JPS6217969Y2 - - Google Patents

Info

Publication number
JPS6217969Y2
JPS6217969Y2 JP1979157649U JP15764979U JPS6217969Y2 JP S6217969 Y2 JPS6217969 Y2 JP S6217969Y2 JP 1979157649 U JP1979157649 U JP 1979157649U JP 15764979 U JP15764979 U JP 15764979U JP S6217969 Y2 JPS6217969 Y2 JP S6217969Y2
Authority
JP
Japan
Prior art keywords
collector
heat
heat sink
insulating sheet
traveling wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979157649U
Other languages
Japanese (ja)
Other versions
JPS5675458U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1979157649U priority Critical patent/JPS6217969Y2/ja
Publication of JPS5675458U publication Critical patent/JPS5675458U/ja
Application granted granted Critical
Publication of JPS6217969Y2 publication Critical patent/JPS6217969Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Microwave Tubes (AREA)

Description

【考案の詳細な説明】 本考案は、進行波管の特に高周波増幅作用に関
与し終つた電子ビームが捕集されることにより発
生する熱の放散効率の良いコレクタに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a collector that has high efficiency in dissipating heat generated by collecting electron beams that have finished participating in the high frequency amplification function of a traveling wave tube.

進行波管においては、電子銃から発生する電子
ビームの運動エネルギーは、その一部が遅波回路
において高周波エネルギーに変換されるが大部分
はコレクタで熱エネルギーに変換される。
In a traveling wave tube, part of the kinetic energy of an electron beam generated from an electron gun is converted into high frequency energy in a slow wave circuit, but most of it is converted into thermal energy in a collector.

このためコレクタは熱発生源となり、コレクタ
において発生する熱により動作中の管球温度は上
昇する。しかし、管球の安定動作のためには管球
温度を出来る限り下げる必要があり、コレクタに
放熱のための部品を取り付け、伝導冷却あるいは
強制空冷等の手段によりコレクタに発生する熱を
外部に放散している。
Therefore, the collector becomes a heat generation source, and the heat generated in the collector increases the temperature of the tube during operation. However, for stable operation of the tube, it is necessary to lower the tube temperature as much as possible, so heat dissipation components are attached to the collector, and the heat generated in the collector is dissipated to the outside by means such as conduction cooling or forced air cooling. are doing.

第1図aは従来の金属製真空外囲器を有する進
行波管であり、ら旋形遅波回路を用い、電子ビー
ム集束装置として周期磁界装置を有し、伝導冷却
方式を採用している進行波管を金属製ケースに収
納したもを示した一部欠載の断面図である。また
第1図bは、同図aのA−A′断面を示す。第1
図a,bにおいて、電子銃(図示せず)において
発生した電子ビームは、周期磁界装置3によつて
集束され、遅波回路1を経て略円筒状のコレクタ
5に導かれる。セラミツク環4は、コレクタ5と
遅波回路1と同電位にある金属製真空外囲器6を
電気的に絶縁している。増幅されるべき高周波
は、入力部(図示せず)から遅波回路1に導か
れ、電子ビームとの相互作用により増幅されて出
力部2から取り出される。コレクタ5で発生する
熱は、その円周外側面を包む放熱体7を介して金
属製のケース基板12に伝導されて外部に放散さ
れる。ケースカバー11とケース基板12はケー
ス10を構成し、これらは熱放散と周期磁界装置
3により形成される磁界に対する影響を考慮して
非磁性金属で作られている。またケース10は、
金属製真空外囲器を有する進行波管の場合、遅波
回路1の直流電位と同電位となり、同時に接地点
となる。このため、コレクタ5を遅波回路1の直
流電位より低電位で動作させるためには、コレク
タ5とケース10は電気的に絶縁する必要があ
る。この働きをしているのが平板状の絶縁板8で
あり金属製放熱体7と金属製放熱台9との間を絶
縁している。絶縁板8としては、通常ベリリア磁
器等の熱伝導の良い絶縁材料が選ばれる。絶縁板
8の放熱体7及び放熱台9と接触する面には金属
被膜を形成し、これらの各接触面において半田付
を行ない放熱体7、絶縁板8、放熱台9の間の熱
伝導を良好にすると共にケース基板12へ固定し
ている。
Figure 1a shows a conventional traveling wave tube with a metal vacuum envelope, which uses a spiral slow wave circuit, has a periodic magnetic field device as an electron beam focusing device, and uses a conduction cooling method. FIG. 2 is a cross-sectional view, with some parts missing, showing a traveling wave tube housed in a metal case. Further, FIG. 1b shows a cross section taken along the line A-A' in FIG. 1a. 1st
In Figures a and b, an electron beam generated in an electron gun (not shown) is focused by a periodic magnetic field device 3 and guided to a substantially cylindrical collector 5 via a slow wave circuit 1. The ceramic ring 4 electrically insulates the collector 5 and the metal vacuum envelope 6 which are at the same potential as the slow wave circuit 1. A high frequency wave to be amplified is guided from an input section (not shown) to a slow wave circuit 1, amplified by interaction with an electron beam, and taken out from an output section 2. The heat generated in the collector 5 is conducted to the metal case substrate 12 via the heat radiator 7 that surrounds the outer circumferential surface of the collector 5, and is radiated to the outside. The case cover 11 and the case substrate 12 constitute the case 10, and are made of non-magnetic metal in consideration of heat dissipation and influence on the magnetic field generated by the periodic magnetic field device 3. In addition, case 10 is
In the case of a traveling wave tube having a metal vacuum envelope, this potential is the same as the DC potential of the slow wave circuit 1, and at the same time serves as a grounding point. Therefore, in order to operate the collector 5 at a lower potential than the DC potential of the slow wave circuit 1, the collector 5 and the case 10 need to be electrically insulated. A flat insulating plate 8 performs this function, and insulates between the metal heat sink 7 and the metal heat sink 9. As the insulating plate 8, an insulating material with good thermal conductivity, such as beryllia porcelain, is usually selected. A metal coating is formed on the surface of the insulating plate 8 that comes into contact with the heat sink 7 and the heat sink 9, and soldering is performed on each of these contact surfaces to improve heat conduction between the heat sink 7, the insulating plate 8, and the heat sink 9. It is fixed to the case board 12 in good condition.

