JPH01127047A - Double-bed type ion-exchange apparatus - Google Patents
Double-bed type ion-exchange apparatusInfo
- Publication number
- JPH01127047A JPH01127047A JP62284999A JP28499987A JPH01127047A JP H01127047 A JPH01127047 A JP H01127047A JP 62284999 A JP62284999 A JP 62284999A JP 28499987 A JP28499987 A JP 28499987A JP H01127047 A JPH01127047 A JP H01127047A
- Authority
- JP
- Japan
- Prior art keywords
- ion exchange
- layer
- resin
- strong
- resin layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005342 ion exchange Methods 0.000 title claims abstract description 46
- 239000011347 resin Substances 0.000 claims abstract description 122
- 229920005989 resin Polymers 0.000 claims abstract description 122
- 239000007788 liquid Substances 0.000 claims abstract description 51
- 239000003792 electrolyte Substances 0.000 claims abstract description 45
- 239000007785 strong electrolyte Substances 0.000 claims abstract description 39
- 230000008929 regeneration Effects 0.000 claims abstract description 32
- 238000011069 regeneration method Methods 0.000 claims abstract description 32
- 239000003456 ion exchange resin Substances 0.000 claims abstract description 17
- 229920003303 ion-exchange polymer Polymers 0.000 claims abstract description 17
- 238000005192 partition Methods 0.000 claims abstract description 14
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 7
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 14
- 230000001172 regenerating effect Effects 0.000 claims description 5
- 238000005349 anion exchange Methods 0.000 claims description 4
- 238000005341 cation exchange Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 16
- 238000011001 backwashing Methods 0.000 abstract description 8
- 230000006866 deterioration Effects 0.000 abstract description 6
- 238000007599 discharging Methods 0.000 abstract description 3
- 230000002265 prevention Effects 0.000 abstract 1
- 239000002699 waste material Substances 0.000 description 14
- 239000003957 anion exchange resin Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 239000012492 regenerant Substances 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は強、弱電解質イオン交換樹脂を同一樹脂塔内
に充填した複層式イオン交換装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a multi-layer ion exchange device in which strong and weak electrolyte ion exchange resins are packed in the same resin column.
複層式イオン交換装置として、弱電解質イオン交換樹脂
(以下、弱電解質樹脂と記す)を上部に。As a multi-layer ion exchange device, a weak electrolyte ion exchange resin (hereinafter referred to as weak electrolyte resin) is placed at the top.
強電解質イオン交換樹脂(以下、強電解質樹脂と記す)
を下部に充填し、下向流で被処理液を通液してイオン交
換処理を行い、通液停止後通常は樹脂床全体にわたる逆
洗を行わないで、下部の強電解質樹脂を上向流で再生し
、その再生排液をそのまま上向流で流して上部の弱電解
質樹脂を再生するものがある。Strong electrolyte ion exchange resin (hereinafter referred to as strong electrolyte resin)
is filled in the lower part, and the liquid to be treated is passed in a downward flow to perform ion exchange treatment, and after the liquid flow is stopped, the strong electrolyte resin in the lower part is normally flowed upward without backwashing the entire resin bed. There is one that regenerates the weak electrolyte resin in the upper part by flowing the regenerated waste liquid upwardly.
このような複層式イオン交換装置では、弱電解質樹脂と
強電解質樹脂を比重差のみで分離し充填している。この
ため樹脂の劣化、破損等で樹脂の混りが生じ、効率の低
下や処理水水質性能低下を起こしやすくなる。また再生
時の樹脂の乱れを防止するために、再生排液の排液装置
を樹脂層上面より下がった位置に設けており、このため
上記排液装置より上の押え樹脂は再生されず、イオン交
換に寄与しないことになる。In such a multi-layer ion exchange device, a weak electrolyte resin and a strong electrolyte resin are separated and filled based only on the difference in specific gravity. For this reason, resin mixing occurs due to resin deterioration, breakage, etc., which tends to cause a decrease in efficiency and a decrease in the quality of treated water. In addition, in order to prevent disturbance of the resin during regeneration, a drainage device for recycled waste liquid is provided at a position lower than the top surface of the resin layer. Therefore, the presser resin above the drainage device is not regenerated and ions are removed. It will not contribute to the exchange.
このような点を改善するために、複層式イオン交換装置
の再生に際し、再生剤を強電解質樹脂層の下から上向流
で流入させ、強1弱電解質樹脂層の中間部より下に位置
する排液装置から排出させて強電解質樹脂を再生し、排
出された再生排液を回収後、弱電解質樹脂層の上から下
向流で流入させ、再び上記排液装置から排出させて弱電
解質樹脂を再生するようにした複層式イオン交換装置が
提案されている(特開昭53−123382〜3号)。In order to improve this problem, when regenerating a multi-layer ion exchange device, the regenerant is flowed in from below the strong electrolyte resin layer in an upward flow, and the regenerating agent is placed below the middle part of the strong and weak electrolyte resin layers. The strong electrolyte resin is regenerated by discharging the liquid from the drainage device, and after collecting the discharged regenerated liquid, it flows downward from above the weak electrolyte resin layer, and is discharged from the drainage device again to regenerate the weak electrolyte. A multi-layer ion exchange device designed to regenerate resin has been proposed (Japanese Patent Application Laid-open No. 53-123382-3).
しかしながら上記の複層式イオン交換装置では、排液装
置が強、弱電解質樹脂層の中間部より下に設けられてお
り、上部の弱電解質樹脂層全体が再生され、上部に再生
されない無駄な樹脂が生じないが、強、弱電解質樹脂は
隔離されていないため、強電解質樹脂層の逆洗ができな
いとともに、両樹脂が混合して、イオン交換効率および
再生効率が悪くなるという問題点があった。However, in the above-mentioned multi-layer ion exchange device, the drainage device is provided below the middle part of the strong and weak electrolyte resin layers, and the entire upper weak electrolyte resin layer is regenerated, and the wasteful resin that is not regenerated is removed from the upper part. However, because the strong and weak electrolyte resins are not separated, the strong electrolyte resin layer cannot be backwashed, and the two resins mix, resulting in poor ion exchange efficiency and regeneration efficiency. .
一方、複層式イオン交換装置において1強、弱電解質樹
脂層の中間部に樹脂を遮断する通液性の膜を介在させて
両樹脂層を隔離するものがあるが(特開昭56−656
37号)、全体を上向流で再生するため、上部の弱電解
質樹脂が流動化し、再生効率が悪いとともに、下層の強
電解質樹脂の逆洗ができないという問題点があった。On the other hand, there is a multi-layer ion exchange device in which a liquid-permeable membrane is interposed between the strong and weak electrolyte resin layers to isolate both resin layers (Japanese Patent Laid-Open No. 56-656
No. 37), since the entire system is regenerated in an upward flow, the weak electrolyte resin in the upper layer becomes fluidized, resulting in poor regeneration efficiency, and there are problems in that the strong electrolyte resin in the lower layer cannot be backwashed.
本発明の目的は、上記問題点を解決するために、強、弱
電解質樹脂の混合を防止して、処理水水質性能低下を生
じることを防ぐとともに、イオン交換効率および再生効
率を高くでき、さらに全体の樹脂を効率よく再生して無
駄な樹脂をなくし、かつ弱電解質樹脂層、強電解質樹脂
層および強電解質樹脂層の排液装置の上部樹脂を各々逆
洗可能な複層式イオン交換装置を提供することである。The purpose of the present invention is to solve the above-mentioned problems by preventing mixing of strong and weak electrolyte resins, preventing deterioration in the quality of treated water, and increasing ion exchange efficiency and regeneration efficiency. A multilayer ion exchange device that efficiently regenerates the entire resin, eliminates wasted resin, and backwashes the upper resin of the weak electrolyte resin layer, strong electrolyte resin layer, and strong electrolyte resin layer drainage device. It is to provide.
