JPH01126293A - Method and device for pulling up single crystal - Google Patents

Method and device for pulling up single crystal

Info

Publication number
JPH01126293A
JPH01126293A JP28573487A JP28573487A JPH01126293A JP H01126293 A JPH01126293 A JP H01126293A JP 28573487 A JP28573487 A JP 28573487A JP 28573487 A JP28573487 A JP 28573487A JP H01126293 A JPH01126293 A JP H01126293A
Authority
JP
Japan
Prior art keywords
melt
heater
crucible
single crystal
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28573487A
Other languages
Japanese (ja)
Other versions
JP2584461B2 (en
Inventor
Chihiro Nishikawa
千尋 西川
Takayoshi Higuchi
樋口 孝良
Hideki Asai
英樹 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP62285734A priority Critical patent/JP2584461B2/en
Publication of JPH01126293A publication Critical patent/JPH01126293A/en
Application granted granted Critical
Publication of JP2584461B2 publication Critical patent/JP2584461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To uniformize the temp. distribution over the entire part of a melt by rotating the magnetic fluxes in which the melt is passed around the pulling-up axis of a single crystal in the case of pulling up the single crystal from the heated melt of crystal components. CONSTITUTION:The AC current having 3 phases U, V, W is applied from a 3-phase AC power supply 44 to the respective terminals of divided heater bodies 21-32. The synthesized vector of the magnetic fluxes induced in the respective divided heater bodies 21-32 is thereby rotated around the longitudinal axis of the heaters. The rotating direction of the synthetic vector is the same as the rotating direction of the crucible. The synthesized vector of the magnetic fluxes is applied to the melt in the crucible and the melt is rotated along with the synthesized vector of the magnetic fluxes. As a result, the melt is stirred and the uniformization of the temp. distribution over the entire part of the melt is accelerated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、結晶成分融液に浸した種結晶の所定面に単結
晶を育成する単結晶の引き上げ方法及びそのV:を置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a single crystal pulling method for growing a single crystal on a predetermined surface of a seed crystal immersed in a crystal component melt, and its V:.

[従来の技・術] 従来の単結晶を製造する方法としてはCZ法(ヂコクラ
ルスキー法)が知られており、この方法は結晶成分融液
に浸した種結晶の所定面に単結晶を育成させつつ単結晶
を引ぎ上げる方法である。
[Conventional techniques] The CZ method (Dykochralski method) is known as a conventional method for manufacturing single crystals, and this method involves growing a single crystal on a predetermined surface of a seed crystal immersed in a crystal component melt. This is a method of pulling up a single crystal.

このような方法による単結晶の製造H1iffは、結晶
成分融液を満たす石英製るつぼと、るつぼ内の融液を加
熱すべくるつぼの周側部のまわりに設けられた環状の炭
素製ヒータと、このヒータに直流電流を流す電源とから
なる。
The single crystal production H1iff by such a method includes a quartz crucible filled with a crystal component melt, an annular carbon heater provided around the circumferential side of the crucible to heat the melt in the crucible, It consists of a power source that supplies direct current to this heater.

[発明が解決しようとする課題] しかしながら、従来の装置においては、ヒータによって
加熱された融液に熱対流が生じ、るつぼの周側部を介し
て融液に伝達される熱が熱対流によって融液全体に伝わ
り融液の温度分布が均一化される傾向にあるが、満足の
いく程度ではない。
[Problems to be Solved by the Invention] However, in the conventional apparatus, thermal convection occurs in the melt heated by the heater, and the heat transferred to the melt through the peripheral side of the crucible is transferred to the melt due to the thermal convection. Although it tends to spread throughout the liquid and make the temperature distribution of the melt uniform, it is not to a satisfactory degree.

本発明の目的は、融液を撹拌することによって融液内の
温度分布を均一化し得る単結晶の製造装Vを提供するこ
とにある。
An object of the present invention is to provide a single-crystal manufacturing apparatus V that can homogenize the temperature distribution in the melt by stirring the melt.