しかしながら、このような従来の構造ではコレ
クタ5は円筒状をなしており、放熱体7のコレク
タ5を収納する円筒状の穴の内径は、コレクタ5
の外径に比べわずかに大きく加工されているた
め、にコレクタ5と放熱体7の嵌合部の有効な接
触面積、即ち熱の伝導に必要な有効接触面積は減
少し熱放散効率が悪化する。
However, in such a conventional structure, the collector 5 has a cylindrical shape, and the inner diameter of the cylindrical hole that accommodates the collector 5 of the heat sink 7 is equal to the collector 5.
Since it is machined to be slightly larger than the outer diameter of the collector 5, the effective contact area between the fitting part of the collector 5 and the heat sink 7, that is, the effective contact area necessary for heat conduction, decreases and the heat dissipation efficiency deteriorates. .

この欠点を改良するために、第1図bに示すよ
うにネジ13により放熱体7を締め付け、コレク
タ5の保持を強固にすると共にコレクタ5と放熱
体7との接触面積を増加させているが、コレクタ
5等管球を構成する各部品の変形を防ぐ等の理由
から締め付けトルクに制限が加わるため、実際の
管球の場合有効接触面積は嵌合部全面積の数十パ
ーセント程度であり、コレクタ5で発生した熱が
放熱体7に良好に伝導されず、コレクタ5の温度
が異常に上昇する場合があつた。
In order to improve this drawback, as shown in FIG. 1b, the heat sink 7 is tightened with screws 13 to firmly hold the collector 5 and to increase the contact area between the collector 5 and the heat sink 7. , Collector 5, etc. Since there are restrictions on the tightening torque for reasons such as preventing deformation of each component that makes up the tube, in the case of an actual tube, the effective contact area is about several tens of percent of the total area of the fitting part. The heat generated in the collector 5 was not well conducted to the heat sink 7, and the temperature of the collector 5 sometimes rose abnormally.

