JPH01127671A - Ion beam deposition method - Google Patents

Ion beam deposition method

Info

Publication number
JPH01127671A
JPH01127671A JP28252387A JP28252387A JPH01127671A JP H01127671 A JPH01127671 A JP H01127671A JP 28252387 A JP28252387 A JP 28252387A JP 28252387 A JP28252387 A JP 28252387A JP H01127671 A JPH01127671 A JP H01127671A
Authority
JP
Japan
Prior art keywords
ion beam
specimen
reactive gas
rate
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28252387A
Other languages
Japanese (ja)
Other versions
JPH0633450B2 (en
Inventor
Yoshihiro Tamura
田村 好宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP28252387A priority Critical patent/JPH0633450B2/en
Publication of JPH01127671A publication Critical patent/JPH01127671A/en
Publication of JPH0633450B2 publication Critical patent/JPH0633450B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0021Image watermarking

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)

Abstract

PURPOSE:To deposit a reaction product onto the position of irradiation at high deposition rate by applying a micro-focused ion beam into pulsed state to the surface of a specimen through a reactive-gas atmosphere formed on the surface of the specimen. CONSTITUTION:In a vacuum vessel 1 to which an evacuation pump is connected, a reactive gas 5 is supplied via a gas-introducing machine 4 onto a specimen 3 placed on a specimen stage 2. Then, an ion beam 7 from an ion beam irradiation device 6 is micro-focused and applied to the surface of the specimen 3 through a reactive-gas atmosphere formed on the surface of the specimen 3, by which the reaction product of the reactive gas 5 is deposited 31 onto the position of ion beam irradiation of the specimen 3. In the above ion beam deposition method, the above ion beam is applied into pulsed state 8. It is suitable to repeat the above pulse at a rate of about 10<-4>-10<-2>sec radiation and about 10<-4>-10<-1>sec interruption. By this method, ion beam etching is controlled and deposition rate can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、反応性ガス雰囲気中に設置された試料表面に
微小集束されたイオンビームを照射し、反応性ガスの反
応生成物を形成するイオンビームデポジション方法に関
する。
Detailed Description of the Invention (Industrial Application Field) The present invention irradiates the surface of a sample placed in a reactive gas atmosphere with a finely focused ion beam to form reaction products of the reactive gas. This invention relates to an ion beam deposition method.

(従来の技術) 第1図は、イオンビームデポジション装置の模式図であ
る。
(Prior Art) FIG. 1 is a schematic diagram of an ion beam deposition apparatus.

真空容器1内に取り付けられた試料ステージ2上には試
料3が設置され、ガス導入機4により反応性ガス5が試
料3の表面に供給されると共に、イオンビーム照射装置
6により微小集束されたイオンビーム7が照射される。
A sample 3 is placed on a sample stage 2 installed in a vacuum container 1, and a reactive gas 5 is supplied to the surface of the sample 3 by a gas introduction device 4, and is minutely focused by an ion beam irradiation device 6. The ion beam 7 is irradiated.

ここで真空容器1は真空排気ポンプ11により排気され
ており、反応性ガス5はガスボンベ51より供給されて
いる。
Here, the vacuum container 1 is evacuated by a vacuum pump 11, and the reactive gas 5 is supplied from a gas cylinder 51.

動作原理は次の如くである。例えば、試料3をSi基板
、反応性ガス5をSiH4、イオンビーム7をSi−と
すると、試料3であるSi基板表面に供給された5i)
(4は、Si〜イオンビーム7の照射により当該イオン
ビームのエネルギーを吸収しSiとHに分解する。
The operating principle is as follows. For example, if the sample 3 is a Si substrate, the reactive gas 5 is SiH4, and the ion beam 7 is Si-, then 5i) supplied to the surface of the Si substrate that is the sample 3
(4 is irradiated with Si to ion beam 7 to absorb the energy of the ion beam and decompose it into Si and H.