L問題点を解決する手段1 本発明によれば、前記目的は、加熱された結晶成分融液
から単結晶を引き上げるに際して、前記融液を通る磁束
を単結晶の引き上げ軸のまわりに回転させることを特徴
とり゛る単結晶の引き上げ方法、及び結晶成分融液を満
たした石英製るつぼと、前記るつぼ内の融液を加熱すべ
く前記るつぼの周側部のまわりに設けられた炭素製ヒー
タと、前記ヒータに電流を流J電源とからなり、前記ヒ
ータは、前記周側部のまわりにほぼ等間隔で配列される
と共に、前記るつぼの径方向軸のまわりにループを描く
ループ状のヒータ分割体の複数からなり、前記電源は、
前記ヒータ分割体の夫々に加えられる1!流によって生
起する複数の磁束ベルトの合成ベクトルが前記るつぼの
長手軸のまわりに回転するように前記ヒータ分割体の夫
々にハいに位相の異なる交流電流を加える交流電源から
なることを特徴とする単結晶の引きトげ装置によって達
成される。
Means for Solving the L Problem 1 According to the present invention, the objective is to rotate the magnetic flux passing through the melt around the pulling axis of the single crystal when pulling the single crystal from the heated crystal component melt. A method for pulling a single crystal, comprising: a quartz crucible filled with a crystal component melt; and a carbon heater provided around the circumferential side of the crucible to heat the melt in the crucible. , a power source for passing current through the heater, and the heater is arranged at approximately equal intervals around the circumferential side portion, and has loop-shaped heater divisions that draw a loop around the radial axis of the crucible. consisting of a plurality of bodies, the power source comprising:
1! applied to each of the heater segments! The heater is characterized by comprising an AC power supply that applies AC currents with different phases to each of the heater division bodies so that a composite vector of a plurality of magnetic flux belts generated by the flow rotates around the longitudinal axis of the crucible. This is achieved by a single crystal pulling device.

[作用] 本発明の方法によれば、結晶成分融液を通る磁束を単結
晶の引き上げ軸のまわりに回転させるが故に、融液を磁
束の回転に連れて連れ回りさせ、その結果融液が撹拌さ
れることによって融液全体の温度分布の均一化を促進し
得る。
[Function] According to the method of the present invention, since the magnetic flux passing through the crystal component melt is rotated around the pulling axis of the single crystal, the melt is rotated along with the rotation of the magnetic flux, and as a result, the melt is Stirring can promote uniformity of temperature distribution throughout the melt.

本発明の方法による磁束としては、単結晶の引き上げ軸
を通ると共に水平方向に伸長しているのが好ましく、更
には、当該磁束は交流電流による誘導磁界によって生起
されるのが好ましい。この場合、融液をうず電流損失に
よる発熱によって加熱し得、その結果融液の温度分布の
均一化をざらに促進し得る。
Preferably, the magnetic flux according to the method of the present invention passes through the pulling axis of the single crystal and extends in the horizontal direction, and more preferably, the magnetic flux is generated by an induced magnetic field caused by an alternating current. In this case, the melt can be heated by heat generation due to eddy current loss, and as a result, the uniformity of the temperature distribution of the melt can be roughly promoted.

本発明の方法による磁束の回転速度としては、磁束の回
転によって単結晶の引き上げ軸のまわりに連れ回りする
融液の回転数がRpHl〜8rplとなるように選択さ
れのが好ましい。
The rotational speed of the magnetic flux according to the method of the present invention is preferably selected so that the rotational speed of the melt, which rotates around the pulling axis of the single crystal due to the rotation of the magnetic flux, is from RpHl to 8rpl.

本発明の装置によれば、ヒータ分割体の夫々に加えられ
る交流電流によって生起する複数の磁束の合成ベクトル
がるつぼの長手軸のまわりに回転するが故に、るつぼ内
の融液を磁束の回転に連れて連れ回りさせ、その結果融
液が撹拌されることによって融液全体の温度分布の均一
化を促進し得、加えCヒータ分割体の夫々に加えられる
電流によって生起1−る複数の磁束のベクトルの合成ベ
クトルが、るつぼの長手軸のまわりに回転するようにヒ
ータ分割体の夫々に互いに位相の異なる交流電流が加え
られるが故に、るつぼ内の融液をうず電流損失による発
熱によって加熱し得、その結果融液の温度分布をさらに
促進し得る。
According to the device of the present invention, the composite vector of a plurality of magnetic fluxes generated by the alternating current applied to each of the heater division bodies rotates around the longitudinal axis of the crucible, so that the melt in the crucible is caused to rotate by the rotation of the magnetic flux. As a result, the melt is stirred, which promotes uniformity of the temperature distribution of the entire melt.In addition, the multiple magnetic fluxes generated by the current applied to each of the C heater division bodies are reduced. Since alternating currents with different phases are applied to each heater segment so that the resultant vector rotates around the longitudinal axis of the crucible, the melt in the crucible can be heated by heat generation due to eddy current loss. As a result, the temperature distribution of the melt can be further promoted.

本発明の装置による交流電源としては、互いに隣接した
ヒータ分割体の2つに加えられる交流電流の位相差が一
定の値となるようにヒータ分割体の夫々に交流電流を加
えるように構成されるのが好ましい。これによって、磁
束の回転速度を一定とし得る。
The AC power source according to the device of the present invention is configured to apply an alternating current to each of the heater segments so that the phase difference between the alternating currents applied to two adjacent heater segments becomes a constant value. is preferable. This allows the rotational speed of the magnetic flux to be constant.