また、金属製の放熱体7及び放熱台9とベリリ
アあるいはアルミナセラミツク等の絶縁体ででき
た絶縁板8との熱膨張係数に差があることから、
設計及び製造条件のコントロールが難しく、半田
付けにより絶縁板8に微小なクラツクが入り耐電
圧を低下させる危険性が多分にあり、製造歩留り
の低下を招くおそれがあつた。また、ケース10
に対し出力線2、コレクタ5等の管球構成部品は
各々に定められた位置に正確に保持されなければ
ならないため、放熱体7の穴の中心軸から放熱台
9のケース基板12に接触する面までの距離lの
寸法公差を出来る限り小さく押える必要がある。
しかし、コレクタ5からケース基板12までの熱
伝導経路は放熱体7と絶縁板8と放熱台9とによ
り形成されているため、各々の部品の寸法精度及
び半田付けによる組立の寸法精度を極めて高くす
るか、あるいは放熱体7と絶縁板8と放熱台9と
を半田付けにより組み立てた後、寸法lの精度を
上げるため更に加工する必要があり、コレクタの
放熱部は極めて高価となる欠点もあつた。
Furthermore, since there is a difference in the coefficient of thermal expansion between the metal heat sink 7 and heat sink 9 and the insulating plate 8 made of an insulator such as beryllia or alumina ceramic,
It is difficult to control the design and manufacturing conditions, and there is a high risk that minute cracks will occur in the insulating plate 8 due to soldering, reducing the withstand voltage, which may lead to a decrease in manufacturing yield. Also, case 10
On the other hand, since the tube components such as the output line 2 and the collector 5 must be held accurately at their respective predetermined positions, they must contact the case substrate 12 of the heat sink 9 from the central axis of the hole in the heat sink 7. It is necessary to keep the dimensional tolerance of the distance l to the surface as small as possible.
However, since the heat conduction path from the collector 5 to the case board 12 is formed by the heat sink 7, the insulating plate 8, and the heat sink 9, the dimensional accuracy of each component and the dimensional accuracy of the assembly by soldering are extremely high. Alternatively, after assembling the heat sink 7, insulating plate 8, and heat sink 9 by soldering, further processing is required to improve the accuracy of the dimension l, which also has the disadvantage that the heat sink of the collector is extremely expensive. Ta.

また、上述の如き欠点を除去するために、第2
図に示されるようにコレクタ5にテフロン等の耐
絶縁性の高い、薄い絶縁シート22を巻きつけ、
このシートを介して放熱体に熱を放散させる方法
が考案された。しかしながら、従来の例えばテフ
ロンの如き絶縁シートは、高い絶縁性は有するも
のの高い熱伝導率を同時に有してはおらず、また
弾力性にも乏しかつた。一般にこのような方法で
は、絶縁性を重視しているため熱伝導性を犠牲に
しており、また弾力性に乏しいことからコレクタ
5と放熱体21との熱伝導に有効な接触面積の増
大も図れず、本方法の適用はコレクタにおける発
熱量の少ない進行波管等に限定されていた。さら
には、コレクタ5と放熱体21の接触面積を増加
させるために、コレクタ5の円周外側面に熱伝導
の良好な金属製円筒23を配設することによつて
実質的にコレクタ5の表面積を増大させて、かか
る上で該金属製円筒の円周外側面に絶縁シート2
2を巻きつけて放熱体21と接触させるというよ
うな複雑かつ大型の構造としなければならない欠
点もあつた。
In addition, in order to eliminate the above-mentioned drawbacks, the second
As shown in the figure, a thin insulating sheet 22 made of Teflon or other material with high insulation resistance is wrapped around the collector 5.
A method was devised to dissipate heat to a heat sink through this sheet. However, conventional insulating sheets such as Teflon have high insulating properties but do not have high thermal conductivity and also lack elasticity. Generally, in this method, thermal conductivity is sacrificed because insulation is emphasized, and since elasticity is poor, it is difficult to increase the contact area between the collector 5 and the heat dissipating body 21, which is effective for heat conduction. Therefore, the application of this method was limited to traveling wave tubes, etc., where the amount of heat generated in the collector is small. Furthermore, in order to increase the contact area between the collector 5 and the heat sink 21, a metal cylinder 23 with good heat conduction is provided on the outer circumferential surface of the collector 5, so that the surface area of the collector 5 is substantially increased. Then, an insulating sheet 2 is placed on the outer circumferential surface of the metal cylinder.
Another disadvantage was that it required a complicated and large structure in which the heat dissipating body 21 was wound around the heat dissipating body 21 and brought into contact with the heat dissipating body 21.

本考案の目的は、以上に述べた従来の構造が持
つ欠点を改良し、高い熱伝導効果を持ち、且つ小
形で安価な信頼性の高いコレクタ放熱部構造を有
する進行波管を提供することである。
The purpose of the present invention is to improve the drawbacks of the conventional structure described above, and to provide a traveling wave tube having a highly reliable collector heat dissipation structure that is small, inexpensive, and has a high heat conduction effect. be.

