放熱
ブロツク13との接合面に前記シリコーン・コン
パウンド14を塗布しない放熱構造体(以下「比
較放熱体」と呼ぶ)と比較しながら、説明をす
る。該比較放熱体を用いた進行波管では、作動開
始と共に、コレクタ部の温度が上昇し、ついに
は、該コレクタ部が許容限度以上に加熱され、前
記進行波管の特性は劣化する。この原因は、前記
比較放熱体の熱伝導性が悪いこと、さらに詳しく
か、(1)アルミナの熱伝導性が悪いこと(2)該アルミ
ナとコレクタ及び放熱体との、熱拡散に重大な影
響を及ぼす、有効接触面積が小さいことである。
これに対し、本考案による放熱体構造はシリコー
ン・コンパウンド14をアルミナ絶縁管12とコ
レクタ11及び放熱ブロツク13との接合面に塗
布することによつて、前述(2)の原因を排除即ち、
有効接触面積を増大させ、熱伝導性を高めたもの
である。また金属酸化物の充填物はシリコーン・
コンパウンドの耐熱安定性、伸び等を改良する効
果がある。従つて、本考案による構造をした放熱
体を使用した進行波管では、作動中においても、
前記放熱体の熱伝導性が優れている為、コレクタ
部は、許容限度以上に加熱されることなく、従つ
て、前記進行波管の特性劣化は生じずに、安定な
害進行波管の作動可能である。
FIG. 3 shows the structure of the heat sink of the traveling wave tube collector section according to the present invention. That is, in the heat sink structure according to the present invention, a silicone compound 14 filled with metal oxide is applied to the joint surface between the collector 11 and the alumina insulating tube 12 and the joint surface between the insulating tube 12 and the heat radiation block 13. It is characterized by Next, regarding the effect of the heat sink structure according to the present invention, we will discuss a heat sink structure (hereinafter referred to as a "comparative heat sink") in which the silicone compound 14 is not applied to the joint surfaces of the alumina insulating tube 12, the collector 11, and the heat sink block 13. Explain while comparing. In the traveling wave tube using the comparative heat radiator, the temperature of the collector portion increases upon the start of operation, and eventually the collector portion is heated beyond the permissible limit, and the characteristics of the traveling wave tube deteriorate. The reason for this is that the heat conductivity of the comparative heat sink is poor, or more specifically, (1) the heat conductivity of alumina is poor, and (2) there is a significant effect on heat diffusion between the alumina, the collector, and the heat sink. The effective contact area is small.
In contrast, the heat sink structure according to the present invention eliminates the cause of (2) above by coating the silicone compound 14 on the joint surfaces of the alumina insulating tube 12, collector 11, and heat dissipation block 13.
This increases the effective contact area and improves thermal conductivity. In addition, metal oxide fillings are silicone
It has the effect of improving the heat resistance stability, elongation, etc. of the compound. Therefore, in a traveling wave tube using a heat radiator structured according to the present invention, even during operation,
Since the heat radiator has excellent thermal conductivity, the collector section is not heated beyond the permissible limit, and therefore, the characteristics of the traveling wave tube are not deteriorated, and the traveling wave tube operates stably. It is possible.

以下実施例に基づき、本考案による放熱体構造
の効果について、さらに具体的に詳述する。
The effects of the heat sink structure according to the present invention will be described in more detail below based on Examples.

実施例 1 本実施例では、第3図において、コレクタ11
はφ14mmの銅円柱、アルミナ絶縁管12は板厚1
mm、放熱体ブロツク13はアルミ製及びシリコー
ン・コンパウンド14はヒート・コンパウンド
SH340(東レ・シリコーン社製)を使用した。
Embodiment 1 In this embodiment, in FIG.
is a copper cylinder with a diameter of 14 mm, and the alumina insulation tube 12 is a plate with a thickness of 1
mm, heat sink block 13 is made of aluminum and silicone compound 14 is heat compound
SH340 (manufactured by Toray Silicone Co., Ltd.) was used.

なお、本考案による放熱体構造の熱伝導性の優
秀性を示すデータを第2図に示した。第2図は、
コレクタに熱を印加(横軸温度)し、その時の放
熱体2のA部の温度(縦軸温度)を測定したもの
である(直線)なお比較の為、シリコーン・コ
ンパウンドを塗布しない比較放熱体の結果も示し
た(直線)。またコレクタ電力104Wにて進行波
管を作動させた時、比較放熱体のコレクタの温度
は150℃に対し、本考案による放熱体のコレクタ
の温度は70℃であつた。以上のように、シリコー
ン・コンパウンドを用いた本考案による放熱体の
熱伝導性は非常に優れていることが判る。また特
筆すべきことは、本考案に使用するシリコーン・
コンパウンドは、一般的に180℃の高温中におい
ても、その品質は劣化しないことが、知られてい
るが本考案による放熱体を300℃の雰囲気中に10
時間保持させ、強制的に前記シリコーン・コンパ
ウンドを変質させた後においても、前記本考案に
よる放熱体の熱伝導性及び電気的特性の劣化は生
じなかつた。即ち、このことは、本考案による放
熱体は、長期に渡り安定した作用し、従つて、安
定した進行波管の作動が長期に渡り可能であるこ
とを示す。
Incidentally, data showing the excellent thermal conductivity of the heat sink structure according to the present invention is shown in FIG. Figure 2 shows
Heat is applied to the collector (horizontal axis temperature), and the temperature at part A of heat sink 2 (vertical axis temperature) is measured at that time (straight line).For comparison, a comparative heat sink without silicone compound applied is shown. The results are also shown (straight line). Furthermore, when the traveling wave tube was operated with a collector power of 104 W, the collector temperature of the comparative heat radiator was 150°C, whereas the collector temperature of the heat radiator according to the present invention was 70°C. As described above, it can be seen that the thermal conductivity of the heat sink according to the present invention using a silicone compound is very excellent. Also noteworthy is the silicone used in this invention.
It is generally known that the quality of compounds does not deteriorate even when exposed to high temperatures of 180℃.
Even after the silicone compound was forcibly altered by holding it for a long time, the thermal conductivity and electrical characteristics of the heat sink according to the present invention did not deteriorate. That is, this shows that the heat sink according to the present invention operates stably over a long period of time, and therefore, stable operation of the traveling wave tube is possible for a long period of time.

以上詳述したように、本考案による放熱体は、
公害問題であり、かつ入手が困難なベリリアを使
用することなく、より汎用性が高く、安価なアル
ミナを使用し、かつ長期き宣り、優れた熱伝導性
を有する。従つて、生産性の向上、コストダウン
を可能し、かつ廃棄も特別な処置を施す必要がな
い。
As detailed above, the heat sink according to the present invention is
It does not use beryllia, which is a pollution problem and is difficult to obtain, but uses alumina, which is more versatile and inexpensive, and has long-lasting and excellent thermal conductivity. Therefore, it is possible to improve productivity and reduce costs, and there is no need to take special measures for disposal.

なお、実施例は、本考案の一例を示すものであ
つてこれによりなんら本考案は、制限されるもの
ではない。
It should be noted that the embodiments are merely examples of the present invention and are not intended to limit the present invention in any way.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは従来のコレクタ部放熱体構造の
正面図及び側面断面図、第2図は、コレクタ印加
温度と放熱体温度との関係を示すグラフ、第3図
a,bは本考案実施例のコレクタ部放熱体構造の
正面図及び側面断面図である。 1,11……コレクタ、2……絶縁管、3,1
3……放熱ブロツク、4……嵌合穴、5,6……
すり割り、7……ケース基板、8,9……ねじ、
10……絶縁リング、12……アルミナ絶縁管、
14……シリコーン・コンパウンド。
Figures 1a and b are a front view and side sectional view of a conventional collector heat sink structure, Figure 2 is a graph showing the relationship between the collector applied temperature and the heat sink temperature, and Figures 3a and b are the present invention. FIG. 2 is a front view and a side sectional view of a collector heat sink structure according to an embodiment. 1, 11... Collector, 2... Insulating tube, 3, 1
3... Heat dissipation block, 4... Fitting hole, 5, 6...
Slot, 7... Case board, 8, 9... Screw,
10...Insulation ring, 12...Alumina insulation tube,
14...Silicone compound.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 放熱体ブロツクとアルミナで電気的に絶縁さ
れ、かつ該放熱体ブロツク内にコレクタ収納固定
される構造を有する進行波管のコレクタ部放熱体
において、前記アルミナと前記コレクタ及び前記
放熱体ブロツクとの接合面に、金属酸化物が充填
されたシリコーン・コンパウンドが塗布されてい
ることを特徴とする進行波管の放熱体構造。
In a collector heat radiator of a traveling wave tube having a structure in which the heat radiator block and alumina are electrically insulated and the collector is housed and fixed within the heat radiator block, the alumina is joined to the collector and the heat radiator block. A traveling wave tube heat sink structure whose surface is coated with a silicone compound filled with metal oxide.
JP17276782U 1982-11-15 1982-11-15 Traveling wave tube heat sink structure Granted JPS5976061U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17276782U JPS5976061U (en) 1982-11-15 1982-11-15 Traveling wave tube heat sink structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17276782U JPS5976061U (en) 1982-11-15 1982-11-15 Traveling wave tube heat sink structure

Publications (2)

Publication Number Publication Date
JPS5976061U JPS5976061U (en) 1984-05-23
JPH0112772Y2 true JPH0112772Y2 (en) 1989-04-13

Family

ID=30376515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17276782U Granted JPS5976061U (en) 1982-11-15 1982-11-15 Traveling wave tube heat sink structure

Country Status (1)

Country Link
JP (1) JPS5976061U (en)

Also Published As

Publication number Publication date
JPS5976061U (en) 1984-05-23

Similar Documents

Publication Publication Date Title
JPS61231171A (en) Target holding apparatus for cathode sputtering
JPH11343571A (en) Susceptor
FI85783B (en) KYLNINGSKONSTRUKTION FOER TRANSISTOR.
JPS635904B2 (en)
US3826957A (en) Double-sided heat-pipe cooled power semiconductor device assembly using compression rods
US12072152B2 (en) Vapor chamber
JPH0112772Y2 (en)
JP6899971B1 (en) Heat dissipation structure and its manufacturing method, vacuum valve
CN110970278B (en) Collector heat dissipation structure for radiation-cooled space traveling wave tube
CN218059190U (en) Chemical vapor deposition furnace
JPS5561049A (en) Radiator for semiconductor
EP0867910A1 (en) Collector structure for a travelling-wave tube
JPS6142278Y2 (en)
JPS6217969Y2 (en)
JP2585568Y2 (en) Microwave tube
JPH0289352A (en) Semiconductor device
JPS5846515Y2 (en) traveling wave tube with metal envelope
JP3161380B2 (en) Radiation radiator and microwave tube having the same
JPS5841718Y2 (en) traveling wave tube with metal envelope
JPS60218739A (en) Collector for microwave tube
JPS6345730Y2 (en)
JPS5915511Y2 (en) laser discharge tube
JPH0449807Y2 (en)
JP2578453Y2 (en) Mounting structure of evaporation heater
JP2578336Y2 (en) Pipe heating equipment