本発明の5A置によるヒータの数、並びに交流電流の周
波数及び相数は、合成ベクトルの回転によってるつぼの
長手軸のまわりに連れ回りする融液の回転速度が1rp
l〜8rpH1となるように選択されるのが好ましい。
The number of heaters and the frequency and phase number of the alternating current based on the 5A setting of the present invention are such that the rotation speed of the melt that rotates around the longitudinal axis of the crucible due to the rotation of the composite vector is 1 rp.
It is preferable that the pH is selected to be 1 to 8 rpH1.

特にヒータの数が12個であり、交流電流が商用周波数
の三相交流からなるのが好ましい。
In particular, it is preferable that the number of heaters is 12 and that the alternating current is three-phase alternating current at a commercial frequency.

また、本発明の方法及び装置による交流電流どしては、
周波数変換器によって商用周波数の交流電流を適宜な周
波数の交流?Ii流に変換されたものでもよい。これに
よって、融液の回転速度を調節し得る。
In addition, the alternating current according to the method and apparatus of the present invention,
Is it possible to convert AC current at a commercial frequency to an AC current at an appropriate frequency using a frequency converter? It may be converted to the Ii style. This allows the rotation speed of the melt to be adjusted.

[具体例] 以下に添付第1図を参照して本発明の装置の1置体例に
ついて説明する。
[Specific Example] An example of one installation of the apparatus of the present invention will be described below with reference to the attached FIG. 1.

不純物を含有するシリコン多結晶融液1は、支持部2に
載Vられた365cm径の石英ガラス製るつぼ3に満た
されており、また融液1(ユるつぼ3の周側部のまわり
に設けられた環状の炭素製ヒータ4によって加熱される
。さらに、融液1の対流を磁気粘性力によって阻止する
ために水平方向磁界を融液1に印加する一対の電磁コイ
ル5が環状の保温手段6を介してヒータ4の周側部のま
わりに設けられている。単結晶7は引き上げ手段8によ
って、下端面が融液1の液面9に浸されて固液界面10
が形成されるように吊り下げられており、また、固液界
面10における融液1の結晶化に伴なって固液界面10
が液面9に接するように引き上げ手段8によって引き上
げられる。
A polycrystalline silicon melt 1 containing impurities is filled in a quartz glass crucible 3 with a diameter of 365 cm placed on a support 2, and a melt 1 (a crucible placed around the circumferential side of the crucible 3) is filled with the silicon polycrystalline melt 1 containing impurities. Furthermore, a pair of electromagnetic coils 5 which apply a horizontal magnetic field to the melt 1 in order to prevent convection of the melt 1 by magnetorheological force are connected to an annular heat retaining means 6. The lower end surface of the single crystal 7 is immersed in the liquid surface 9 of the melt 1 by the pulling means 8, and the single crystal 7 is pulled up to the solid-liquid interface 10.
The solid-liquid interface 10 is suspended as the melt 1 crystallizes at the solid-liquid interface 10.
is pulled up by the lifting means 8 so that it is in contact with the liquid level 9.

さらに、単結晶γは、融液1の対流の一部を構成する液
面9における径方向内側への融液1の流れを阻止すべく
、引き上げ手段8によって融液1に対して相対的に所定
の回転方向11に回され、−方るつぼ3は、融液1中の
酸素濃度を増加さけるために、るつぼ駆動手段12によ
りて融液1に対して相対的に所定の回転方向13に回さ
れる。
Furthermore, the single crystal γ is moved relative to the melt 1 by the pulling means 8 in order to prevent the melt 1 from flowing radially inward at the liquid surface 9 that constitutes a part of the convection of the melt 1. - The crucible 3 is rotated in a predetermined rotation direction 13 relative to the melt 1 by the crucible driving means 12 in order to avoid increasing the oxygen concentration in the melt 1. be done.

るつぼ3は、融液1の結晶化に伴なって融液1が減少し
たときに、るつぼ駆動手段12によってヒータ4と液面
9との相対位lff1 III係が一定となるように上
昇させられる。
When the melt 1 decreases as the melt 1 crystallizes, the crucible 3 is raised by the crucible driving means 12 so that the relative position lff1III between the heater 4 and the liquid level 9 remains constant. .

単結晶の7の引き上げに伴なって融液1が減少したとき
に、融液1の不純物濃度が高くなるのを阻止するために
、細粒状の無添加シリコン多結晶14を落FC115を
介して液面9に落Fさせる供給手段16がるつぼ3の上
方に設けられている。供給手段16は、単位時間当たり
の単結晶の結晶化量をF p(g/5ec)、不純物の
融液1対する不縮物偏析係数K。とじて、液面9に供給
されるシリコン多結晶14の単位時間当たりの供給fl
 F 、 to/5ee)をF−1=  ・(1−に、
) p となるように制御する図示しない制御手段によって制御
される。
In order to prevent the impurity concentration of the melt 1 from increasing when the melt 1 decreases due to the pulling of the single crystal 7, fine grained non-additive silicon polycrystals 14 are dropped through the FC 115. A supply means 16 for dropping F onto the liquid level 9 is provided above the crucible 3. The supply means 16 has a crystallization amount of a single crystal per unit time F p (g/5ec), and an impurity segregation coefficient K for one melt of impurities. Then, the supply fl of the silicon polycrystal 14 per unit time supplied to the liquid level 9
F, to/5ee) to F-1= ・(1-,
) p by a control means (not shown).