本考案によれば、電子ビームを発生する電子銃
と、電子ビームと高周波との相互作用により高周
波増幅が行なわれる遅波回路と、この遅波回路で
高周波の増幅作用に関与し終つた電子ビームを捕
集するためのコレクタを有する進行波管におい
て、コレクタの外側面を弾力性及び柔軟性を有
し、かつ窒化硼素を含有する絶縁シートで包囲し
たことを特徴とする進行波管が得られる。さら
に、具体的には、略半円断面形状のコレクタ嵌合
溝を有する放熱体と略円筒状コレクタとが、絶縁
シートを介して結合することを特徴とする進行波
管が得られる。
According to the present invention, there is provided an electron gun that generates an electron beam, a slow wave circuit that performs high frequency amplification through interaction between the electron beam and the high frequency, and an electron beam that has finished participating in the high frequency amplification effect in the slow wave circuit. In the traveling wave tube having a collector for collecting . More specifically, a traveling wave tube is obtained in which a heat radiator having a collector fitting groove with a substantially semicircular cross section and a substantially cylindrical collector are coupled via an insulating sheet.

第3図は本考案の一実施例を示す断面図で、第
3図において、放熱体41には略半円断面形状の
コレクタ嵌合溝が構成され金属製の固定用部材4
3は、略半円状断面形状のコレクタ嵌合部を有す
る。円筒状のコレクタ5は窒化硼素を含有する絶
縁シート42を介して放熱体41のコレクタ嵌合
溝に置かれ、更にコレクタ5の円周外側面のコレ
クタ嵌合溝と嵌合した面と相対する円周外側面
は、同様の絶縁シート44を介して固定用部材4
3のコレクタ嵌合部に嵌合し、ネジ13で締め付
けることによつてコレクタ5は放熱体41に固定
される。さらに放熱体41はケース基板12へ固
定される。この実施例では、固定用部材43とし
て厚さ0.6mmの金属板を使用し安価軽量で、かつ
良好な放熱効果を持つ信頼性の高いコレクタ放熱
体構造を得ることができた。この実施例によるコ
レクタ放熱体構造では、弾力性及び柔軟性を有す
る絶縁シートを使用しているため、コレクタ5と
絶縁シート42及び絶縁シート42と放熱体41
との間の熱伝導に寄与する有効接触面積が大き
い。従つて、比較的コレクタ5における発熱量の
少ない進行波管の放熱径路は、第3図においてコ
レクタ5から絶縁シート42を介して放熱体41
へ至る経路のみで充分である場合が多い。この様
な場合には固定用部材43として金属部品を用い
る必要はなく、耐熱性プラスチツクの如きもので
あつても良い。また、固定用部材43とコレクタ
5の嵌合面積が小さい構造であつて良い。固定用
部材43として電気絶縁性材料を用いた場合は、
絶縁シート44は不要となり、更に簡易で軽量か
つ安価な構造とすることができる。上記絶縁シー
ト42,44としては、たとえば窒化硼素とシリ
コンゴムを主成分としてガラス繊維で強化したシ
ートを用いることができる。
FIG. 3 is a cross-sectional view showing an embodiment of the present invention. In FIG. 3, the heat sink 41 has a collector fitting groove with a substantially semicircular cross section, and the metal fixing member 4
3 has a collector fitting portion having a substantially semicircular cross section. The cylindrical collector 5 is placed in the collector fitting groove of the heat sink 41 via the insulating sheet 42 containing boron nitride, and further faces the surface fitted to the collector fitting groove on the circumferential outer surface of the collector 5. The circumferential outer surface is connected to the fixing member 4 via a similar insulating sheet 44.
The collector 5 is fixed to the heat sink 41 by fitting into the collector fitting portion 3 and tightening with the screw 13 . Further, the heat sink 41 is fixed to the case substrate 12. In this example, a metal plate with a thickness of 0.6 mm was used as the fixing member 43, and it was possible to obtain a highly reliable collector heat dissipation structure that was inexpensive, lightweight, and had a good heat dissipation effect. In the collector heat radiator structure according to this embodiment, since an insulating sheet having elasticity and flexibility is used, the collector 5 and the insulating sheet 42 and the insulating sheet 42 and the heat radiator 41
The effective contact area that contributes to heat conduction between the two is large. Therefore, the heat radiation path of the traveling wave tube, which generates a relatively small amount of heat in the collector 5, is from the collector 5 to the heat radiator 41 via the insulating sheet 42 in FIG.
In many cases, just the route leading to is sufficient. In such a case, it is not necessary to use a metal part as the fixing member 43, and it may be made of heat-resistant plastic or the like. Further, the structure may be such that the fitting area between the fixing member 43 and the collector 5 is small. When an electrically insulating material is used as the fixing member 43,
The insulating sheet 44 is not required, and the structure can be made simpler, lighter, and cheaper. As the insulating sheets 42 and 44, for example, sheets made of boron nitride and silicone rubber as main components and reinforced with glass fibers can be used.