また、Si基板は、Si”イオンビーム7の照射により
、当該イオンビームのエネルギーを吸収して励起状態と
なる。そこへ、SiH4の分解で生成されたSiが吸着
し、Si基板上に5i31を堆積させることが出来る。
Furthermore, when the Si substrate is irradiated with the Si'' ion beam 7, it absorbs the energy of the ion beam and enters an excited state.Si generated by the decomposition of SiH4 is adsorbed there, and 5i31 is deposited on the Si substrate. It can be deposited.

以上の如く、イオンビーム7を照射した試料3の表面上
の特定の位置に対して、反応性ガス5の反応生成物を堆
積させることが出来るので、当該イオンビーム7を描画
パターンに従って走査すれば、試料表面上に反応性ガス
5の反応生成物を描画形成出来るという特徴を有する。
As described above, the reaction product of the reactive gas 5 can be deposited at a specific position on the surface of the sample 3 irradiated with the ion beam 7, so by scanning the ion beam 7 according to the drawing pattern, , it has the feature that a reaction product of the reactive gas 5 can be drawn and formed on the surface of the sample.

ところで、微小集束されたイオンビームは一般的に電流
密度が大きく(例えば、液体金属Gaイオン源を用いて
加速電圧を50 k Voltとするとき、イオンビー
ム径φ0.1 μmにてIAmp/cm”の電流密度が
得られる)、被照射物に対してエネルギーを与え励起状
態にするとともに、これを物理的にスパッタリングする
ことが判明している。
By the way, a finely focused ion beam generally has a large current density (for example, when using a liquid metal Ga ion source and accelerating voltage of 50 k Volt, the ion beam diameter is φ0.1 μm and the current density is IAmp/cm" It has been found that the irradiated object is given energy to bring it into an excited state, and is then physically sputtered.

即ち、イオンビームデポジション方法においては、イオ
ンビームの照射により、デポジションを行なうと共に、
スパッタリングによるエツチング(食刻)が同時進行し
ており、実行的なデポジションレートがかなり低いとい
う欠点がある。
That is, in the ion beam deposition method, deposition is performed by irradiation with an ion beam, and
Etching by sputtering is progressing at the same time, and the practical deposition rate is quite low.

電子デバイスの配線膜、絶縁膜等はある程度の膜厚を要
するので、イオンビームデポジション方法をこれらの膜
形成に応用する場合、デポジションレートが低いが故に
生産性が低いという問題が生じる。
Wiring films, insulating films, etc. of electronic devices require a certain level of film thickness, so when applying the ion beam deposition method to the formation of these films, a problem arises in that productivity is low due to the low deposition rate.

(発明の目的) 本発明は、イオンビームデポジション方法において、そ
のデポジションレートを向上させることを目的とする。
(Objective of the Invention) An object of the present invention is to improve the deposition rate in an ion beam deposition method.

(問題点を解決する為の手段) 本発明は、試料表面に反応性ガス雰囲気が形成され、当
該試料表面上に微小集束されたイオンビームが該反応性
ガス雰囲気を通して照射されて、前記試料表面上の当該
イオンビーム照射位置に前記反応性ガスの反応生成物が
堆積されるイオンビームデポジション方法において、当
該イオンビームをパルス状に照射するイオンビームデポ
ジション方法である。
(Means for Solving the Problems) The present invention provides a method in which a reactive gas atmosphere is formed on the surface of a sample, and a finely focused ion beam is irradiated onto the sample surface through the reactive gas atmosphere. This is an ion beam deposition method in which a reaction product of the reactive gas is deposited at the ion beam irradiation position above, in which the ion beam is irradiated in a pulsed manner.

(実施例) 第1図の装置で、前述の、試料3の表面を励起状態とし
、反応性ガス5の反応生成物を、試料3の表面の励起状
態の部分へ吸着し堆積させる過程をモデル化して、成膜
のレート方程式を立てると次式のようになる。
(Example) The apparatus shown in FIG. 1 is used to model the process of bringing the surface of the sample 3 into an excited state and adsorbing and depositing the reaction products of the reactive gas 5 on the excited state part of the surface of the sample 3. , and the rate equation for film formation is set up as follows.

d r/d t= (1−r) Tex−Dp−Ts−
r  II T dc−r  −S pここで、 rは単位面積当りの成膜量、 Texは試料表面励起状態の時定数、 Tsは反応性ガス生成物(分解生成物等)の供給時定数
、 Dpは当該反応性ガス生成物の試料表面への吸着確率、 Tdcは、成膜した反応性生成物の分解・脱離時定数、 Spは、成膜した反応生成物のスパッタ率等、である。
d r/d t= (1-r) Tex-Dp-Ts-
r II T dc-r - Sp where, r is the amount of film formed per unit area, Tex is the time constant of the sample surface excited state, Ts is the supply time constant of reactive gas products (decomposition products, etc.), Dp is the adsorption probability of the reactive gas product on the sample surface, Tdc is the decomposition/desorption time constant of the reactive product formed into a film, Sp is the sputtering rate of the reaction product formed into a film, etc. .

また、時定数Tex、 Tsは、 Tex=T” exllexp (−E” sam/K
 T)Ts  =T’ s  −exp(−E’ ga
ss/KT)で与えられ、イオンビーム照射による温度
上昇効果を取り入れた活性化型と考える。
In addition, the time constants Tex and Ts are as follows: Tex=T" exllexp (-E" sam/K
T) Ts = T' s -exp(-E' ga
ss/KT), and is considered to be an activated type that incorporates the temperature increase effect caused by ion beam irradiation.

T” ex、 T” s  は定数、 E’Sam  は試料表面の活性化エネルギー、E″g
ass  は反応性ガスの活性化エネルギーK はボル
ツマン定数、   T は温度、である。
T"ex, T"s are constants, E'Sam is the activation energy of the sample surface, E"g
ass is the activation energy of the reactive gas, K is Boltzmann's constant, and T is the temperature.

ここでもし、イオンビームを本発明のようにパルス状に
すると、イオンビームは照射、遮断を繰り返すことにな
り、イオンビーム照射時、遮断時における成膜レートの
律速は次の如く考えられる。
Here, if the ion beam is pulsed as in the present invention, the ion beam will repeat irradiation and interruption, and the rate-determining rate of film formation during ion beam irradiation and interruption can be considered as follows.

先ず、イオンビーム照射時には、反応性ガスがイオンビ
ームのエネルギーを吸収し、分離され、試料表面の近傍
は当該反応性ガス生成物で満たされ、成膜に対する反応
性ガス生成物の供給は十分に行なわれるものと考えられ
る。またイオンビームの照射により、試料表面はイオン
ビームのエネルギーを吸収し、温度が上昇すると共に励
起状態となり、前述の反応性ガス生成物と表面化学反応
を起こし、成膜が行なわれる。また、イオンビームの照
射によるスパッタリングが同時に進行しており、イオン
ビーム照射時における成膜レートの律速は、表面化学反
応とスパッタリングであると考えられる。
First, during ion beam irradiation, the reactive gas absorbs the energy of the ion beam and is separated, filling the vicinity of the sample surface with the reactive gas products, ensuring that the reactive gas products are sufficiently supplied for film formation. It is thought that this will be done. Furthermore, by irradiation with the ion beam, the surface of the sample absorbs the energy of the ion beam, becomes excited as the temperature rises, and undergoes a surface chemical reaction with the aforementioned reactive gas products to form a film. In addition, sputtering due to ion beam irradiation is proceeding simultaneously, and it is thought that the surface chemical reaction and sputtering are the rate limiting factors for the film formation rate during ion beam irradiation.

次に、イオンビーム遮断時は、イオンビームからのエネ
ルギー供給が停止し、その結果、反応性ガス生成物の供
給、試料表面の温度、ならびに励起状態は減少あるいは
下降に向かう。また、スパッタリングの効果が無くなり
、律速は、供給律速と表面化学反応律速であると考えら
れる。
Then, when the ion beam is shut off, the energy supply from the ion beam is stopped, and as a result, the supply of reactive gas products, the temperature of the sample surface, and the excited state tend to decrease or fall. Moreover, the effect of sputtering disappears, and it is thought that the rate-determining factors are the supply rate-determining rate and the surface chemical reaction rate-determining rate.