また落下口15は、単結晶7の外周面とるつぼ3の内周
面との間の中央よりるつぼ3側において液面9にシリコ
ン多結晶14を落下させるように構成されている。
Further, the drop port 15 is configured to drop the silicon polycrystal 14 onto the liquid surface 9 on the crucible 3 side from the center between the outer peripheral surface of the single crystal 7 and the inner peripheral surface of the crucible 3.

ここに、供給手段16は、透明石英ガラス製のVへ11
溝で構成された落下口15と、シリコン多結晶14の人
々の粒子を落下口15に一列に整列さUるべく落下口1
5を振動さぜるための図示しない線型型電歪式型Ta撮
動手段とからなる。また、制御手段は、落下口15を単
位時間当たりに通過するシリコン多結晶14の粒子の数
と夫々の粒径とを光電的に測定し、単位時間当たりに落
下口15を通過するシリコン多結晶14の粒子の供給量
を算定する図示しない手段と、単位時間当たりの単結晶
の引き上げ長さから単位時間当たりに結晶化する結晶化
間を算定する図示しない手段と、算定された供給量がt
ン定された結晶化けに等しくなるように電磁振動手段と
からなる。
Here, the supply means 16 is connected to a V made of transparent quartz glass 11.
A droplet 15 configured with a groove and a droplet 1 to align the particles of the silicon polycrystalline 14 in a line in the droplet 15.
5 and a linear electrostrictive type Ta imaging means (not shown) for vibrating the sensor. Further, the control means photoelectrically measures the number of particles of silicon polycrystal 14 passing through the drop port 15 per unit time and the particle size of each particle, and measures the number of particles of silicon polycrystal 14 passing through the drop port 15 per unit time. A means (not shown) for calculating the supply amount of particles of No. 14, a means (not shown) for calculating the crystallization time per unit time from the pulling length of the single crystal per unit time, and a means (not shown) for calculating the crystallization period per unit time from the pulling length of the single crystal per unit time,
and electromagnetic vibration means so as to equalize the determined crystallization.

第2図に詳細に示されるように、ヒータ4は、円筒状に
配列された炭素製のヒータ分割体21〜32からなる。
As shown in detail in FIG. 2, the heater 4 consists of carbon heater division bodies 21 to 32 arranged in a cylindrical shape.

ヒータ分割体21〜32の夫々は、長さ34011m、
幅50111.板厚18+u+であり、かつその中央に
下端から上方に延びる幅4mm、長さ280IIllT
lのスリット41が形成され、その横断面は円弧をなし
ている。また、ヒータ分0割体21〜32の夫々の下端
部42は外周部が適宜に削られており、内周部は、外周
部で削られた厚み分を補って通電時に下端部42におい
で局部加熱が起らないように板厚が十分に確保されでい
る。さらに、下端部42の夫々には炭素製の端子43が
夫々設けられており、端子43を介してヒータ分割体2
1〜32の夫々に加熱用の電流が加えられる。そして、
分割体21〜32の夫々は、図示しない電気的絶縁部材
によって、隣接する分割体21〜32とうしの間隔がほ
ぼスリット41の幅と同じになるように機械的に結合さ
れている。
Each of the heater division bodies 21 to 32 has a length of 34011 m,
Width 50111. The plate thickness is 18+u+, and the width is 4mm and the length is 280IIllT extending upward from the bottom end at the center.
1 slits 41 are formed, the cross section of which is an arc. In addition, the outer circumferential portion of the lower end portion 42 of each of the heater divided bodies 21 to 32 is appropriately shaved, and the inner circumferential portion compensates for the thickness shaved at the outer circumferential portion so that the lower end portion 42 can be removed when energized. Sufficient board thickness is ensured to prevent local heating. Further, carbon terminals 43 are provided on each of the lower ends 42, and the heater division body 2 is connected via the terminals 43.
A heating current is applied to each of 1 to 32. and,
Each of the divided bodies 21 to 32 is mechanically coupled by an electrically insulating member (not shown) such that the distance between adjacent divided bodies 21 to 32 is approximately the same as the width of the slit 41.

次に、ヒータ分割体21〜32の夫々に加えられる加熱
用の交流電流について第3図によって以下に説明する。
Next, the heating alternating current applied to each of the heater division bodies 21 to 32 will be explained below with reference to FIG.