以上の実施例で示したように、本考案はコレク
タの円周外側面を弾力性及び柔軟性を持つ窒化硼
素を含有する絶縁シートで包囲することにより、
従来より耐電圧特性に優れ、且つ安価で小型軽量
な進行波管のコレクタ放熱構体を得ることができ
る。
As shown in the above embodiments, the present invention has the ability to:
It is possible to obtain a collector heat dissipation structure for a traveling wave tube that has superior voltage resistance characteristics than the conventional one and is inexpensive, small and lightweight.

なお、各構成部材の形状及び構造や、絶縁シー
トの形状で本考案が限定されるものでないことは
明らかである。
Note that it is clear that the present invention is not limited by the shape and structure of each component or the shape of the insulating sheet.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bはそれぞれ従来形の進行波管の一
部欠載の軸断面図とAA′断面図、第2図は従来形
の他の例を示す断面図、第3図は本考案の一実施
例の断面図である。 なお図において、1は遅波回路、5はコレク
タ、7,21,41は放熱体、42,44は弾力
性及び柔軟性を有する窒化硼素を含有する絶縁シ
ート、43は固定用部材を示す。
Figures 1a and b are an axial cross-sectional view and an AA' cross-sectional view of a conventional traveling wave tube, respectively; Figure 2 is a cross-sectional view showing another example of the conventional type; and Figure 3 is a cross-sectional view of the present invention. FIG. 3 is a cross-sectional view of one embodiment of the invention. In the figure, 1 is a slow wave circuit, 5 is a collector, 7, 21, 41 are heat sinks, 42, 44 are insulating sheets containing boron nitride having elasticity and flexibility, and 43 is a fixing member.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 略円筒状コレクタ5を略半円状断面形状のコレ
クタ嵌合溝を有する放熱体41に窒化硼素を含有
する絶縁シート42を介して嵌合し、コレクタ5
の上部から絶縁シート44を介して固定用部材4
3により固定したことを特徴とする進行波管。
A substantially cylindrical collector 5 is fitted into a heat sink 41 having a collector fitting groove with a substantially semicircular cross section via an insulating sheet 42 containing boron nitride.
The fixing member 4 is inserted through the insulating sheet 44 from the top of the
A traveling wave tube characterized by being fixed by 3.
JP1979157649U 1979-11-14 1979-11-14 Expired JPS6217969Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979157649U JPS6217969Y2 (en) 1979-11-14 1979-11-14

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979157649U JPS6217969Y2 (en) 1979-11-14 1979-11-14

Publications (2)

Publication Number Publication Date
JPS5675458U JPS5675458U (en) 1981-06-19
JPS6217969Y2 true JPS6217969Y2 (en) 1987-05-08

Family

ID=29668922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979157649U Expired JPS6217969Y2 (en) 1979-11-14 1979-11-14

Country Status (1)

Country Link
JP (1) JPS6217969Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461253A (en) * 1977-10-25 1979-05-17 Hitachi Cable Ltd Electrical insulator having improved thermal conductivity

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721250Y2 (en) * 1974-01-11 1982-05-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461253A (en) * 1977-10-25 1979-05-17 Hitachi Cable Ltd Electrical insulator having improved thermal conductivity

Also Published As

Publication number Publication date
JPS5675458U (en) 1981-06-19

Similar Documents

Publication Publication Date Title
JPS6217969Y2 (en)
US3662212A (en) Depressed electron beam collector
US3666980A (en) Depressable beam collector structure for electron tubes
JPS5854768Y2 (en) traveling wave tube
US5929566A (en) Collector structure for a travelling-wave tube having oxide film on cooling fins
WO2021210048A1 (en) Heat dissipation structure, manufacturing method therefor, and vacuum valve
JP2661511B2 (en) Traveling wave tube
JPS6142278Y2 (en)
JPS5816123Y2 (en) Multistage collector type electron beam tube
JPS6158937B2 (en)
JPS6055949B2 (en) Multistage collector type electron beam tube
JPH04277446A (en) Heat emitting structure of collector of electron tube
JPS624814B2 (en)
JPH0449806Y2 (en)
JPH0538523Y2 (en)
JPH0327324Y2 (en)
JPS5822398Y2 (en) speaker
JPH0449807Y2 (en)
JPH0214112Y2 (en)
JPS5915511Y2 (en) laser discharge tube
JPH019320Y2 (en)
JPS633082Y2 (en)
JPH02116182A (en) Laser fine pipe
JPH0535555Y2 (en)
JP2661517B2 (en) Traveling wave tube