成膜箇所1ポイント当り(イオンビームを走査せず固定
した状態)のイオンビーム照射時間は、成膜条件即ち所
望の膜厚、膜質の他、イオンビームのエネルギー、イオ
ン電流、反応性ガス圧力、試料の活性化エネルギー等、
数多くのパラメータによって左右され、実験においても
  10−’〜10−2秒と幅広い結果が得られる。
The ion beam irradiation time per point of film formation (with the ion beam fixed without scanning) depends on the film formation conditions, that is, the desired film thickness, film quality, ion beam energy, ion current, reactive gas pressure, Activation energy of the sample, etc.
It depends on many parameters, and a wide range of results from 10-' to 10-2 seconds can be obtained in experiments.

照射時間と遮断時間の周期は、成膜箇所1ポイント当り
の領域がイオンビーム径と同一程度であるマイクロメー
ターオーダーであり、遮断時間の成膜レートが供給律速
、表面化学反応律速に依存していることを考慮すれば、
遮断時間は照射時間と同一オーダーから1桁増の範囲で
  10−4〜10−!秒程度となる。即ち、照射10
−4〜10−2秒、遮断10−4〜10−1秒の範囲で
繰り返しイオンビームをパルス状に照射することが成膜
レートの向上に有効であることを見い出している。
The cycle of the irradiation time and cut-off time is on the order of micrometers, where the area per point of the film-forming point is about the same as the ion beam diameter, and the film-forming rate during the cut-off time depends on the supply rate-limiting rate and the surface chemical reaction rate-limiting rate. Considering that there are
The cut-off time ranges from the same order as the irradiation time to an order of magnitude more than 10-4 to 10-! It will be about seconds. That is, irradiation 10
It has been found that repeating pulsed ion beam irradiation within the range of -4 to 10-2 seconds and cut-off time of 10-4 to 10-1 seconds is effective in improving the film-forming rate.

従って、パルス状のイオンビーム照射方法をイオンビー
ムデポジション方法に用いれば、イオンビーム遮断時に
おいても、反応生成物の堆積は行なわれると共に、スパ
ッタリングの効果が無くなるのでデポジションレートの
向上が期待出来ることになる。
Therefore, if a pulsed ion beam irradiation method is used for the ion beam deposition method, even when the ion beam is interrupted, reaction products will be deposited and the sputtering effect will be eliminated, so an improvement in the deposition rate can be expected. It turns out.

なお、本発明は、上記の実施例に限定されるものではな
い。反応性ガス雰囲気を通して、イオンビームがパルス
状に照射されるのであれば、全て、本発明に該当する。
Note that the present invention is not limited to the above embodiments. Any method in which the ion beam is irradiated in a pulsed manner through a reactive gas atmosphere falls under the present invention.

例えば、反応性ガスの他に別の活性種が供給されたり、
イオンビームの他に、電子ビームやレーザービーム等の
荷電ビームや光が当該パルス状のイオンビームと共に照
射されている場合においても本発明は十分にその力量を
発揮する。
For example, other active species may be supplied in addition to the reactive gas, or
In addition to the ion beam, the present invention fully exhibits its capabilities even when a charged beam such as an electron beam or a laser beam or light is irradiated together with the pulsed ion beam.

また反応性ガスは5iHaの他、WF6あるいはAl(
CH3)3  などの有機金属ガスなども挙げられる。
In addition to 5iHa, reactive gases include WF6 or Al (
Also included are organometallic gases such as CH3)3.

(発明の効果) 本発明によれば、デポジションレートの高い状態で膜形
成を行なうことができる。
(Effects of the Invention) According to the present invention, film formation can be performed at a high deposition rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、イオンビームデポジション装置の模式図。 1・・・真空容器、  2・・・試料ステージ、3・・
・試料、4・・・ガス導入機、5・・・反応性ガス、6
・・・イオンビーム照射装置、7・・・イオンビーム、
8・・・パルス状イオンビーム、 11・・・真空排気ポンプ、 31・・・堆積(デポジション)膜、 51・・・反応性ガスボンベ。 特許出願人  日電アネルバ株式会社
FIG. 1 is a schematic diagram of an ion beam deposition device. 1... Vacuum container, 2... Sample stage, 3...
・Sample, 4...Gas introduction device, 5...Reactive gas, 6
...Ion beam irradiation device, 7...Ion beam,
8... Pulsed ion beam, 11... Vacuum pump, 31... Deposition film, 51... Reactive gas cylinder. Patent applicant Nichiden Anelva Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)試料表面に反応性ガス雰囲気が形成され、当該試
料表面上に微小集束されたイオンビームが該反応性ガス
雰囲気を通して照射されて、前記試料表面上の当該イオ
ンビーム照射位置に前記反応性ガスの反応生成物が堆積
(デポジション)されるイオンビームデポジション方法
において、当該イオンビームをパルス状に照射すること
を特徴とするイオンビームデポジション方法。
(1) A reactive gas atmosphere is formed on the sample surface, and a finely focused ion beam is irradiated onto the sample surface through the reactive gas atmosphere, so that the ion beam irradiation position on the sample surface is exposed to the reactive gas. An ion beam deposition method in which a reaction product of a gas is deposited, characterized in that the ion beam is irradiated in a pulsed manner.
JP28252387A 1987-11-09 1987-11-09 Ion beam deposition method Expired - Lifetime JPH0633450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28252387A JPH0633450B2 (en) 1987-11-09 1987-11-09 Ion beam deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28252387A JPH0633450B2 (en) 1987-11-09 1987-11-09 Ion beam deposition method

Publications (2)

Publication Number Publication Date
JPH01127671A true JPH01127671A (en) 1989-05-19
JPH0633450B2 JPH0633450B2 (en) 1994-05-02

Family

ID=17653561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28252387A Expired - Lifetime JPH0633450B2 (en) 1987-11-09 1987-11-09 Ion beam deposition method

Country Status (1)

Country Link
JP (1) JPH0633450B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9061782B2 (en) 2009-03-26 2015-06-23 Nestec S.A. Fitment indexer for a pouch filler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9061782B2 (en) 2009-03-26 2015-06-23 Nestec S.A. Fitment indexer for a pouch filler

Also Published As

Publication number Publication date
JPH0633450B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
JPH02217469A (en) Formation of thin film and forming device
JP2655094B2 (en) Electron gun deposition equipment
JPH01127671A (en) Ion beam deposition method
Wandass et al. Secondary ion formation from Langmuir-Blodgett films: Studies of positive molecular ions
JPS61238962A (en) Method and apparatus for forming film
JPH04242933A (en) Formation of oxide film
JPS62297462A (en) Formation of film in vacuum at high rate
JPH03276719A (en) Digital etching method
JPS59197560A (en) Metal deposition utilizing laser
Wang et al. Enhanced removal of X-ray-induced carbon contamination using radio-frequency Ar/H2 plasma
JP3513730B2 (en) Laser annealing equipment
RU1814665C (en) Method of producing amorphous metallic films
RU2135633C1 (en) Method of vacuum deposition of thin films
JPS60236215A (en) Laser cvd method
JPH02183530A (en) Manufacture of semiconductor element
JPS6293366A (en) Manufacture of boron nitride film
JPS6175528A (en) Si surface processing by irradiation of multiple laser beam
OIKAWA PHOTOCHEMICAL VAPOR DEPOSITION OF ALUMINUM THIN FILMS MITSUGU HANABUSA AKIRA OIKAWA*, PENG YING CAI, SHIGEO FURUNO AND ATOSHI IGUCHI
Hanabusa et al. Photochemical Vapor Deposition of Aluminum Thin Films
JPH04343223A (en) Semiconductor surface etching method
JPH0559991B2 (en)
JPH03285061A (en) Cleaning method by sputtering
JPS63206387A (en) Production of diamond thin film
JPS59127840A (en) Deposition of organic film and device therefor
JPS60224776A (en) Thin film forming device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 14