第3図においては、ヒータ分割体21〜32を−巻きコ
イルとして図示する。
In FIG. 3, the heater segments 21 to 32 are illustrated as negative-wound coils.

60H7三相交流電源44から3つの位相t+、V。60H7 three phase AC power supply 44 to three phases t+,V.

Wを有する交流電流(電圧52v、電流1450A )
がヒータ分割体21〜32の夫々の端子43に加えられ
、さらに詳しくは、位相Uの交流電流はヒータ分割体2
1 、24.27.30に、位相Vの交流電流はヒータ
分割体22,25,28.31に、位相Wの交流電流は
ヒータ分割体23.2G、29.32に加えられる。し
たがってヒータ分割体21〜32の夫々において生起さ
れる磁束の合成ベクトルは、ヒータ4の長手軸のまわり
に回転速度900rpmで回転する。ここに、合成ペク
ト磁束の合成ベクトルはるつぼ3内の融液1に加えられ
、融液1は磁束の合成ベクトルの回転に連れて3rpm
で回転する。その結果、融液1が撹拌されることによっ
て融液1全体の温度分布の均一化が促進される。融液1
の回転が下がるのは主としてるつぼ3と融液1との粘性
抵抗によるものである。
AC current with W (voltage 52v, current 1450A)
is applied to each terminal 43 of the heater segments 21 to 32, and more specifically, the alternating current of phase U is applied to each terminal 43 of the heater segments 21 to 32.
1, 24, 27, and 30, the alternating current of phase V is applied to the heater segments 22, 25, 28.31, and the alternating current of phase W is applied to the heater segments 23.2G, 29.32. Therefore, the composite vector of the magnetic flux generated in each of the heater division bodies 21 to 32 rotates around the longitudinal axis of the heater 4 at a rotational speed of 900 rpm. Here, the composite vector of the composite magnetic flux is added to the melt 1 in the crucible 3, and the melt 1 rotates at 3 rpm as the composite vector of the magnetic flux rotates.
Rotate with. As a result, the melt 1 is stirred, thereby promoting uniformity of temperature distribution throughout the melt 1. Melt 1
The decrease in rotation is mainly due to the viscous resistance between the crucible 3 and the melt 1.

また、磁束の合成ベクトルが回転する時に、磁束の合成
ベクトルと融液1との回転速度との差によって融液1内
にうず電流が発生し、うず電流11失による発熱によっ
て融液1が加熱される。その結果、融液1全体の温度分
布の均一化がさらに促進される。
Furthermore, when the composite vector of magnetic flux rotates, an eddy current is generated in the melt 1 due to the difference between the composite vector of the magnetic flux and the rotational speed of the melt 1, and the melt 1 is heated by the heat generated by the loss of the eddy current 11. be done. As a result, the uniformity of the temperature distribution throughout the melt 1 is further promoted.

もちろん、ヒータ分割体21〜32の夫々には適宜な′
Mi流が流れるので、ヒータ分割体21〜32の夫々に
おいて抵抗発熱し、この熱によってるつぼ3内の融液1
が加熱されるのは言うまでもない。
Of course, each of the heater division bodies 21 to 32 may be
As the Mi flow flows, resistance heat is generated in each of the heater division bodies 21 to 32, and this heat causes the melt 1 in the crucible 3 to
Needless to say, it gets heated.

[実施例] 三相交流ヒータによる本発明の装置の1具体例と直流ヒ
ータによる従来の装置とを用いて、下記の条件によって
各々直径100■の単結晶を50−置引ぎ、トげ(方位
100)ると、粒状多結晶シリコンのm前時間は、粒状
多結晶シリコンの投入速度が0゜5g/secの場合、
従来の装置では4秒、本発明の装置では瞬時であり、当
該投入速度が2g/secの場合、従来装置では20秒
、本発明の装置では6秒である。
[Example] Using a specific example of the device of the present invention using a three-phase AC heater and a conventional device using a DC heater, a single crystal with a diameter of 100 cm was drawn at 50 mm and thorns ( direction 100), the time before m of granular polycrystalline silicon is, when the input speed of granular polycrystalline silicon is 0°5 g/sec,
In the conventional device, the time is 4 seconds, and in the device of the present invention, it is instantaneous. When the feeding speed is 2 g/sec, the time is 20 seconds in the conventional device, and 6 seconds in the device of the present invention.

これによれば、交流ヒータによる本発明の装置を用いた
方が、粒状多結晶シリコンの融解時間が短かい。ここに
、るつぼ内の融液の回転速度は、本発明の装置では+e
rpm (融液の上から見て時計回りをプラスとする、
以下同様)、従来の装置では2rpmである。
According to this, the melting time of granular polycrystalline silicon is shorter when using the apparatus of the present invention using an AC heater. Here, the rotational speed of the melt in the crucible is +e in the apparatus of the present invention.
rpm (Clockwise direction when viewed from above the melt is positive,
The same applies hereafter), and in the conventional device, it is 2 rpm.

但し、上記以外の条件は、本発明の′5A置及び従来の
装置の双方について同一であり、例えば粒状多結晶シリ
コンの粒径は400〜1000ミクロン、粒状多結晶シ
リコンの投入時1ハ1は1弁開、るつぼ径は12インチ
、多結晶シリコンの初期充IJffiは15Kg、るつ
ぼ回転′a瓜は+5rpm、単結晶回転速度は、−15
rpnである。
However, conditions other than the above are the same for both the '5A device of the present invention and the conventional device. For example, the grain size of the granular polycrystalline silicon is 400 to 1000 microns, and when the granular polycrystalline silicon is charged, 1 valve open, crucible diameter is 12 inches, initial charge IJffi of polycrystalline silicon is 15 kg, crucible rotation 'a melon' is +5 rpm, single crystal rotation speed is -15
It is rpn.

次に、三相交流ヒータによる本発明の装置の一興体例と
直流ヒータによ;4従来の装置とを用いて、下記の条件
によって、各々直径130vaの単結晶を引き上げ(方
位100)ると、第4図に示される結果を得る。第4図
において、横軸の結晶成長率とは、従来の装置による単
結晶の直胴部の長さを1とした時の単結晶の直胴部の長
さの比であり、縦軸の不純物a度比とは、直胴部の上端
における不純物濃度を1とした時の直胴部の各位置にお
ける不純物濃度の比である。第4図によれば、本発明の
装置による単結晶の方が、不純濃度を1に保持し得る単
結晶の直胴部の長さを従来の装置による単結晶に比べて
約2.3倍とし得る。
Next, single crystals each having a diameter of 130 va were pulled (orientation 100) under the following conditions using an example of the device of the present invention using a three-phase AC heater and a conventional device using a DC heater. The results shown in FIG. 4 are obtained. In Fig. 4, the crystal growth rate on the horizontal axis is the ratio of the length of the straight body of the single crystal when the length of the straight body of the single crystal produced by the conventional apparatus is set to 1, and the crystal growth rate on the vertical axis The impurity a degree ratio is the ratio of the impurity concentration at each position of the straight body when the impurity concentration at the upper end of the straight body is 1. According to FIG. 4, the length of the straight body of the single crystal produced by the apparatus of the present invention that can maintain the impurity concentration at 1 is about 2.3 times that of the single crystal produced by the conventional apparatus. It can be done.

但し、上記以外の条件は、本発明の装置及び従来の5A
置の双方について同一であり、例えばるつぼの直径は1
6インチ、るつぼの高さは2651m 、多結晶シリコ
ンの初期充填徂は20に!J、ドーパント(よP、電気
抵抗値の制御目標値は6Ωcamである。
However, conditions other than the above apply to the device of the present invention and the conventional 5A
For example, the diameter of the crucible is 1
6 inches, the height of the crucible is 2651 m, and the initial filling depth of polycrystalline silicon is 20! J, dopant (YoP, control target value of electrical resistance value is 6Ωcam).

さらに、本実施例において、単結晶引き上げはアルゴン
減圧雰囲気ドにおいて行なわれ、単結晶の引き上げ速度
は、1.211111/Winから右肩部終了時におけ
る0、9mm/n+inまで直線的に変化するように制
御される。さらに、単結晶の引き上げ時において、粒状
多結晶シリコンの供給量は、るつぼ内の融液の不純物濃
度が一定となるように制御されている。
Furthermore, in this example, the single crystal was pulled in an argon reduced pressure atmosphere, and the pulling rate of the single crystal varied linearly from 1.211111/Win to 0.9 mm/n+in at the end of the right shoulder. controlled by. Further, when pulling the single crystal, the amount of granular polycrystalline silicon supplied is controlled so that the impurity concentration of the melt in the crucible is constant.

し本発明の効果] 本発明によれば、融液を磁束の回転につれて連れ回りさ
せ得るが故に、融液が撹拌されることによって融液全体
の湯境分布の均一化を促進し得る。
[Effects of the Present Invention] According to the present invention, since the melt can be rotated along with the rotation of the magnetic flux, the melt can be stirred, thereby promoting uniformity of the melt boundary distribution of the entire melt.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の装置の一具体例の縦断面図、第2図
は、本発明の装置によるヒータの斜視図、第3図は本発
明の装置による交流電源とヒータ分割体との接続図、第
4図は本発明による効果を説明するグラフである。 1・・・・・・結晶成分融液、3・・・・・・るつぼ、
4・・・・・・ヒータ、5・・・・・・電磁コイル、7
・・・・・・tl結品、21〜32・・・・・・ヒータ
分割体。 4j            42 第3図 第4図 昂1へ王キ
FIG. 1 is a longitudinal cross-sectional view of a specific example of the device of the present invention, FIG. 2 is a perspective view of a heater by the device of the present invention, and FIG. The connection diagram and FIG. 4 are graphs explaining the effects of the present invention. 1... Crystal component melt, 3... Crucible,
4... Heater, 5... Electromagnetic coil, 7
...tl final product, 21-32... heater divided body. 4j 42 Figure 3 Figure 4 Go to 1

Claims (8)

【特許請求の範囲】[Claims] (1)加熱された結晶成分融液から単結晶を引き上げる
に際して、前記融液を通る磁束を単結晶の引き上げ軸の
まわりに回転させることを特徴とする単結晶の引き上げ
方法。
(1) A method for pulling a single crystal, which comprises rotating the magnetic flux passing through the melt around the pulling axis of the single crystal when pulling the single crystal from a heated crystal component melt.
(2)前記磁束が前記引き上げ軸を通ると共に水平方向
に伸長していることを特徴とする特許請求の範囲第1項
に記載の方法。
(2) The method according to claim 1, wherein the magnetic flux passes through the pulling shaft and extends in a horizontal direction.
(3)前記磁束が、交流電流による誘導磁界によって生
起されることを特徴とする特許請求の範囲第2項に記載
の方法。
(3) A method according to claim 2, characterized in that the magnetic flux is generated by an induced magnetic field caused by an alternating current.
(4)前記磁束の回転速度は、前記磁束の回転によって
前記引き上げ軸のまわりに連れ回りする前記融液の回転
速度が1rpm〜8rpmとなるように、選択されるこ
とを特徴とする特許請求の範囲第3項に記載の方法。
(4) The rotational speed of the magnetic flux is selected such that the rotational speed of the melt that rotates around the pulling shaft due to the rotation of the magnetic flux is 1 rpm to 8 rpm. The method described in Scope No. 3.
(5)結晶成分融液を満たした石英製るつぼと、前記る
つぼ内の融液を加熱すべく前記るつぼの周側部のまわり
に設けられた炭素製ヒータと、前記ヒータに電流を流す
電源とからなり、前記ヒータは、前記周側部のまわりに
ほぼ等間隔で配列されると共に、前記るつぼの径方向軸
のまわりにループを描く、ループ状のヒータ分割体の複
数からなり、前記電源は、前記ヒータ分割体の夫々に加
えられる電流によって生起する複数の磁束の合成ベクト
ルが前記るつぼの長手軸のまわりに回転するように前記
ヒータ分割体の夫々に互いに位相の異なる交流電流を加
える交流電源からなることを特徴とする単結晶の引き上
げ装置。
(5) a quartz crucible filled with a crystalline component melt, a carbon heater provided around the circumferential side of the crucible to heat the melt in the crucible, and a power source for supplying current to the heater; The heater includes a plurality of loop-shaped heater segments arranged at approximately equal intervals around the circumferential side portion and forming a loop around the radial axis of the crucible, and the power source is , an AC power supply that applies alternating currents with different phases to each of the heater division bodies so that a composite vector of a plurality of magnetic fluxes generated by the current applied to each of the heater division bodies rotates around the longitudinal axis of the crucible; A single crystal pulling device characterized by comprising:
(6)前記交流電源は、互いに隣接した前記ヒータ分割
体の2つに加えられる交流電流の位相差が一定の値とな
るように前記ヒータ分割体の夫々に交流電流を加えるべ
く構成されていることを特徴とする特許請求の範囲第5
項に記載の装置。
(6) The alternating current power source is configured to apply an alternating current to each of the heater division bodies so that a phase difference between the alternating currents applied to two of the heater division bodies adjacent to each other is a constant value. Claim 5 is characterized in that
The equipment described in section.
(7)前記合成ベクトルの回転によって前記長手軸のま
わりに連れ回りする前記融液の回転速度が1rpm〜8
rpmとなるように、前記ヒータ分割体の数、並びに前
記交流電流の周波数及び相数が選択されることを特徴と
する特許請求の範囲第6項に記載の装置。
(7) The rotational speed of the melt that rotates around the longitudinal axis due to the rotation of the composite vector is 1 rpm to 8 rpm.
7. The device according to claim 6, wherein the number of heater segments and the frequency and number of phases of the alternating current are selected so that the rpm.
(8)前記ヒータ分割体の数が12個であり、前記交流
電流が商用周波数の三相交流からなることを特徴とする
特許請求の範囲第7項に記載の装置。
(8) The device according to claim 7, wherein the number of the heater division bodies is 12, and the alternating current is a three-phase alternating current at a commercial frequency.
JP62285734A 1987-11-12 1987-11-12 Single crystal pulling method and apparatus Expired - Fee Related JP2584461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62285734A JP2584461B2 (en) 1987-11-12 1987-11-12 Single crystal pulling method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62285734A JP2584461B2 (en) 1987-11-12 1987-11-12 Single crystal pulling method and apparatus

Publications (2)

Publication Number Publication Date
JPH01126293A true JPH01126293A (en) 1989-05-18
JP2584461B2 JP2584461B2 (en) 1997-02-26

Family

ID=17695350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62285734A Expired - Fee Related JP2584461B2 (en) 1987-11-12 1987-11-12 Single crystal pulling method and apparatus

Country Status (1)

Country Link
JP (1) JP2584461B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041278A2 (en) * 2003-10-23 2005-05-06 Crystal Growing Systems Gmbh Crystal growing unit
EP1578009A2 (en) * 2004-03-16 2005-09-21 Maguneo Co., Ltd. Permanent magnet rotation-transmitting device, hermetic stirring unit, and electric furnace
CN111172584A (en) * 2020-03-10 2020-05-19 浙江海纳半导体有限公司 Three-phase alternating current heater for thermal field of czochralski crystal growing furnace and use method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692192A (en) * 1979-12-24 1981-07-25 Nippon Telegr & Teleph Corp <Ntt> Method for growing semiconductor single crystal
JPS61275188A (en) * 1985-05-30 1986-12-05 Toshiba Corp Pulling method for single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692192A (en) * 1979-12-24 1981-07-25 Nippon Telegr & Teleph Corp <Ntt> Method for growing semiconductor single crystal
JPS61275188A (en) * 1985-05-30 1986-12-05 Toshiba Corp Pulling method for single crystal

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041278A2 (en) * 2003-10-23 2005-05-06 Crystal Growing Systems Gmbh Crystal growing unit
WO2005041278A3 (en) * 2003-10-23 2005-07-07 Crystal Growing Systems Gmbh Crystal growing unit
US7179331B2 (en) 2003-10-23 2007-02-20 Crystal Growing Systems Gmbh Crystal growing equipment
JP2007509026A (en) * 2003-10-23 2007-04-12 クリスタル グロウイング システムズ ゲゼルシヤフト ミット ベシュレンクテル ハフツング Crystal growth equipment
JP4654193B2 (en) * 2003-10-23 2011-03-16 クリスタル グロウイング システムズ ゲゼルシヤフト ミット ベシュレンクテル ハフツング Crystal growth equipment
EP2105522A3 (en) * 2003-10-23 2011-11-02 PVA TePla AG Crystal growing device
EP1578009A2 (en) * 2004-03-16 2005-09-21 Maguneo Co., Ltd. Permanent magnet rotation-transmitting device, hermetic stirring unit, and electric furnace
EP1578009A3 (en) * 2004-03-16 2007-11-07 Maguneo Co., Ltd. Permanent magnet rotation-transmitting device, hermetic stirring unit, and electric furnace
CN111172584A (en) * 2020-03-10 2020-05-19 浙江海纳半导体有限公司 Three-phase alternating current heater for thermal field of czochralski crystal growing furnace and use method
CN111172584B (en) * 2020-03-10 2023-10-31 浙江海纳半导体股份有限公司 Three-phase alternating current heater for thermal field of Czochralski crystal growing furnace and use method

Also Published As

Publication number Publication date
JP2584461B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
EP2142686B1 (en) Method for producing a single crystal
JPH01153589A (en) Pulling of single crystal and apparatus therefor
JP2008526667A (en) Electromagnetic pumping of liquid silicon in the crystal growth process.
US9315917B2 (en) Apparatus and method for the production of ingots
KR100204522B1 (en) Process and apparatus for growing single crystals
WO2004061166A1 (en) Graphite heater for producing single crystal, single crystal productin system and single crystal productin method
JPH076972A (en) Growth method and device of silicon single crystal
JP3788116B2 (en) Multifunctional heater for single crystal growth and single crystal pulling device
JPH01126293A (en) Method and device for pulling up single crystal
JP2010070404A (en) Apparatus for forming silicon melt
JPS5850953B2 (en) crystal growth method
JP3132412B2 (en) Single crystal pulling method
US3360405A (en) Apparatus and method of producing semiconductor rods by pulling the same from a melt
US4847052A (en) Device for growing single crystals
JP2760957B2 (en) Single crystal growth method with controlled convection field in melt
JPS5930795A (en) Apparatus for pulling up single crystal
JPH05208887A (en) Method for growing silicon single crystal rod by fz process and apparatus therefor
US3275419A (en) Method and apparatus for producing elongated strip-shaped crystalline semiconductor bodies
JPH03177392A (en) Pulling up of single crystal and device therefor
EP0245510A1 (en) Apparatus for producing semiconductor single crystal
JP2623390B2 (en) Silicon single crystal rod growth method
JPS60264391A (en) Crystallizer
JPS6236096A (en) Production of single crystal and device therefor
JPH02172885A (en) Production of silicon single crystal
JPS59137394A (en) Crystal growing apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees