JPS60224776A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPS60224776A
JPS60224776A JP8020684A JP8020684A JPS60224776A JP S60224776 A JPS60224776 A JP S60224776A JP 8020684 A JP8020684 A JP 8020684A JP 8020684 A JP8020684 A JP 8020684A JP S60224776 A JPS60224776 A JP S60224776A
Authority
JP
Japan
Prior art keywords
gas
evaporation source
evaporating
source
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8020684A
Other languages
Japanese (ja)
Inventor
Sumio Ikegawa
純夫 池川
Yoshiaki Terajima
喜昭 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8020684A priority Critical patent/JPS60224776A/en
Publication of JPS60224776A publication Critical patent/JPS60224776A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To provide a thin film forming device which suppresses contamination of an evaporating source and suppresses the evaporating rate from the evaporating source and the change of an evaporating component in the stage of forming a film contg. the material evaporating from the evaporating source as one component in a gas discharge atmosphere by disposing a cover member around said evaporating source. CONSTITUTION:Preferably a gas consisting essentially of hydrocarbon is supplied through a gas introducing pipe 3 into a vacuum vessel 1 and the gas is discharged by a coiled discharge electrode 5 to evaporate the evaporating source 7 consisting of a metal such as Ag, etc. or metalloid such as Te, etc. by resistance heating or electric heating with an electron gun in the gas discharge atmosphere. The evaporating molecules form the discharge polymerized film consisting of the org. metal on a substrate 8 facing the source 7. The cover member 9 made of a stainless steel or the like which has heat resistance and decreases adsorption and release of gas is disposed around the source 7 and a crucible 6 in this stage and the top surface 10 of the member 9 is made preferably of a meshed or perforated plate to prevent the contamination of the source 7.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、イオン化又は活性化された気体中で、蒸発源
から蒸発した物質をひとつの成分とする膜を形成するに
好適な膜形成装置、特にその物質の蒸発速度の変化を抑
制可能な膜形成装置に関するものである。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a film forming apparatus suitable for forming a film in which one component is a substance evaporated from an evaporation source in an ionized or activated gas. In particular, the present invention relates to a film forming apparatus capable of suppressing changes in the evaporation rate of the substance.

〔従来技術およびその問題点〕[Prior art and its problems]

従来より炭化物、酸化物、窒化物、硫化物等の化合物は
、融点が高い場合には蒸発させにくく、また融点が低く
とも蒸発源組成と形成された膜組成とに差異がでる、と
いう2つの理由がら、通常の真空蒸着によって膜を形成
することは難しがった。これらの困歎を克服するためK
、放電圧よってイオン化又は活性化した酸素気体、窒素
気体。
Traditionally, compounds such as carbides, oxides, nitrides, and sulfides have two problems: when their melting points are high, they are difficult to evaporate, and even when their melting points are low, there is a difference between the evaporation source composition and the formed film composition. For these reasons, it has been difficult to form a film by ordinary vacuum deposition. In order to overcome these difficulties, K.
, oxygen gas, nitrogen gas ionized or activated by discharge voltage.

硫黄気体、又は炭化水素気体等の雰囲気中で金属又は半
金属を蒸発させて酸化物、窒化物、硫化物又は炭化物等
の膜を形成することが行なわれるようになった。棟た、
このような方法により例えば有様重合膜中に金6又は半
金属が分散した膜等。
BACKGROUND ART It has become common practice to evaporate metals or semimetals in an atmosphere of sulfur gas or hydrocarbon gas to form films of oxides, nitrides, sulfides, carbides, or the like. It was the last time.
By such a method, for example, a film in which gold 6 or a metalloid is dispersed in a polymerized film.

通常の真空蒸着では得られないような構造を持った膜が
形成されるようになった。
It has become possible to form films with structures that cannot be obtained with normal vacuum evaporation.

ところで、上記のような膜形成法を用いた場合、放電圧
よって気体分子と蒸発分子、および気体分子同志の反応
が促進されて良質の膜が得られるわけであるが、それら
のみならず、気体分子と蒸発源、気体分子と蒸発源の加
熱機構が反応する場合がある。さらKは放゛へ気体中で
の反応生成物が蒸発源とその加熱機構に付着する場合が
ある。これら、蒸発源の反応生成物による汚染は、蒸発
源からの蒸発速度や蒸発成分を変化させることから。
By the way, when using the above-mentioned film formation method, the discharge voltage promotes reactions between gas molecules and evaporated molecules, as well as reactions between gas molecules, resulting in a high-quality film. There may be reactions between molecules and the evaporation source, and between gas molecules and the heating mechanism of the evaporation source. Furthermore, reaction products in the gas may adhere to the evaporation source and its heating mechanism. Contamination by these reaction products of the evaporation source changes the evaporation rate and evaporation components from the evaporation source.

膜質の劣化を招く、という問題を引き起こす。また%膜
形成装置においても加熱機構の反応生成物による汚染、
さらには劣化が問題となる。
This causes the problem of deterioration of film quality. Also, in film forming equipment, contamination due to reaction products of the heating mechanism,
Furthermore, deterioration becomes a problem.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、蒸発源とその加熱機構のまわりにカバ
一部材を配することによって上記反応生成物による汚染
の問題を克服し、蒸発源からの蒸発速度および蒸発成分
の変化を抑制することにある。
An object of the present invention is to overcome the problem of contamination caused by the reaction products mentioned above by disposing a cover member around the evaporation source and its heating mechanism, and to suppress changes in the evaporation rate and evaporation components from the evaporation source. It is in.

〔発明の概要〕[Summary of the invention]

蒸発源とその加熱機構を汚染する反応生成物は、放電気
体のプラズマ中又は固体とプラズマとの接触部分で生成
されるものである。よって、カバ一部材を蒸発源近傍に
設置して、蒸発源とその加熱機構をプラズマから遮蔽す
ることによって、上記本発明の目的が達成される。
Reaction products that contaminate the evaporation source and its heating mechanism are generated in the plasma of the electrical discharge body or at the contact portion between the solid and the plasma. Therefore, the above object of the present invention can be achieved by installing a cover member near the evaporation source to shield the evaporation source and its heating mechanism from plasma.

以下、本発明の具体的な実施例について添付図面を参照
して詳細に説明する。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings.

〔発明の実施例〕[Embodiments of the invention]

第1図は気体放電界囲気中で蒸着するための膜形成装置
の概略断面図である。この装置では、真空槽1が排気管
2を介して真空ポンプA(図示せず)に接続され、初期
圧力としてlXl0−5Torr以下まで排気される。
FIG. 1 is a schematic cross-sectional view of a film forming apparatus for deposition in a gas discharge field. In this apparatus, a vacuum chamber 1 is connected to a vacuum pump A (not shown) via an exhaust pipe 2, and is evacuated to an initial pressure of 1X10-5 Torr or less.

次に真空槽1内に通じた気体導入管3によって炭化水素
ガスを供給し、排気管2の途中に設けられた主パルプ4
によって排気能力を調整して、真空槽内の圧力が1〜l
Xl0’Torr K設定される。この圧力は、10 
’Torr以下では放電が不安定となり、またl To
rr以上では蒸発分子が基板に到達しにくくなる。導入
されたガスCは、高周波電源B(図示せず)によって1
356MHzの高周波が通電されたコイル状放電電極5
により放電を起こし、活性ガスプラズマが真空槽内に広
がる。
Next, hydrocarbon gas is supplied through a gas introduction pipe 3 leading into the vacuum chamber 1, and a main pulp 4 provided in the middle of the exhaust pipe 2 is supplied with hydrocarbon gas.
Adjust the exhaust capacity by
Xl0'Torr K is set. This pressure is 10
' Below Torr, the discharge becomes unstable and l To
Above rr, it becomes difficult for the evaporated molecules to reach the substrate. The introduced gas C is heated to 1 by a high frequency power source B (not shown).
Coiled discharge electrode 5 energized with a high frequency of 356MHz
This causes a discharge and active gas plasma spreads within the vacuum chamber.

真空槽内にはあらかじめ、抵抗加熱されるるつぼ6およ
び金属又は半金属の蒸発源7が設置され、ここからの蒸
発分子が活性ガスプラズマ中を通って、基板8に到達す
る。
A resistance-heated crucible 6 and a metal or metalloid evaporation source 7 are installed in advance in the vacuum chamber, and evaporated molecules from the crucible 6 pass through active gas plasma and reach the substrate 8 .

このような方法によって、例えば導入する気体としてC
H,ガス、蒸発源としてAg 又はTeを選ぶと、基板
8上に、メタン重合膜中にアルキルAg又はアルキルT
e 、およびAg原子又はTe原子が混在した嗅が形成
される。以下ではこれらを有機金属放電重合膜と呼ぶ。
By such a method, for example, C as the gas to be introduced.
When Ag or Te is selected as H, gas, or evaporation source, alkyl Ag or alkyl T is formed in the methane polymer film on the substrate 8.
e, and an odor in which Ag atoms or Te atoms are mixed is formed. These are hereinafter referred to as organometallic discharge polymerized films.

この有機金属放電重合膜は、レーザー光を用いて情報の
記録および読み取りを行う光学的情報記録媒体として高
い性能を持ち1特にその高感度性と長期安定性が知られ
ている。
This organometallic discharge polymerized film has high performance as an optical information recording medium for recording and reading information using laser light, and is particularly known for its high sensitivity and long-term stability.

ところで、これら有機金属放電重合膜を形成する際に、
蒸発源7とるつt”l 6が反応生成物によって汚染さ
れることが問題となるのは前述した通りである。そこで
、本発明では蒸発源7およびるつぼ6の周囲に接地され
たカバ一部材9を配した。
By the way, when forming these organometallic discharge polymerized films,
As mentioned above, the problem is that the evaporation source 7 and the crucible 6 are contaminated by reaction products. Therefore, in the present invention, a cover member grounded around the evaporation source 7 and the crucible 6 is used. 9 was placed.

その詳細な断面図を第2図に示す。A detailed sectional view thereof is shown in FIG.

蒸発源の上方に位置するカバ一部材の上面10は蒸発分
子が通過するため圧線目状又は穴あき板状となっている
ことが必要である。また、プラズマの侵入を食い止める
ためには、カバ一部材上面10の各穴の開口径、抵抗加
熱用通電路(図示せず)を通すだめの開口径、およびカ
バ一部材内側の壁面間距離が、真空槽内の気体の平均自
由行程と同穆度か若しくけそれ以下であることが望まし
い。カバ一部拐の材質には、耐熱性があり気体の吸着、
放出等が少ないもの、例えばステンレス鋼等を選ぶこと
が望ましい。以上の要求を満たせば、カバ一部材がどん
な形状であっても、またカバ一部材全体が網目状若しく
は穴あき板状の同一の材料であっても、同じ効果を生み
出せる。イ0し、カバ一部材上面10の内側には、蒸発
分子が凝固するため、容易に取りはずして付着物を取り
除くことのできる構造圧することが望ましい。
The upper surface 10 of the cover member located above the evaporation source needs to be in the shape of a pressure line or a perforated plate in order for the evaporated molecules to pass through. In addition, in order to prevent plasma from entering, the opening diameter of each hole in the upper surface 10 of the cover member, the opening diameter of the hole through which the resistance heating conduction path (not shown) is passed, and the distance between the inner walls of the cover member must be adjusted. It is desirable that the ductility is the same as or less than the mean free path of the gas in the vacuum chamber. The material of the hippopotamus has heat resistance, adsorption of gas,
It is desirable to choose a material that releases less emissions, such as stainless steel. As long as the above requirements are met, the same effect can be produced no matter what shape the cover member has or even if the entire cover member is made of the same material in the form of a mesh or a perforated plate. However, since evaporated molecules solidify on the inside of the upper surface 10 of the cover member, it is desirable to have a structural pressure that can be easily removed to remove deposits.

以下では、このカバ一部材の効果を調べた実験結果の一
例について述べる。導入気体としてCH。
Below, an example of the results of an experiment investigating the effect of this cover member will be described. CH as introduced gas.

ガス、蒸発源としてAg、カバ一部材としてステンレス
鋼網を使用して有機金属放電重合膜を形成した場合であ
る。実験は、あらかじめ導入され5mTorrの圧力に
設定されたCH4ガス中で、るつは温度を一定に保って
Agを蒸発させ、Agの蒸発速度を逐次測定した。第3
図は放電電力200Wの場合の実験結果を示したもので
あり、横軸は時間、縦軸はAgの蒸発速度である。カバ
一部材を用いない場合(一点鎖線a)放電開始後1分で
蒸発速度が2分の1以下になるのに対して、カバ一部材
を設置する(実線b)と、放電開始後20分以上蒸発速
度が変化しない小実が認められた。これは、カバ一部材
を用いない場合、放電が開始(0点)されると蒸発源表
面に炭素又は炭化物の被膜が形成されてしまうことがひ
とつの原因と考えられる。1だ、るつぼの耐用時間も飛
開的に伸びた。
This is a case where an organometallic discharge polymerized film was formed using gas, Ag as an evaporation source, and stainless steel mesh as a cover member. In the experiment, Ag was evaporated while keeping the temperature constant in CH4 gas introduced in advance and set at a pressure of 5 mTorr, and the evaporation rate of Ag was successively measured. Third
The figure shows the experimental results when the discharge power was 200 W, where the horizontal axis is time and the vertical axis is the evaporation rate of Ag. When the cover material is not used (dotted chain line a), the evaporation rate decreases to less than half within 1 minute after the start of discharge, whereas when the cover material is installed (solid line b), the evaporation rate is reduced to less than 1/2 after 20 minutes after the start of discharge. Small fruits with no change in evaporation rate were observed. One reason for this is thought to be that when a cover member is not used, a film of carbon or carbide is formed on the surface of the evaporation source when discharge starts (point 0). First, the lifespan of the crucible has increased dramatically.

以上より、カバ一部材9を用いて蒸発源の汚染を抑制す
ることKより均質かつ良質の有機金属重合膜を形成する
ことができ、また蒸発源の加熱手段の劣化を抑制するこ
とができる。この方法は、蒸発源としてAgのみならず
、At、Au、In等の金属又はTe 、Bi 、 S
e 、Si 、Ge等の半金属に対しても有効であり、
また導入する気体としてCH。
As described above, by using the cover member 9 to suppress contamination of the evaporation source, a more homogeneous and better quality organometallic polymer film can be formed, and deterioration of the heating means of the evaporation source can be suppressed. This method uses not only Ag as an evaporation source but also metals such as At, Au, and In, or Te, Bi, and S.
It is also effective for semimetals such as e, Si, Ge, etc.
Also, CH is introduced as a gas.

ガスのみならず、炭化水素ガスあるいはこれと不活性ガ
スとの混合ガスである場合も有効である。
It is effective not only for gases but also for hydrocarbon gases or mixtures of hydrocarbon gases and inert gases.

以−ヒ、本発明を例示したが、上述した実施例は本発明
の技術的思想に基いて多くの変形が可能である。例えば
カバ一部材の効果は、蒸発源とその加熱手段に限定され
るものではなく、真空槽内の他の部材で反応生成物に汚
染されることが問題となるような箇所、例えばシャッタ
ーや基板の回転機構等にも適用し得る。また、蒸発源の
加熱手段が抵抗加熱のみならず電子銃加熱装置でも可能
であり、放電を引き起こすための電極が真空槽外に設置
されても可能であり、その電極形状が対向電極でも可能
であることは勿論である。
Although the present invention has been exemplified above, the embodiments described above can be modified in many ways based on the technical idea of the present invention. For example, the effect of the cover material is not limited to the evaporation source and its heating means, but also to other parts in the vacuum chamber where contamination with reaction products is a problem, such as the shutter and the substrate. It can also be applied to rotation mechanisms, etc. In addition, the heating means for the evaporation source can be not only resistance heating but also an electron gun heating device, the electrode for causing the discharge can be installed outside the vacuum chamber, and the electrode shape can also be a counter electrode. Of course there is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明Kかかる膜形成法を実施するために適
する装置例の概略断面図である。第2図は第1図におけ
る蒸発源周辺の部分拡大断面図である。第3図は本発明
の効果を示す実験例である。 1・・・真空槽、2 ・排気管、3・・・気体導入管、
4・・主パルプ、5・・・コイル状放電電極、6・・・
るつは、7・・・蒸発源、8・・・基板、9・・・カバ
一部材、10・・・カバ一部材上面。 代理人 弁理士 則 近 憲 佑(ほか1名)第1図 第2図 1ρ / 第3図 叫也奇←峠
FIG. 1 is a schematic cross-sectional view of an example of an apparatus suitable for implementing the film forming method according to the present invention. FIG. 2 is a partially enlarged sectional view of the vicinity of the evaporation source in FIG. 1. FIG. 3 is an experimental example showing the effects of the present invention. 1... Vacuum chamber, 2 - Exhaust pipe, 3... Gas introduction pipe,
4... Main pulp, 5... Coiled discharge electrode, 6...
7... Evaporation source, 8... Substrate, 9... Cover member, 10... Upper surface of cover member. Agent: Patent attorney Kensuke Chika (and 1 other person) Figure 1 Figure 2 1ρ / Figure 3 Keiyaki←Toge

Claims (1)

【特許請求の範囲】 (1)蒸発源とこれに対向した基板と勿体導入管とかに
空槽内圧配置され、真空槽内に導入された気体を放電さ
せ、その気体放電雰囲気中で前記蒸発源より蒸発させた
物質を成分として含む膜を前記(2)蒸発源の加熱手段
が抵抗加熱装置からなることを特徴とする特許請求の範
囲第1項記載の薄膜形成装置。 (3)蒸発源の加熱手段が電子銃加熱装置からなること
を特徴とする特許請求の範囲第1項記載の薄膜形成装置
。 (4)気体を放電させる手段が、真空槽内又は真空槽外
の少なくとも一方に配され、対向電極又はコイル状箱1
極を持つ放電装置からなることを特徴とする特許請求の
範囲第1項記載の薄膜形成装置。 (5)カバ一部材の蒸発源から見た基板側の部分が、網
目状又は穴あき板状であることを特徴とする特許請求の
範囲第1項記載の薄膜形成P置。 (6)蒸発源がAg 、At、At+ 、 In等の金
属あるいはTe、Bi 、Se、Si 、Oe等の半金
属のうちの1種であることを特徴とする特許請求の範囲
第1項記載の薄膜形成装置。 (7)真空槽内圧導入し放電させる気体が炭化水素ガス
あるいはこれと不活性ガスとの混合であることを特徴と
する特許請求の範囲第1頌記載のiWv!形成装置。
[Scope of Claims] (1) An evaporation source, a substrate facing the evaporation source, a waste introduction tube, etc. are arranged under an internal pressure of an empty chamber, and the gas introduced into the vacuum chamber is discharged, and the evaporation source is placed in the gas discharge atmosphere. 2. The thin film forming apparatus according to claim 1, wherein the heating means of the evaporation source (2) comprises a resistance heating device to form a film containing a substance that has been evaporated as a component. (3) The thin film forming apparatus according to claim 1, wherein the heating means for the evaporation source comprises an electron gun heating device. (4) A means for discharging gas is arranged at least either inside the vacuum chamber or outside the vacuum chamber, and the counter electrode or the coiled box 1
2. The thin film forming apparatus according to claim 1, comprising a discharge device having a pole. (5) The thin film forming apparatus according to claim 1, wherein the portion of the cover member on the substrate side when viewed from the evaporation source has a mesh shape or a perforated plate shape. (6) Claim 1, characterized in that the evaporation source is one of metals such as Ag, At, At+, In, or metalloids such as Te, Bi, Se, Si, Oe, etc. thin film forming equipment. (7) The iWv! according to claim 1, characterized in that the gas introduced into the vacuum chamber and discharged is a hydrocarbon gas or a mixture thereof with an inert gas! Forming device.
JP8020684A 1984-04-23 1984-04-23 Thin film forming device Pending JPS60224776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8020684A JPS60224776A (en) 1984-04-23 1984-04-23 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8020684A JPS60224776A (en) 1984-04-23 1984-04-23 Thin film forming device

Publications (1)

Publication Number Publication Date
JPS60224776A true JPS60224776A (en) 1985-11-09

Family

ID=13711910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8020684A Pending JPS60224776A (en) 1984-04-23 1984-04-23 Thin film forming device

Country Status (1)

Country Link
JP (1) JPS60224776A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104651780A (en) * 2015-03-11 2015-05-27 丹阳市鼎新机械设备有限公司 Special positive electron element vapor generator for coating film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104651780A (en) * 2015-03-11 2015-05-27 丹阳市鼎新机械设备有限公司 Special positive electron element vapor generator for coating film

Similar Documents

Publication Publication Date Title
US5055319A (en) Controlled high rate deposition of metal oxide films
JPS6135269B2 (en)
US5283095A (en) Optical recording medium comprising (1,1,1) aluminum
de Jesus et al. Influence of argon ion bombardment on the oxidation of nickel surfaces
JPS60224776A (en) Thin film forming device
US5449535A (en) Light controlled vapor deposition
JPS61235560A (en) Magnetron sputtering device
JPS5814328A (en) Production of magnetic recording medium
Hohl et al. A comparative high-resolution electron microscope study of Ag clusters produced by a sputter-gas aggregation and ion cluster beam technique
JPH06331516A (en) Method for depositing metal film by dc glow discharge
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
JPS6046372A (en) Thin film forming method
JPS58100232A (en) Manufacture of magnetic recording medium
Holland et al. The reduction of Ag2S and treatment of paper in a magnetron glow discharge
JPH02115359A (en) Formation of compound thin film and device therefor
JPH09249413A (en) Formation of lanthanum boride
JPS61235562A (en) Magnetron sputtering device
Chujo et al. Reactivity of N2 with Fe in FeNx formation by activated reactive evaporation process
JPH0444812B2 (en)
JPH0328045B2 (en)
JPS60178622A (en) Manufacture of semiconductor device
RU1814665C (en) Method of producing amorphous metallic films
JPS62229550A (en) Method and apparatus for producing optical disk
JPH0758021A (en) Thin film forming apparatus
JPH0522590B2 (en)