本発明は、イオン交換塔の下部に充填された強電解質イ
オン交換樹脂層およびその上部に充填された弱電解質イ
オン交換樹脂層と1両樹脂層を隔離するようにその中間
部に設けられた通液可能で樹脂の通過を遮断する隔壁と
、それぞれ両樹脂層の上部に設けられた逆洗空間と2強
電解質イオン交換樹脂層の上面より若干下がった位置に
配置された排液装置とを備え、弱電解質イオン交換樹脂
層の上部から下向流で両樹脂層に通液してイオン交換を
行い、再生剤を強電解質イオン交換樹脂層の下部から上
向流で流し、上記排液装置から回収して弱電解質イオン
交換樹脂層の上部から下向流で流し、再び上記排液装置
から排出して再生を行うようにした複層式イオン交換装
置である。The present invention provides a strong electrolyte ion exchange resin layer filled in the lower part of an ion exchange tower and a weak electrolyte ion exchange resin layer filled in the upper part of the ion exchange column, and a communication layer provided in the middle so as to separate the two resin layers. Equipped with a partition wall that allows liquid to flow and blocks the passage of resin, a backwash space provided above both resin layers, and a drain device located slightly below the top surface of the two strong electrolyte ion exchange resin layers. , ion exchange is performed by flowing a liquid through both resin layers from the upper part of the weak electrolyte ion exchange resin layer in a downward flow, and the regenerant is flowed in an upward flow from the lower part of the strong electrolyte ion exchange resin layer, and from the above liquid drainage device. This is a multi-layer ion exchange device in which the liquid is collected, flows downward from above the weak electrolyte ion exchange resin layer, and is discharged again from the drainage device for regeneration.
イオン交換塔としては、カチオン交換塔およびアニオン
交換塔のいずれでもよい。The ion exchange tower may be either a cation exchange tower or an anion exchange tower.
本発明の複層式イオン交換装置においては、弱電解質樹
脂層の上部から下向流で両樹脂層に通液してイオン交換
を行い、再生剤を強電解質樹脂層の下部から上向流で流
入させ、排液装置から回収して弱電解質樹脂層の上部か
ら下向流で流入させ。In the multi-layer ion exchange device of the present invention, ion exchange is performed by flowing liquid through both resin layers from the upper part of the weak electrolyte resin layer in a downward flow, and the regenerant is introduced in an upward flow from the lower part of the strong electrolyte resin layer. The liquid is collected from the drainage device and flows downward from the top of the weak electrolyte resin layer.
再び上記排液装置から排出して再生を行う。The liquid is drained from the drain device again and regenerated.
この場合、強1弱電解質樹脂は隔壁で隔離されているた
め混合せず、イオン交換効率および再生効率は高い。そ
して両樹脂層とも各々の逆洗が可能でSS等を除去でき
る。逆洗は樹脂へのSS汚染を防ぐため1回の再生ごと
にできるのが望ましいが、本方式ではSSがたまりやす
い排液装置より上の強電解質樹脂および弱電解質樹脂層
については1回の再生ごとに逆洗を行うことができる。In this case, the strong and weak electrolyte resins are separated by the partition walls, so they do not mix, and the ion exchange efficiency and regeneration efficiency are high. Both resin layers can be backwashed to remove SS and the like. It is desirable to backwash the resin after each regeneration to prevent SS contamination, but in this method, the strong electrolyte resin and weak electrolyte resin layers above the drainage device where SS tends to accumulate are regenerated once. Backwashing can be performed every time.
排液装置より下の強電解質樹脂については効率低下をさ
せないため毎回行わないで、差圧上昇の都度、例えば1
4〜30回の再生ごとに行うことができる。For the strong electrolyte resin below the drainage device, do not do it every time to avoid reducing the efficiency, but do it every time the differential pressure increases, for example 1.
This can be done every 4 to 30 plays.
再生に際しては、排液装置より下部の強電解質樹脂層は
向流再生のため完全再生され、一方弱電解質樹脂は再生
効率が良いため下層の再生排液を利用しても効率よく再
生できる。このとき強電解質樹脂層の排液装置より下の
樹脂は上から押えられているため樹脂層の乱れはなく、
排液装置より上の強電解質樹脂および弱電解質樹脂層は
下向流のため樹脂層の乱れはないので、効率の良い再生
が行われる。排液装置より上の強電解質樹脂は最後に再
生剤液が通液されるため再生効率は良くないが、再生さ
れる1強電解質樹脂層の最上部に再生不完全部分が残る
けれども、下向流で通液してイオン交換を行う場合にイ
オン交換効率を大きく低下させることにならない。During regeneration, the strong electrolyte resin layer below the drainage device is completely regenerated due to countercurrent regeneration, while the weak electrolyte resin has good regeneration efficiency, so it can be efficiently regenerated even by using the regenerated waste liquid in the lower layer. At this time, the resin below the drainage device of the strong electrolyte resin layer is pressed down from above, so there is no disturbance of the resin layer.
Since the strong electrolyte resin and weak electrolyte resin layers above the liquid draining device flow downward, the resin layers are not disturbed, so that efficient regeneration is performed. The strong electrolyte resin above the drainage device is the last to pass the regenerant solution, so the regeneration efficiency is not good. When ion exchange is performed by passing the liquid through the solution, the ion exchange efficiency will not be significantly reduced.
以下、本発明を図面の実施例に基づいて説明する。第1
図は実施例の複層式イオン交換装置を示す系統図である
。Hereinafter, the present invention will be explained based on embodiments shown in the drawings. 1st
The figure is a system diagram showing a multi-layer ion exchange device according to an embodiment.
図において、1はイオン交換塔で、下部に強電解質樹脂
層2、およびその上部に弱電解質樹脂層3が充填されて
いる0両樹脂層2,3は隔壁4により混合しないように
隔離されており、両樹脂層2.3の上部にはそれぞれ逆
洗空間5.6が設けられている。隔壁4は通液可能で、
樹脂の通過を遮断できる構造となっている0強電解質樹
脂層2の上面より若干下がった位置には排液装置7が設
けられている。またイオン交換塔1の上部および下部に
はそれぞれ給排液装置f8.9が設けられている。lO
は回収タンク、■□〜Vllは弁である。In the figure, 1 is an ion exchange tower filled with a strong electrolyte resin layer 2 at the bottom and a weak electrolyte resin layer 3 at the top.The two resin layers 2 and 3 are separated by a partition wall 4 so as not to mix. Backwash spaces 5.6 are provided above both resin layers 2.3, respectively. The partition wall 4 can pass liquid,
A drain device 7 is provided at a position slightly lower than the upper surface of the zero-strong electrolyte resin layer 2, which has a structure that can block the passage of resin. Further, a liquid supply/drainage device f8.9 is provided at the upper and lower portions of the ion exchange column 1, respectively. lO
is a recovery tank, and ■□ to Vll are valves.
上記の構成において、イオン交換工程は、被処理液をラ
イン11から弁v8.給排液装W8を経てイオン交換塔
1に供給し、弱電解質樹脂層3の上部から下向流で両樹
脂層3,2に通液してイオン交換を行い、給排液装置!
9および弁v4を経てライン12から処理液を取出す。In the above configuration, in the ion exchange step, the liquid to be treated is transferred from the line 11 to the valve v8. The liquid is supplied to the ion exchange tower 1 through the liquid supply/drainage device W8, and the liquid is passed through both resin layers 3 and 2 in a downward flow from the upper part of the weak electrolyte resin layer 3 to perform ion exchange, and then the liquid supply/drainage device!
The processing liquid is taken out from line 12 via 9 and valve v4.
再生工程はまず逆洗工程から始まる。逆洗工程は強電解
質樹脂層2の排液装置7より下部層2aについては毎回
行う必要はなく、SSが蓄積された時点で行えばよいが
、排液装置7より上部の押え樹脂層2bおよび弱電解質
樹脂層3については毎回行うのが好ましい、押え樹脂層
2bと弱電解質樹脂層3の逆洗は、ライン13から弁V
い排液装置7を経て逆洗水を導入し、樹脂層2bの逆洗
は樹脂層2bを展開して逆洗し、排水をライン14から
排出する。The regeneration process begins with a backwashing process. The backwashing process does not need to be carried out every time for the layer 2a below the drainage device 7 of the strong electrolyte resin layer 2, and can be carried out every time SS is accumulated. The backwashing of the holding resin layer 2b and the weak electrolyte resin layer 3, which is preferably performed every time for the weak electrolyte resin layer 3, is carried out from the line 13 to the valve V.
Backwash water is introduced through a drainage device 7, and the resin layer 2b is backwashed by expanding the resin layer 2b, and the waste water is discharged from the line 14.
樹脂層3の逆洗は樹脂層3を展開して逆洗し、排水ライ
ン15から排出する。なお、このとき樹脂層2bは展開
状態となっている0強電解質樹脂層2の逆洗はライン1
6から給排液装置9を経て逆洗水を供給し、強電解質樹
脂層2全体を展開して逆洗し。For backwashing of the resin layer 3, the resin layer 3 is expanded, backwashed, and discharged from the drainage line 15. At this time, the resin layer 2b is in a developed state, and the backwashing of the zero-strong electrolyte resin layer 2 is carried out in line 1.
Backwash water is supplied from 6 through the liquid supply/drainage device 9, and the entire strong electrolyte resin layer 2 is developed and backwashed.
ライン14から逆洗排水を排出する。Backwash waste water is discharged from line 14.
薬注工程は再生剤をライン17から給排液装置9を経て
供給し、強電解質樹脂層2の下部から上向流で流し、一
方ライン13から弁V1t を経てバランス水を流して
、排液装置!7からライン18を経て回収タンク10に
回収し1回収タンクlOの水位がポンプPの運転可能レ
ベルに達した後、バランス水は回収タンク10の回収排
液に切り替え、ライン19から通液する。In the chemical injection process, the regenerant is supplied from the line 17 through the liquid supply/drainage device 9 and flows upward from the bottom of the strong electrolyte resin layer 2, while the balance water is flowed from the line 13 through the valve V1t to drain the liquid. Device! After the water level in the first recovery tank 10 reaches a level at which the pump P can be operated, the balance water is switched to the recovered waste liquid in the recovery tank 10 and is passed through the line 19.
薬注工程の初期は塔内液を押し出すため、酸あるいはア
ルカリ排液が排液装置7まで達しないので、排液は弁v
1゜を経て排出するか、あるいは弁V、を経て回収タン
ク10に回収してもよい。酸あるいはアルカリ排液が排
液装置7から排出される時期から排液は回収タンク10
に回収する。At the beginning of the chemical injection process, the liquid in the column is pushed out, so the acid or alkaline waste liquid does not reach the liquid drain device 7, so the liquid is drained through the valve v.
It may be discharged through 1° or collected into a collection tank 10 through valve V. From the time when the acid or alkali waste liquid is discharged from the drainage device 7, the waste liquid is transferred to the recovery tank 10.
to be collected.
薬注工程後の押出工程で、初めは酸あるいはアルカリ排
液が排液装置7から出るので1回収を続け、酸あるいは
アルカリ排液が出なくなる時期から、排液は弁v1゜を
経て排出する。このとき、上からのバランス水として、
回収した酸あるいはアルカリ排液を通液するため、再生
状態と同等であり、回収タンクlO内の回収排液がなく
なるまで通液する0回収タンクの排液の通液終了後はラ
イン13の弁V1x を経たバランス水で樹脂層3,2
bの押し出しを行い、排液は排液装置7、弁Vta を
経て排出する。その後C水洗のため、被処理液をライン
11から給排液装置8を経て樹脂層3,2に供給し、給
排液装置9から弁v1□を経て排出して再生を終え、再
びイオン交換工程に移る。In the extrusion process after the chemical injection process, the acid or alkaline waste liquid initially comes out from the drain device 7, so one collection is continued, and from the time when the acid or alkaline waste liquid stops coming out, the waste liquid is discharged through the valve v1°. . At this time, as a balance water from above,
Since the recovered acid or alkaline waste liquid is passed through, it is equivalent to the regeneration state, and the liquid is passed until the recovered waste liquid in the recovery tank 10 is exhausted.After the drained liquid in the recovery tank 10 is passed, the valve in line 13 is closed. Resin layers 3 and 2 with balance water that has passed through V1x
Extrusion b is carried out, and the drained liquid is discharged through the draining device 7 and the valve Vta. After that, for C washing, the liquid to be treated is supplied from the line 11 to the resin layers 3 and 2 via the liquid supply/drainage device 8, and then discharged from the liquid supply/drainage device 9 through the valve v1□ to complete the regeneration and ion exchange again. Let's move on to the process.
この場合、強、弱電解質樹脂層2.3は隔壁4で隔離さ
れているため混合せず、処理水水質性能低下を生じない
とともに、イオン交換効率および再生効率は高い。たと
えばアニオン交換塔において、強塩基性アニオン交換樹
脂と弱塩基性アニオン交換樹脂とが混合した状態で通水
すると、強塩基性アニオン交換樹脂出口側に混入した弱
塩基性アニオン交換樹脂によってシリカ等の弱塩基性ア
ニオンがリークして水質低下原因となる。また、強塩基
性アニオン交換樹脂中に混入した弱塩基性アニオン交換
樹脂は中性域のイオン交換となるので、弱塩基性アニオ
ン交換樹脂のイオン交換能力が低下する。またこの状態
で再生すると5強塩基性アニオン交換樹脂中に混入した
弱塩基性アニオン交換樹脂の方が再生されやすいため1
弱塩基性アニオン交換樹脂から脱離した鉱酸イオンによ
って再生剤中の鉱酸イオン濃度が高くなり、強塩基性ア
ニオン交換樹脂の再生効率が低下する。カチオン交換樹
脂の場合も同様であるが、強1弱電解゛質樹脂が混合し
ない場合はこのようなことはなく、イオン交換効率およ
び再生効率は良好である。In this case, the strong and weak electrolyte resin layers 2.3 are separated by the partition wall 4, so they do not mix, and the quality of the treated water does not deteriorate, and the ion exchange efficiency and regeneration efficiency are high. For example, in an anion exchange tower, when water is passed through a mixture of a strongly basic anion exchange resin and a weakly basic anion exchange resin, the weakly basic anion exchange resin mixed into the outlet side of the strongly basic anion exchange resin causes silica, etc. Weakly basic anions leak and cause a decline in water quality. Further, the weakly basic anion exchange resin mixed into the strongly basic anion exchange resin performs ion exchange in the neutral range, so that the ion exchange ability of the weakly basic anion exchange resin decreases. In addition, when regenerated in this state, the weakly basic anion exchange resin mixed in the strongly basic anion exchange resin is easier to regenerate.
The concentration of mineral acid ions in the regenerant increases due to the mineral acid ions desorbed from the weakly basic anion exchange resin, and the regeneration efficiency of the strongly basic anion exchange resin decreases. The same is true for cation exchange resins, but this does not occur when a strong mono-weak electrolyte resin is not mixed, and the ion exchange efficiency and regeneration efficiency are good.
隔壁4がない場合1強、弱電解質樹脂は比重差で分離す
るため、再樹脂層の中間部で混合層が形成されて分離で
きないほか、劣化等により比重差がなくなると、樹脂層
全体に分散して分離できなくなるが、隔壁4がある場合
は劣化等がある場合でも混合することなく完全に分離で
き、処理水水質性能低下を生じることを防ぐとともに、
イオン交換効率および再生効率も高く保てる。If there is no partition wall 4, the electrolyte resin will be 1 strong, and because the weak electrolyte resin will be separated by the difference in specific gravity, a mixed layer will be formed in the middle of the re-resin layer and cannot be separated, and if the difference in specific gravity disappears due to deterioration etc., it will be dispersed throughout the resin layer. However, if there is a partition wall 4, even if there is deterioration etc., it can be completely separated without mixing, preventing a decline in the quality of the treated water, and
Ion exchange efficiency and regeneration efficiency can also be maintained high.
再生に際しては、強電解質樹脂層2を完全再生できる量
の再生剤を通液して再生を行うと、排液装置7より下部
の強電解質樹脂は向流再生のため完全再生され、一方弱
電解質樹脂層3は再生効率が良いため効率よく再生でき
る。たとえばアニオン交換塔において、下部の強電解質
樹脂屑2はシリカ、Mアルカリおよび弱電解質樹脂層3
からリークした鉱酸イオンを吸着し、これらのイオンは
再生により離れるため、再生剤中にそれらが含まれて回
収タンクlOで存在するが、弱電解質樹脂は遊離のアル
カリ(NaOH)があれば再生可能なため、シリカ等の
イオンが存在した再生剤の通液によっても再生効率は低
下しない。During regeneration, when the regenerating agent is passed in an amount that can completely regenerate the strong electrolyte resin layer 2, the strong electrolyte resin below the drain device 7 is completely regenerated due to countercurrent regeneration, while the weak electrolyte resin layer 2 is completely regenerated. The resin layer 3 has good regeneration efficiency and can be regenerated efficiently. For example, in an anion exchange tower, the strong electrolyte resin waste 2 at the bottom is made up of silica, M alkali and weak electrolyte resin layer 3.
Because these ions are released by regeneration, they are included in the regenerant and present in the recovery tank lO, but the weak electrolyte resin can be regenerated if there is free alkali (NaOH). Since this is possible, the regeneration efficiency does not decrease even when a regenerant containing ions such as silica is passed through.
再生剤を通液する際、強電解質樹脂層2の排液装置a7
より下の下部層2aは上から押えられているため樹脂層
の乱れはなく、排液装置7より上の押え樹脂層2bおよ
び弱電解質樹脂層3は下向流のため樹脂層の乱れはなく
、効率の良い再生が行われる。排液装置7より上の押え
樹脂層2bは最後に再生されるため再生効率は良くない
が、従来の樹脂層2の最上部に再生されずに残る部分が
なくなる。When passing the regenerating agent, the drain device a7 of the strong electrolyte resin layer 2
The lower lower layer 2a is pressed from above, so there is no disturbance of the resin layer, and the holding resin layer 2b and the weak electrolyte resin layer 3 above the draining device 7 are flowing downward, so there is no disturbance of the resin layer. , efficient regeneration is performed. The holding resin layer 2b above the draining device 7 is regenerated last, so the regeneration efficiency is not good, but there is no remaining unregenerated portion at the top of the conventional resin layer 2.
以上の通り、本発明によれば1強、弱電解質樹脂層を隔
壁で隔離し、下部の強電解質樹脂屑の上面より若干下が
った位置に排液装置を設けて再生を行うので1強、弱電
解質樹脂の混合を防止して、処理水水質性能低下の発生
を防止し、イオン交換効率および再生効率を高くできる
とともに、全体の樹脂を効率よく再生して無駄な樹脂を
なくシ。As described above, according to the present invention, the 1st strong and weak electrolyte resin layers are isolated by the partition wall, and the drainage device is provided at a position slightly lower than the upper surface of the lower strong electrolyte resin waste for regeneration. It prevents mixing of electrolyte resins, prevents deterioration of treated water quality performance, increases ion exchange efficiency and regeneration efficiency, and efficiently regenerates the entire resin to eliminate wasted resin.
効率的にイオン交換を行うことができる。また両樹脂層
に逆洗空間を設けたため、各樹脂層を逆洗することが可
能で、樹脂層へのSSの影響を少なくすることができ、
かつイオン交換および再生による各樹脂層の容積変化を
吸収して他の層への影響をなくすことができる。Ion exchange can be performed efficiently. In addition, since backwash spaces are provided in both resin layers, each resin layer can be backwashed, reducing the influence of SS on the resin layers.
In addition, it is possible to absorb changes in the volume of each resin layer due to ion exchange and regeneration, thereby eliminating the effect on other layers.
第1図は実施例の系統図であり、1はイオン交換塔、2
は強電解質樹脂層、3は弱電解質樹脂層、4は隔壁、5
,6は逆洗空間、7は排液装置である。
代理人 弁理士 柳 原 成
1:イオン交換塔ぢ多
2:強電解質at脂層
3:弱電#實11寸月す層
4:隔壁
5.6:fL比2間
7:オ井液全叱置Figure 1 is a system diagram of the example, where 1 is an ion exchange column, 2
is a strong electrolyte resin layer, 3 is a weak electrolyte resin layer, 4 is a partition wall, 5
, 6 is a backwash space, and 7 is a drainage device. Agent Patent Attorney Sei Yanagihara 1: Ion exchange tower 2: Strong electrolyte at fat layer 3: Weak electric #11 layer 4: Partition wall 5.6: fL ratio 2 7: Oil liquid completely removed
Claims (2)
交換樹脂層およびその上部に充填された弱電解質イオン
交換樹脂層と、両樹脂層を隔離するようにその中間部に
設けられた通液可能で樹脂の通過を遮断する隔壁と、そ
れぞれ両樹脂層の上部に設けられた逆洗空間と、強電解
質イオン交換樹脂層の上面より若干下がった位置に配置
された排液装置とを備え、弱電解質イオン交換樹脂層の
上部から下向流で両樹脂層に通液してイオン交換を行い
、再生剤を強電解質イオン交換樹脂層の下部から上向流
で流し、上記排液装置から回収して弱電解質イオン交換
樹脂層の上部から下向流で流し、再び上記排液装置から
排出して再生を行うようにした複層式イオン交換装置。(1) A strong electrolyte ion exchange resin layer filled in the lower part of the ion exchange tower, a weak electrolyte ion exchange resin layer filled in the upper part, and a liquid passage provided in the middle to separate both resin layers. It is equipped with a partition wall that can block the passage of resin, a backwash space provided above both resin layers, and a drainage device located slightly below the top surface of the strong electrolyte ion exchange resin layer. Ion exchange is performed by passing liquid through both resin layers from the upper part of the weak electrolyte ion exchange resin layer in a downward flow, and the regenerating agent is flowed in an upward flow from the lower part of the strong electrolyte ion exchange resin layer and is recovered from the above-mentioned drainage device. A multi-layer ion exchange device in which the weak electrolyte ion exchange resin layer is drained in a downward flow from the upper part thereof, and then discharged from the drainage device again for regeneration.
換塔である特許請求の範囲第1項記載の複層式イオン交
換装置。(2) The multilayer ion exchange apparatus according to claim 1, wherein the ion exchange tower is a cation exchange tower or an anion exchange tower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62284999A JP2576155B2 (en) | 1987-11-11 | 1987-11-11 | Multi-layer ion exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62284999A JP2576155B2 (en) | 1987-11-11 | 1987-11-11 | Multi-layer ion exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01127047A true JPH01127047A (en) | 1989-05-19 |
JP2576155B2 JP2576155B2 (en) | 1997-01-29 |
Family
ID=17685834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62284999A Expired - Fee Related JP2576155B2 (en) | 1987-11-11 | 1987-11-11 | Multi-layer ion exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2576155B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011189317A (en) * | 2010-03-16 | 2011-09-29 | Kurita Water Ind Ltd | Ion exchange device |
CN104724791A (en) * | 2014-12-11 | 2015-06-24 | 中机国能电力工程有限公司 | Method for normally operating double-chamber double-layer floating bed under any heat supply working condition |
JP2021181046A (en) * | 2020-05-18 | 2021-11-25 | 三菱ケミカルアクア・ソリューションズ株式会社 | Ion exchange apparatus |
-
1987
- 1987-11-11 JP JP62284999A patent/JP2576155B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011189317A (en) * | 2010-03-16 | 2011-09-29 | Kurita Water Ind Ltd | Ion exchange device |
CN104724791A (en) * | 2014-12-11 | 2015-06-24 | 中机国能电力工程有限公司 | Method for normally operating double-chamber double-layer floating bed under any heat supply working condition |
JP2021181046A (en) * | 2020-05-18 | 2021-11-25 | 三菱ケミカルアクア・ソリューションズ株式会社 | Ion exchange apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2576155B2 (en) | 1997-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4519917A (en) | Counter-current adsorption filters for the treatment of liquids and a method of operating the filter | |
KR20170137816A (en) | Regeneration of the pasty resin | |
TWI483778B (en) | Ion exchange device | |
JP3632331B2 (en) | Ion exchange method and ion exchange column used in this ion exchange method | |
JPH01127047A (en) | Double-bed type ion-exchange apparatus | |
US4379855A (en) | Method of ion exchange regeneration | |
JP3632343B2 (en) | Pure water production method and ion exchange tower | |
KR101821295B1 (en) | Column device for ion exchange resin and operating method thereof | |
JP4396835B2 (en) | Ion exchanger | |
JP2940651B2 (en) | Pure water production equipment | |
KR960013324B1 (en) | Method of regenerating resin beads for use in water purification | |
JP3963032B2 (en) | Ion exchange device and polishing filter | |
JP3951456B2 (en) | Pure water production equipment | |
JP3661204B2 (en) | Ion exchange apparatus and regeneration method | |
US4126548A (en) | Ion exchange process | |
JP2742976B2 (en) | Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus | |
JP4691857B2 (en) | Counter-current regenerative ion exchanger | |
JP2742975B2 (en) | Regeneration method of ion exchange device | |
JP4797304B2 (en) | Pure water production equipment | |
JPH10128128A (en) | Method for separation and regeneration of ion exchange resin | |
JPH053040Y2 (en) | ||
CN218422839U (en) | Filter device and fluid treatment system | |
JP3677591B2 (en) | Ion exchange method | |
JPH09117676A (en) | Countercurrent regeneration type ion exchange device and regeneration of ion exchange resin | |
JP4216998B2 (en) | Regeneration method of mixed-bed type sugar liquid purification equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |