JP2623390B2 - Silicon single crystal rod growth method - Google Patents

Silicon single crystal rod growth method

Info

Publication number
JP2623390B2
JP2623390B2 JP3307127A JP30712791A JP2623390B2 JP 2623390 B2 JP2623390 B2 JP 2623390B2 JP 3307127 A JP3307127 A JP 3307127A JP 30712791 A JP30712791 A JP 30712791A JP 2623390 B2 JP2623390 B2 JP 2623390B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
crystal rod
magnetic field
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3307127A
Other languages
Japanese (ja)
Other versions
JPH0543377A (en
Inventor
浩利 山岸
雅規 木村
英夫 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to DE69213059T priority Critical patent/DE69213059T2/en
Priority to EP92104900A priority patent/EP0504929B1/en
Priority to US07/855,978 priority patent/US5258092A/en
Publication of JPH0543377A publication Critical patent/JPH0543377A/en
Application granted granted Critical
Publication of JP2623390B2 publication Critical patent/JP2623390B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高周波コイルを具備し
たFZ法(フロートゾーン法、浮遊帯域溶融法)に依り
高純度シリコン単結晶棒を成長させる製造方法に於て、
特に、該単結晶棒の直径方向断面内に均一な電気抵抗率
をもつ前記シリコン単結晶棒を成長させる方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manufacturing method for growing a high-purity silicon single crystal rod by the FZ method (float zone method, floating zone melting method) equipped with a high-frequency coil.
In particular, the present invention relates to a method for growing the silicon single crystal rod having a uniform electric resistivity in a cross section in the diameter direction of the single crystal rod.

【0002】[0002]

【従来の技術】図8は、本発明に係る従来技術のFZ法
によるシリコン単結晶成長装置の全体構成図で、上軸1
0に所定の直径の多結晶の原料棒1を、下軸8に種結晶
7を保持し、原料棒1と種結晶7を高周波コイル2で溶
解させながら両者を融着し、該両軸を回転させながら、
シリコン棒を微速度で下降させ、溶融帯域4を原料の上
端まで移動させ、単結晶棒3を得る方法である。一方、
CZ法(Czochralski法、引上法)は、大容
量のシリコン融液に目的の結晶方位の種結晶の先端を着
け、該種結晶を装着した引上軸を回転させながら引き上
げ、希望の直径のシリコン単結晶棒を得る方法である。
2. Description of the Related Art FIG. 8 is a diagram showing the overall configuration of a conventional silicon single crystal growing apparatus by the FZ method according to the present invention,
A polycrystalline raw material rod 1 having a predetermined diameter is held at 0, and a seed crystal 7 is held at the lower shaft 8. The raw material rod 1 and the seed crystal 7 are fused together while being melted by the high-frequency coil 2. While rotating
In this method, the silicon rod is lowered at a very low speed, the melting zone 4 is moved to the upper end of the raw material, and the single crystal rod 3 is obtained. on the other hand,
In the CZ method (Czochralski method, pulling method), a tip of a seed crystal having a desired crystal orientation is attached to a large-capacity silicon melt, pulled up while rotating a pulling shaft on which the seed crystal is mounted, and pulled to a desired diameter. This is a method for obtaining a silicon single crystal rod.

【0003】前記電気抵抗率の不均一分布は、成長軸方
向と断面内分布の二つに分けられる。成長軸方向の不均
一分布について、前記両成長方法を比較する。CZ法に
あっては、シリコン融液から固体のシリコン単結晶に凝
固するときドーパント物質の偏析が起こり、次第にシリ
コン融液のドーパント濃度は高くなり、成長するにつれ
電気抵抗率は滅少し、成長軸方法の不均一分布は大き
い。一方、FZ法にあっては、少ない融液容量に対して
絶えず上方からシリコン融液が供給されているため、成
長軸方向のドーパント濃度はCZ法よりもマクロ的に分
布は均一になる。
The non-uniform distribution of the electric resistivity is divided into two distributions: a growth axis direction and a cross-sectional distribution. The two growth methods will be compared with respect to the non-uniform distribution in the growth axis direction. In the CZ method, segregation of a dopant substance occurs when the silicon melt is solidified into a solid silicon single crystal, the dopant concentration of the silicon melt gradually increases, and the electrical resistivity decreases as the silicon melt grows. The non-uniform distribution of the method is large. On the other hand, in the FZ method, since the silicon melt is constantly supplied from above for a small melt volume, the dopant concentration in the direction of the growth axis becomes macroscopically more uniform than in the CZ method.

【0004】しかし、FZ法では融液容量が小さい事か
ら、融液内における対流の変動に依りドーパントがミク
ロ的に不規則に取り込まれ、断面内分布は大きくなる。
例えば、図2(a)に示すように、直径100mmで成
長方位が<111>であるようなシリコン単結晶棒(回
転速度、毎分6回転)を、厚さ300μmに形成したシ
リコンウェーハについて直径方向の電気抵抗率を測定
し、該電気抵抗率変化率Aに整理・プロットしたグラフ
を見ると、該変化率Aのばらつきが大きい事が判る。
However, in the FZ method, since the volume of the melt is small, the dopant is microscopically irregularly incorporated due to fluctuations in the convection in the melt, and the distribution in the cross section becomes large.
For example, as shown in FIG. 2A, a silicon single crystal rod (rotation speed, 6 rotations per minute) having a diameter of 100 mm and a growth orientation of <111> is formed on a silicon wafer having a thickness of 300 μm. When the electrical resistivity in the direction is measured and the graph arranged and plotted in the electrical resistivity change rate A is seen, the variation in the change rate A is large.

【0005】但し、測定された電気抵抗率Rの最大値を
Rmax、最小値をRmin、ウエハ面内の電気抵抗率
Rの平均をRaveとするとき、電気抵抗率変化率Aを A=[(R−Rave)/Rave]×100 (%) 又、電気抵抗率の断面内変動率aを a=[(Rmax−Rmin)/Rmin]×100 (%) と定義する。ここで、単純に電気抵抗率Rについてプロ
ットせずに、電気抵抗率変化率Aの値を扱うのは、電気
抵抗率Rが大きくなるに従って見掛け上電気抵抗率の変
化率が大きくなるように見える事を避けるためである。
又、断面内変動率aに依り電気抵抗率Rの変動が一つの
数値として表され、これに依り電気抵抗率分布を相互に
比較評価する事ができる。
However, when the maximum value of the measured electrical resistivity R is Rmax, the minimum value is Rmin, and the average of the electrical resistivity R in the wafer surface is Rave, the electrical resistivity change rate A is A = [( R-Rave) / Rave] × 100 (%) Further, the in-section variation rate a of the electric resistivity is defined as a = [(Rmax−Rmin) / Rmin] × 100 (%). Here, treating the value of the electrical resistivity change rate A without simply plotting the electrical resistivity R means that as the electrical resistivity R increases, the apparent change rate of the electrical resistivity increases. To avoid things.
Further, the variation of the electrical resistivity R is represented as a single numerical value according to the in-section variation rate a, whereby the electrical resistivity distribution can be compared and evaluated with each other.

【0006】図2(a)は、シリコン単結晶棒の断面内
における電気抵抗率変化率Aの分布図で、ウエハ中心付
近で電気抵抗率が低下しており不均一である事が判る。
又、断面内変動率aの値は、22.1%となる。個別半
導体製造に於て、前記断面内変動率aの値はなるべく小
さいものが要求され、厳しいデバイスでは3%以下のも
のを要求される事もある。かかる場合には不純物をドー
プする事なしにFZ法でシリコン単結晶棒を成長させた
後、単結晶棒を原子炉内に挿入し中性子照射する事に依
30Siを31Pに核反応で変化させたドーパントで
ドープする方法が知られている。しかし、この中性子照
射ドープ法では原子炉を必要とし、シリコンウエハ製造
のコストは大幅に上昇すると云う欠点があり、中性子照
射する事なく、工業的に前記断面内変動率aの値が低い
シリコン単結晶棒を成長させる方法が要求されている。
FIG. 2 (a) is a distribution diagram of the electrical resistivity change rate A in the cross section of the silicon single crystal rod. It can be seen that the electrical resistivity decreases near the center of the wafer and is non-uniform.
The value of the in-section variation rate a is 22.1%. In the manufacture of individual semiconductors, the value of the in-section variation rate a is required to be as small as possible, and in severe devices, it may be required to be 3% or less. In such a case, a silicon single crystal rod is grown by the FZ method without doping with impurities, and then the single crystal rod is inserted into a nuclear reactor and irradiated with neutrons to convert 30 Si into 31 P by a nuclear reaction. A method of doping with a doped dopant is known. However, this neutron irradiation doping method requires a nuclear reactor, and has a disadvantage that the cost of silicon wafer production is greatly increased. Therefore, without neutron irradiation, a silicon unit having a low value of the in-section variation rate a is industrially required. There is a need for a method of growing crystal rods.

【0007】翻って、FZ法とCZ法とのシリコン融液
の容量を比較すると、前者は後者の凡そ100分の1か
ら1000分の1であり、FZ法はCZ法のようにシリ
コン融液内の対流状態を人為的に制御するのは困難であ
るとされている。従って、FZ法によるシリコン単結晶
棒中の直径方向の断面内ドーパントの濃度分布の不均
一、ひいては電気抵抗率の不均一分布を解消出来ないと
されてきた。
[0007] In comparison, when comparing the capacity of the silicon melt between the FZ method and the CZ method, the former is about 1/100 to 1/1000 of the latter, and the FZ method is different from the CZ method in that the silicon melt is similar to the CZ method. It is said that it is difficult to artificially control the convection state in the inside. Therefore, it has been considered that the non-uniformity of the concentration distribution of the dopant in the cross section in the diameter direction in the silicon single crystal rod by the FZ method and the non-uniform distribution of the electric resistivity cannot be eliminated.

【0008】ここで、FZ法の溶融帯域におけるシリコ
ン融液の流れを考えてみるなら、種結晶の回転による強
制対流と、高周波コイルで加熱される事に依り生じる自
然対流、及び融液の体積に対してはるかに比率の大きい
融液自由表面に依り誘起される表面張力による表面張力
対流がある。ここで、自然対流と表面張力対流の速度を
減じる方法として、これらの流れに相対するように前記
強制対流を起こさせる事が考えられるが、FZ法では融
液容量が小さいために強制対流が弱い事から殆ど打消す
効果は得られない。又、成長中のシリコン単結晶棒をよ
り高速に回転させる事に依り強制対流を激しくさせる事
も考えられるが、該単結晶棒下方先端に最初に形成した
絞り部で結晶棒の重量を支えているために、そのような
高速回転に耐えられず成長中の単結晶棒が倒壊してしま
い、この手段は現実的ではない。
Here, considering the flow of the silicon melt in the melting zone of the FZ method, forced convection due to rotation of the seed crystal, natural convection caused by being heated by the high frequency coil, and the volume of the melt There is surface tension convection due to the surface tension induced by the melt free surface, which has a much greater ratio to the surface tension. Here, as a method of reducing the speeds of natural convection and surface tension convection, it is conceivable to cause the forced convection so as to be opposed to these flows. However, in the FZ method, the forced convection is weak because the melt volume is small. The effect of canceling out is hardly obtained. It is also conceivable to increase the forced convection by rotating the growing silicon single crystal rod at a higher speed.However, the weight of the crystal rod is supported by the first narrow portion formed at the lower end of the single crystal rod. Therefore, the growing single crystal rod cannot withstand such high-speed rotation and collapses, making this means impractical.

【0009】かかる課題を解決させる手段として、FZ
法のシリコン溶融帯域に成長方向に平行に磁場を印加す
る方法が、N.De Leon等(N. De Leo
n,J. Guldberg and J. Sall
ing: J. Cryst. Growth 55
(1981)406−408)に報告されており、溶融
帯域の境界面とほぼ一致する位置に磁場発生手段を配置
し、180ガウス以下の成長軸方向に略平行方向に磁場
を印加し直径42mmのシリコン単結晶棒を成長させ、
断面内の電気抵抗率変動を小さくしたと報告されてい
る。
As means for solving such a problem, FZ
The method of applying a magnetic field to the silicon melting zone in the growth direction in parallel with the silicon melting zone is described in De Leon, etc. (N. De Leo
n, J. et al. Guldberg and J.M. Sall
ing: J. Cryst. Growth 55
(1981) 406-408), a magnetic field generating means was arranged at a position substantially coincident with the boundary surface of the melting zone, and a magnetic field was applied in a direction substantially parallel to the growth axis direction of 180 gauss or less, and a diameter of 42 mm was applied. Grow a silicon single crystal rod,
It is reported that the electric resistivity fluctuation in the cross section was reduced.

【0010】[0010]

【発明が解決しようとする課題】しかしながら現在のF
Z法による工業的なウエハの需要は、該ウエハの直径が
75mm以上のものが主流を成し、De Leon等の
直径50mm未満のウエハの製造方法では現状要求を満
たすものでない。即ち、FZ法に於て、その育成単結晶
直径が75mmを超える融液に、その結晶の成長方向に
略平行に、180ガウス以下の磁場を印加する事に依っ
て育成された単結晶の直径方向断面内の電気抵抗率の変
化は、その中心部の電気抵抗率が著しく低くなるために
電気抵抗率断面内変動率aは20%を超える。
However, the present F
The main demand for industrial wafers by the Z method is a wafer having a diameter of 75 mm or more, and a method for producing a wafer having a diameter of less than 50 mm, such as De Leon, does not satisfy the current requirements. That is, in the FZ method, the diameter of a single crystal grown by applying a magnetic field of 180 gauss or less to a melt having a grown single crystal diameter of more than 75 mm in a direction substantially parallel to the growth direction of the crystal. The change in the electric resistivity in the cross section in the direction is such that the electric resistivity in the central portion thereof is extremely low, so that the variation a in the electric resistivity cross section exceeds 20%.

【0011】本発明はかかる従来技術の欠点に鑑み、前
記FZ法に依り直径75mm以上のシリコン単結晶棒を
成長させる製造方法に於て、熱中性子照射に依るドープ
工程を採用する事なく、該シリコン単結晶棒の直径方向
断面内のドーパント分布をミクロ的に均一化を図る事を
目的とする。
In view of the drawbacks of the prior art, the present invention provides a method for growing a silicon single crystal rod having a diameter of 75 mm or more by the FZ method without using a doping step by thermal neutron irradiation. An object of the present invention is to microscopically uniform the dopant distribution in a cross section in the diameter direction of a silicon single crystal rod.

【0012】[0012]

【課題を解決するための手段】本発明は、FZ法に依り
直径75mm以上のシリコン単結晶棒を製造する方法に
おいて、高周波誘導加熱コイルとして、コイルの内径が
少なくとも育成単結晶の直径よりも小さい単巻コイルを
用い、更に、溶融帯域の軸方向長さを育成単結晶直径よ
りも小さくなるように設定するとともに、前記溶融帯域
より外れた軸方向の上方位置及び/又は下方位置の非溶
融状態にある原料多結晶棒又は育成単結晶棒を囲繞する
如く磁場形成手段を配し、該磁場形成手段に依りシリコ
ン単結晶棒の溶融帯域に磁場を印加する事を特徴とする
ものである。この場合、前記磁場形成手段は、例えば前
記非溶融状態にあるシリコン単結晶棒又は原料多結晶棒
の外周を囲繞するソレノイドコイルであり、該ソレノイ
ドコイルに直流電流を供給して構成される。又前記直流
電流のリップル率は8%以下に抑えるとともに、上軸
(原料多結晶側)の回転数より下軸(育成単結晶側)の
回転数を大に設定するのがよい。更に直径75〜130
mmのシリコン単結晶棒を製造する場合には、前記磁場
形成手段の磁場強度を150ガウスから600ガウスの
間に設定するとともに、前記シリコン単結晶棒に磁場を
印加させながら該単結晶棒を回転させ、該回転数を毎分
1回転から8回転に設定するのがよい。
According to the present invention, there is provided a method of manufacturing a silicon single crystal rod having a diameter of 75 mm or more by the FZ method, wherein an inner diameter of the coil is at least smaller than a diameter of a grown single crystal as a high frequency induction heating coil. Using a single-turn coil, the axial length of the melting zone is set to be smaller than the diameter of the grown single crystal, and the unmelted state at an upper position and / or a lower position in the axial direction outside the melting zone. And a magnetic field forming means surrounding the raw material polycrystalline rod or the grown single crystal rod, and applying a magnetic field to the melting zone of the silicon single crystal rod by the magnetic field forming means. In this case, the magnetic field forming means is, for example, a solenoid coil surrounding the outer periphery of the non-molten silicon single crystal rod or the raw material polycrystal rod, and is configured by supplying a direct current to the solenoid coil. It is preferable that the ripple rate of the direct current is suppressed to 8% or less and the number of rotations of the lower axis (the growing single crystal side) is set to be larger than the number of rotations of the upper axis (the growing single crystal side). 75-130 in diameter
mm, the magnetic field intensity of the magnetic field forming means is set between 150 gauss and 600 gauss and the single crystal rod is rotated while applying a magnetic field to the silicon single crystal rod. It is preferable to set the number of rotations from 1 to 8 per minute.

【0013】しかしながら、前記シリコン単結晶棒の直
径が130mmを超えると、前記磁場形成手段の磁場強
度は、180ガウスから200ガウスの間に設定するの
が好ましく、更に、該シリコン単結晶棒の回転速度を毎
分0.5回転から4回転とするのが好ましい。
However, when the diameter of the silicon single crystal rod exceeds 130 mm, the magnetic field intensity of the magnetic field forming means is preferably set between 180 gauss and 200 gauss. Preferably, the speed is between 0.5 and 4 revolutions per minute.

【0014】[0014]

【作用】かように製造方法を設定する事に依り、大直
径、例えば75mm以上のシリコン単結晶棒のFZ育成
法に於て下軸回転速度を著しく上昇させる事なく、単結
晶棒の断面内ドーパントの不均一分布が解消可能とな
る。下軸回転速度を上げる事に依って、表面張力対流や
自然対流を妨げる逆方向の強制対流が発生する事は発明
者等の実験で確かめられているが、高々8回転/分程度
ではこの種の効果は無い。又、下軸回転は前述した強制
対流を起こし、融液の強制撹拌を起こすけれども、その
回転中心は強制対流の要因である回転周速度はゼロであ
り、攪拌に依るドーパントの混合効果がない事、又、成
長界面に於ける平坦なファセット成長のために中心部が
低い電気抵抗率を示す事となる。
By setting the manufacturing method as described above, the FZ growth method of a silicon single crystal rod having a large diameter, for example, 75 mm or more, does not significantly increase the rotation speed of the lower shaft. Non-uniform distribution of the dopant can be eliminated. It has been confirmed by experiments by the inventors that increasing the rotation speed of the lower shaft causes forced convection in the opposite direction that hinders surface tension convection and natural convection. Has no effect. In addition, the rotation of the lower shaft causes the forced convection described above, causing forced agitation of the melt.However, the rotation center at the center of rotation is zero, and there is no mixing effect of the dopant due to the stirring. In addition, the center portion has a low electric resistivity due to the flat facet growth at the growth interface.

【0015】ところが、溶融帯域から外れた成長軸方向
の上方、又は下方、具体的には溶融帯域からやや離れた
位置にある非溶融状態にある原料多結晶棒又は育成単結
晶棒外周を囲繞してソレノイドコイルを配置し、これに
直流を供給し溶融帯域を含む成長軸方向の直流磁場を形
成すると、FZ法に於ける溶融帯域の形状は自重の影響
を受けるためにその縦断面内の外側形状は成長軸方向に
対して傾斜し、上記ソレノイドコイルの磁力線と交わる
ようになる。特に本発明においては溶融帯域から外れた
成長軸方向の上方の原料多結晶棒の外周に囲繞配置した
ソレノイドコイルの場合は下の溶融帯域近傍で外方に曲
折する直流磁場が、又溶融帯域から外れた成長軸方向の
下方の育成単結晶棒の外周に囲繞配置したソレノイドコ
イルの場合には、上の溶融帯域近傍で外方に曲折する直
流磁場が丁度溶融帯域表面の表面張力対流、自然対流に
直交する磁力線を形成しこれ等の表面張力対流や自然対
流を抑えるように、磁気特性効果を発揮するものと考え
られる。そして前記De Leon等が報告した従来技
術においては前記磁場が溶融帯域の境界面上を囲繞する
ごとく配置されているためにこのような効果は生ぜじな
い。
However, it surrounds the outer periphery of the raw polycrystalline rod or the grown single crystal rod in a non-molten state at a position above or below the growth axis outside the melting zone, specifically, at a position slightly distant from the melting zone. When a direct current is supplied to the solenoid coil to form a direct current magnetic field in the growth axis direction including the melting zone, the shape of the melting zone in the FZ method is affected by its own weight, so that the shape of the melting zone is outside the vertical cross section. The shape is inclined with respect to the growth axis direction, and intersects with the magnetic field lines of the solenoid coil. In particular, in the present invention, in the case of a solenoid coil disposed around the outer periphery of the raw material polycrystalline rod in the growth axis direction deviating from the melting zone, a DC magnetic field bent outward in the vicinity of the lower melting zone, and from the melting zone. In the case of a solenoid coil placed around the outer periphery of a grown single crystal rod below the deviated growth axis, a DC magnetic field that bends outward in the vicinity of the upper melting zone just causes surface tension convection and natural convection on the surface of the melting zone. It is considered that the magnetic characteristic effect is exerted so as to form a line of magnetic force perpendicular to the surface and suppress such surface tension convection and natural convection. In the prior art reported by De Leon et al., Such an effect does not occur because the magnetic field is arranged so as to surround the boundary of the melting zone.

【0016】更に、FZ法においてソレノイドコイルに
直流電流を供給して磁場を印加する場合、該直流電流に
リップルが含まれるならば、該リップル分がシリコン溶
融帯域内で誘導渦電流を発生させ、該溶融帯域の断面内
の温度分布と流速の不均一分布を誘起し、該断面内のド
ーパント濃度分布の悪化につながると考えられる。従っ
て前記直流電流のリップル率は8%以下に抑えるととも
に、上軸(原料多結晶側)の回転数より下軸(育成単結
晶側)の回転数を大に設定することにより、該リップル
率の上限は誘起される不均一分布が実用上認められる程
度に抑えられる事になる。これについても前記De L
eon等が報告した従来技術には開示されていない。
Further, when a magnetic field is applied by supplying a direct current to the solenoid coil in the FZ method, if the direct current contains a ripple, the ripple generates an induced eddy current in the silicon melting zone, It is considered that a non-uniform distribution of the temperature distribution and the flow velocity in the cross section of the melting zone is induced, which leads to deterioration of the dopant concentration distribution in the cross section. Accordingly, the ripple rate of the DC current is suppressed to 8% or less, and the rotation rate of the lower axis (the grown single crystal side) is set to be larger than the rotation number of the upper axis (the raw material polycrystal side). The upper limit is such that the induced non-uniform distribution is suppressed to a practically permissible level. This also applies to the De L
It is not disclosed in the prior art reported by Eon et al.

【0017】更に、前記De Leon等が報告した従
来技術と本発明を比較する。本発明では、FZ法に於て
ソレノイドコイルを単結晶を成長させる溶融帯域の周囲
に囲繞させ直流磁場を印加する点でDe Leon等と
同じ技術思想ともいえるが、本発明に於て採用するFZ
法は、育成単結晶の直径が75mm以上を対象にしてお
り、高周波誘導加熱コイルとしては単巻コイルを用い、
しかもそのコイルの内径が少なくとも育成単結晶の直径
よりも小さい事、更に、溶融帯域の長さは育成単結晶直
径よりも小さくそのための形状は、De Leon等の
小直径の場合と比較して、直径に対して高さが著しく低
くなり、これにより口径が75mm以上の単結晶を育成
する場合においても断面内のドーパント濃度分布の悪化
を阻止しつつ電気抵抗率の不均一分布が実用上認められ
る程度に抑えられる、従って、De Leon等の場合
とFZ条件が著しく異なっているので、本発明は単なる
De Leon等の開示技術の延長ではとても本発明の
技術課題を解決出来るものではない。
Further, the present invention will be compared with the prior art reported by De Leon et al. The present invention can be said to be the same technical concept as De Leon in that a solenoid coil is surrounded around a melting zone where a single crystal is grown in the FZ method and a DC magnetic field is applied.
The method targets a grown single crystal with a diameter of 75 mm or more, uses a single-turn coil as the high-frequency induction heating coil,
Moreover, the inner diameter of the coil is at least smaller than the diameter of the grown single crystal, and the length of the melting zone is smaller than the grown single crystal diameter, and the shape for that is smaller than that of the case of a small diameter such as De Leon. The height is significantly reduced with respect to the diameter, so that even when a single crystal having a diameter of 75 mm or more is grown, a non-uniform distribution of the electric resistivity is practically recognized while preventing the deterioration of the dopant concentration distribution in the cross section. Since the FZ condition is significantly different from that in the case of De Leon or the like, the present invention cannot solve the technical problem of the present invention by merely extending the disclosed technology of De Leon or the like.

【0018】又De Leon等は、直径42mmのシ
リコン単結晶について、上軸回転速度毎分7回転、下軸
回転速度毎分3.5回転の逆方向回転に於て、最高18
0ガウスの磁場を印加し、その内80ガウスに於て電気
抵抗率の半径方向の変動[R(周辺部)/R(中心
部)]が最低値を示したと報告している。しかし、本発
明の結果から、もし本発明の方法で直径42mmのシリ
コン単結晶棒を育成したとすると、最適な印加磁場の強
度は500ガウス以上、及び下軸回転速度は毎分7回転
以上となる事が予測され、前記De Leon等の報告
結果と本発明の結果とは異なる。
De Leon et al. Reported that a silicon single crystal having a diameter of 42 mm had a maximum rotation of 18 rotations at an upper shaft rotation speed of 7 rotations per minute and a lower rotation speed of 3.5 rotations per minute at a maximum of 18 rotations.
It was reported that a magnetic field of 0 Gauss was applied, and at 80 Gauss, the radial variation [R (peripheral) / R (center)] of electric resistivity showed the lowest value. However, from the results of the present invention, if a silicon single crystal rod having a diameter of 42 mm is grown by the method of the present invention, the optimum applied magnetic field strength is 500 Gauss or more, and the lower shaft rotation speed is 7 rotations per minute or more. It is expected that the results of the present invention will differ from the results reported by De Leon et al.

【0019】本発明者等は、De Leon等の開示技
術とは全く別の角度から、即ち、高周波誘導加熱コイル
の内径、形状、溶融帯域に対するソレノイドコイルの位
置、及び磁力線の方向、磁場の強さ、下軸回転速度、及
びリップル分等に就いて種々研究し、本発明に到達した
ものである。
The present inventors have considered from a completely different angle to the disclosed technology of De Leon, etc., namely, the inner diameter and shape of the high-frequency induction heating coil, the position of the solenoid coil with respect to the melting zone, the direction of the magnetic field lines, and the strength of the magnetic field. The present inventors have conducted various studies on the lower shaft rotation speed, the amount of ripple, and the like, and have reached the present invention.

【0020】[0020]

【実施例】以下、図面を参照して本発明の好適な実施例
を例示的に詳しく説明する。但し、この実施例に記載さ
れている構成部品の寸法、材質、形状、その相対配置な
どは特に特定的な記載がない限りは、この発明の範囲を
それのみに限定する趣旨ではなく、単なる説明例に過ぎ
ない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be illustratively described in detail below with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely described. It is only an example.

【0021】図1(a)、(b)は本発明の実施例に係
るFZ法によるシリコン単結晶成長装置の全体構成図
で、該成長装置は、チャンバ5内に上方より吊り下げた
シリコン多結晶棒1を、単巻内径23mmの高周波コイ
ル2で溶融した後、種結晶7を接着させ、絞り6に依り
無転位化したのち、シリコン単結晶棒3を成長可能に構
成されている。前記シリコン多結晶棒1及びシリコン単
結晶棒3を、夫々上軸10及び下回転軸8に依り回転す
る。この際、上軸10は回転速度毎分0.4回転、下軸
は回転速度毎分0.5〜10回転の同方向回転とした。
又高周波コイル2には、コイルの内径が少なくとも育成
単結晶の直径よりも小さい単巻のフラットコイルを用
い、更に、溶融帯域の軸方向長さを育成単結晶直径より
も小さくなるように設定する更に、図1(a)では、ソ
レノイドコイル9を、高周波コイル2の下側の前記チャ
ンバ5の外壁に、また図1(b)では、ソレノイドコイ
ル9を、高周波コイル2の上側の前記チャンバ5の外壁
に夫々配置し、図1(a)では、前記ソレノイドコイル
9は溶融帯域より僅かに外れた軸方向の下方位置の非溶
融状態にある原料多結晶棒を囲繞する如く配置され、又
図1(b)では、前記ソレノイドコイル9は溶融帯域よ
り僅かに外れた軸方向の上方位置の非溶融状態にある育
成単結晶棒を囲繞する如く配置されることになる。即ち
具体的には前記高周波コイル2の中心と該ソレノイドコ
イル9の中心との距離を略175mm程度該高周波コイ
ル2の下方若しくは上方に、成長軸と同心に配設する。
該ソレノイドコイル9の寸法は、内径210mm、外径
500mm及び高さ130mmである。
FIGS. 1 (a) and 1 (b) are views showing the overall configuration of an apparatus for growing a silicon single crystal by the FZ method according to an embodiment of the present invention. The apparatus shown in FIG. After melting a crystal rod 1 with a high-frequency coil 2 having a single-turn inner diameter of 23 mm, a seed crystal 7 is adhered and dislocation-free by an aperture 6, and then a silicon single crystal rod 3 can be grown. The polycrystalline silicon rod 1 and the monocrystalline silicon rod 3 are rotated by an upper shaft 10 and a lower rotation shaft 8, respectively. At this time, the upper shaft 10 was rotated at a rotation speed of 0.4 rotations per minute, and the lower shaft was rotated at a rotation speed of 0.5 to 10 rotations per minute in the same direction.
For the high-frequency coil 2, a single-turn flat coil whose inner diameter is at least smaller than the diameter of the grown single crystal is used, and the axial length of the melting zone is set to be smaller than the grown single crystal diameter. 1 (a), the solenoid coil 9 is placed on the outer wall of the chamber 5 below the high-frequency coil 2, and in FIG. 1 (b), the solenoid coil 9 is placed on the chamber 5 above the high-frequency coil 2. In FIG. 1A, the solenoid coil 9 is arranged so as to surround a non-molten raw material polycrystalline rod in an axially lower position slightly deviated from a melting zone. In FIG. 1 (b), the solenoid coil 9 is arranged so as to surround the non-melted grown single crystal rod at an axially upper position slightly deviated from the melting zone. That is, specifically, the distance between the center of the high-frequency coil 2 and the center of the solenoid coil 9 is approximately 175 mm below or above the high-frequency coil 2 and concentric with the growth axis.
The dimensions of the solenoid coil 9 are 210 mm in inner diameter, 500 mm in outer diameter, and 130 mm in height.

【0022】そして図1(a)の装置において、ドーパ
ントとしてフォスフィンをチャンバ5内に流して燐をド
ープし、成長方位<111>であるn型シリコン単結晶
捧を成長させた。特に、ここでは直径75mm,100
mm及び125mmのシリコン単結晶棒3について取り
上げた。該ソレノイドコイル9にリップル率8%以下の
直流電流を流し、成長界面の中心の位置における測定値
が磁力0〜1000ガウスの範囲に変化させ、結晶を成
長させた。このとき、上軸10は回転速度毎分0.4回
転で一定としてシリコン単結晶棒3の回転を同方向で毎
分0.5〜10回転迄変化させ、シリコン溶融帯域4内
の強制対流を変動させるようにした。
In the apparatus shown in FIG. 1A, phosphine was flowed into the chamber 5 as a dopant to dope phosphorus, and an n-type silicon single crystal having a growth orientation of <111> was grown. In particular, here, a diameter of 75 mm, 100
mm and 125 mm silicon single crystal rods 3 were taken up. A direct current having a ripple rate of 8% or less was passed through the solenoid coil 9 so that the measured value at the center of the growth interface was changed to a magnetic force range of 0 to 1000 gauss to grow a crystal. At this time, the rotation speed of the silicon single crystal rod 3 is changed from 0.5 to 10 rotations per minute in the same direction while the rotation speed of the upper shaft 10 is constant at 0.4 rotations per minute, and forced convection in the silicon melting zone 4 is reduced. It was made to fluctuate.

【0023】シリコン単結晶棒3を成長後チャンバ5よ
り取り出して、所定の位置よりダイヤモンドソーで厚さ
300μmのシリコンウエハを切り出し、電気抵抗率測
定用のサンプルとした。切り出した該ウエハの電気抵抗
率Rを4探針測定方法に依り測定した後、そのウエハ面
内での電気抵抗率Rの平均値をRave、最大値をRm
ax、及び最小値をRminとすると、電気抵抗率変化
率Aを A=[(R−Rave)/Rave]×100 (%) 又、電気抵抗率の断面内変動率aを a=[(Rmax−Rmin)/Rmin]×100 (%) の定義に依り、測定値を整理し評価の物差とする。
The silicon single crystal rod 3 was taken out of the chamber 5 after growth, and a silicon wafer having a thickness of 300 μm was cut out from a predetermined position with a diamond saw to obtain a sample for electric resistivity measurement. After measuring the electric resistivity R of the cut wafer by a four-probe measuring method, the average value of the electric resistivity R in the wafer surface is Rave, and the maximum value is Rm.
Assuming that amax and the minimum value are Rmin, the rate of change A in electrical resistivity is A = [(R−Rave) / Rave] × 100 (%), and the rate of change a in the cross section of electrical resistivity is a = [(Rmax −Rmin) / Rmin] × 100 (%).

【0024】図2は、前記電気抵抗率変化率Aの値を該
ウエハの中心からの距離についてプロットしたグラフ
で、図2(a)は、前記シリコン単結晶を成長させる溶
融帯域に磁場を印加しない場合を示す。図2(b)は、
該溶融帯域に磁場の強度250ガウスを印加した場合を
示す。但し、下回転軸8を回転速度6回転/分で回転し
生成した直径100mmのシリコン単結晶棒(成長方位
<111>、燐ドープn型結晶)から切り出したウエハ
について測定したものを示す。別に、測定値から電気抵
抗率の断面内変動率aを求めると、夫々22.1%及び
9.7%となり、磁場を印加した事に依り該断面内の均
一分布が得られた事が判る。
FIG. 2 is a graph in which the value of the electric resistivity change rate A is plotted with respect to the distance from the center of the wafer. FIG. 2A shows the case where a magnetic field is applied to a melting zone in which the silicon single crystal is grown. Indicates when not to do so. FIG. 2 (b)
The case where a magnetic field strength of 250 Gauss is applied to the melting zone is shown. Here, a measurement was performed on a wafer cut out from a silicon single crystal rod (growth orientation <111>, phosphorus-doped n-type crystal) having a diameter of 100 mm generated by rotating the lower rotation shaft 8 at a rotation speed of 6 rotations / minute. Separately, when the variation a in the cross section of the electrical resistivity is obtained from the measured value, it is 22.1% and 9.7%, respectively, which indicates that a uniform distribution in the cross section was obtained by applying a magnetic field. .

【0025】図3は、直径が75mm、100mm及び
125mmの前記サンプルウエハについて、電気抵抗率
の断面内変動率aを示す表図である。但し、これらは夫
々好適な下軸回転速度を中心に適宜範囲に回転し、リッ
プル率が3%である直流電流による磁場の強度を0〜1
000ガウスの範囲にわたって印加成長させたシリコン
単結晶棒から切出したサンプルウエハについて測定整理
したものである。
FIG. 3 is a table showing the in-section variation rate a of the electrical resistivity for the sample wafers having diameters of 75 mm, 100 mm and 125 mm. However, each of them rotates in an appropriate range around a suitable lower shaft rotation speed, and the intensity of the magnetic field by a DC current having a ripple rate of 3% is 0 to 1.
This is a measurement and arrangement of a sample wafer cut from a silicon single crystal rod applied and grown over a range of 000 gauss.

【0026】好適な成長条件である下軸回転速度と磁場
の強度は、前記表図3から電気抵抗率の断面内変動率a
が小さい値である所を読み取り、該回転速度は1〜8回
転/分、磁場の強度は190〜600ガウス、更に好ま
しくは、該断面内変動率aが最小値である最適条件は、
直径75mmのシリコン単結晶棒にあっては下軸回転速
度が7回転/分で印加する磁場の強度は500ガウス、
直径100mmでは6回転/分で250ガウス、及び直
径125mmでは2回転/分で220ガウスである事が
判る。ウエハの直径が増加するにつれて下軸回転速度を
減少させ、さらに磁場の強度を減少させなければ良好な
結果が得られない理由は、前記作用の欄で述べたとお
り、シリコン溶融帯域における下軸回転による遠心力と
磁場が作用する力の微妙なバランスの上で、境界拡散層
の厚さの不均一分布が改善されたものと考えられる。
The lower shaft rotation speed and the strength of the magnetic field, which are preferable growth conditions, are shown in Table 3 above.
Is read at a small value, the rotation speed is 1 to 8 rotations / minute, the strength of the magnetic field is 190 to 600 gauss, and more preferably, the optimum condition that the in-section variation rate a is the minimum value is
In the case of a silicon single crystal rod having a diameter of 75 mm, the intensity of the magnetic field applied at a lower shaft rotation speed of 7 rotations / minute is 500 gauss,
It can be seen that at a diameter of 100 mm, 250 gauss at 6 revolutions / min and at a diameter of 125 mm, 220 gauss at 2 revolutions / min. The reason why the lower shaft rotation speed is reduced as the diameter of the wafer is increased and the magnetic field strength is not reduced to obtain a good result unless the lower shaft rotation in the silicon melting zone is described as described above. It is considered that the uneven distribution of the thickness of the boundary diffusion layer was improved on the delicate balance between the centrifugal force and the force acting on the magnetic field.

【0027】図4は、前記各種直径の単結晶棒につい
て、前記最適条件における前記直流電流に含まれるリッ
プ率を3〜15%に変化させたときの、電気抵抗率の断
面内変動率aを示した表図である。該図4から断面内変
動率aの値が許容される程度に小さい値であるリップル
率の範囲は、8%以下である事が判る。
FIG. 4 shows the variation a in the cross section of the electrical resistivity of the single crystal rods of various diameters when the lip ratio included in the DC current under the above-mentioned optimum conditions was changed to 3 to 15%. FIG. It can be seen from FIG. 4 that the range of the ripple rate in which the value of the variation rate a in the cross section is a value small enough to be allowed is 8% or less.

【0028】次に、シリコン単結晶棒の直径が130m
mを超えた場合の好適な第2の実施例を、更に揚げる。
図1と同一のFZ法によるシリコン単結晶成長装置を用
いた。又、同一ソレノイドコイルを用い、高周波コイル
2との空間的位置関係を同一とした。ドーパントには、
フォスフィンをチャンバ5内に流して燐をドープし、成
長方位<111>である。直径150mmのn型シリコ
ン単結晶棒を成長させた。該ソレノイドコイル9にリッ
プル率3%、8%及び15%の直流電流を流し、成長界
面の中心の位置に於ける測定値が、磁力0ガウスから2
50ガウスの範囲内で変化させた。このときの上軸10
は回転速度毎分0.4回転で一定として、シリコン単結
晶棒3の回転を同方向で毎分0.5回転から毎分4回転
の間で変化させた。
Next, the diameter of the silicon single crystal rod is 130 m.
The second preferred embodiment in the case where m is exceeded is further fried.
The same silicon single crystal growth apparatus by the FZ method as in FIG. 1 was used. Further, the same solenoid coil was used, and the spatial positional relationship with the high-frequency coil 2 was the same. Dopants include:
Phosphine is flowed into the chamber 5 to dope phosphorus, and the growth direction is <111>. An n-type silicon single crystal rod having a diameter of 150 mm was grown. DC currents with ripple rates of 3%, 8% and 15% were passed through the solenoid coil 9 and the measured value at the center of the growth interface was changed from 0 gauss to 2 gauss.
It varied within the range of 50 Gauss. At this time, the upper shaft 10
The rotation speed of the silicon single crystal rod 3 was changed from 0.5 rotations per minute to 4 rotations per minute in the same direction, with the rotation speed kept constant at 0.4 rotations per minute.

【0029】図5は、前記第2の実施例に於ける電気抵
抗率変化率Aの値を、図2と同様に、前記ウエハの中心
からの距離についてプロットしたグラフで、印加磁力及
びシリコン単結晶棒の回転数が、夫々(a)0ガウス、
毎分2回転、及び(b)185ガウス、毎分2回転の場
合を示す。
FIG. 5 is a graph in which the value of the electric resistivity change rate A in the second embodiment is plotted with respect to the distance from the center of the wafer similarly to FIG. When the rotation speed of the crystal rod is (a) 0 gauss,
Two revolutions per minute, and (b) 185 gauss, two revolutions per minute are shown.

【0030】図6は、印加磁力を0ガウスから250ガ
ウスまで、またシリコン単結晶棒の回転数を毎分0.5
回転から毎分4回転まで変化させ、電気抵抗率の断面内
変動率aを測定計算した表図である。前記図3の、シリ
コン単結晶棒の直径が75mmから125mmの場合と
比較すると、該直径が150mmの場合は、その好まし
い範囲が移動縮小し、シリコン単結晶棒の回転数は毎分
0.5回転から毎分4回転に、印加磁場の強さは180
ガウスから200ガウスになる事が判る。該直径が75
mmから125mm以上の場合としては、直径150m
mの他に、直径140mmについても試みたが、前記最
適範囲は同じであった。
FIG. 6 shows that the applied magnetic force is from 0 gauss to 250 gauss, and the rotation speed of the silicon single crystal rod is 0.5 g / min.
It is the table | surface figure which changed from the rotation to 4 rotations per minute, and measured and calculated the variation rate a in a cross section of an electrical resistivity. In comparison with the case where the diameter of the silicon single crystal rod is 75 mm to 125 mm in FIG. 3, the preferable range is reduced and moved when the diameter is 150 mm, and the rotation speed of the silicon single crystal rod is 0.5 mm / min. From rotation to 4 revolutions per minute, the applied magnetic field strength is 180
It turns out that it becomes 200 Gauss from Gauss. The diameter is 75
mm to 125 mm or more, 150 m in diameter
In addition to m, an attempt was made for a diameter of 140 mm, but the optimum range was the same.

【0031】図7は、前記直流電流に含まれるリップル
率の電気抵抗率の断面内変動率aへの影響を示す表図で
ある。リップル率に関しては、シリコン単結晶棒の直径
が大きくなると、その許容上限値は小さくなるようであ
るが、リップル率8%に対し電気抵抗率の断面内変動率
aは、約16%で磁場を印加しないときのそれらに比較
すると、格段に改善されている。
FIG. 7 is a table showing the influence of the ripple rate contained in the DC current on the in-section variation rate a of the electrical resistivity. Regarding the ripple rate, as the diameter of the silicon single crystal rod increases, the allowable upper limit value seems to decrease. However, for a ripple rate of 8%, the in-section variation rate a of the electrical resistivity is about 16% and the magnetic field is increased. Compared to those when no voltage is applied, it is significantly improved.

【0032】図1(b)については前記実験を行わなか
ったが、該成長装置は、ソレノイドコイル9を高周波コ
イル2の上側、言換えれば溶融帯域の上方の非溶融状熊
にある育成単結晶の外周に囲繞配設した点を除き、他は
前記1(a)の成長装置と同様に構成されている為に、
該成長装置にあっても、磁場は溶融帯域及び結晶成長域
を同様に含むので、前記成長装置と同様の効果が容易に
期待される。又、ソレノイドコイル9を高周波コイル2
の上方・下方に同時に配設した場合、該両ソレノイドコ
イルで形成される磁場が同一方向であれば、夫々のソレ
ノイドコイルが形成する磁場の強度は、単一ソレノイド
コイルにおける略半分で前記実施例における成長装置と
同様の効果が達成される。又、該両ソレノイドコイルで
形成される磁場が逆方向である場合は、該磁場の強度の
差が単一ソレノイドコイルにおける磁場の強度と略等し
くなったとき、前記実施例における成長装置と同様の効
果が得られるものと期待できる。
Although the above experiment was not carried out with respect to FIG. 1 (b), the growth apparatus uses the grown single crystal in which the solenoid coil 9 is placed above the high-frequency coil 2 in other words, in the non-melted bear above the melting zone. Except for the point that it is disposed around the outer periphery of
Even in this growth apparatus, since the magnetic field similarly includes the melting zone and the crystal growth area, effects similar to those of the growth apparatus are easily expected. Also, the solenoid coil 9 is connected to the high-frequency coil 2
If the magnetic fields formed by the two solenoid coils are in the same direction when they are simultaneously arranged above and below the magnetic field, the strength of the magnetic field formed by each of the solenoid coils is approximately half that of the single solenoid coil, The same effect as that of the growth apparatus described above is achieved. Further, when the magnetic field formed by the two solenoid coils is in the opposite direction, when the difference between the strengths of the magnetic fields becomes substantially equal to the strength of the magnetic field in the single solenoid coil, the same as the growth apparatus in the above embodiment is performed. The effect can be expected to be obtained.

【0033】[0033]

【発明の効果】以上記載した如く本発明によれば、FZ
法に依り直径75mm以上のシリコン単結晶棒を成長さ
せる製造方法に於て、該シリコン単結晶棒の直径方向の
断面内のドーパント分布をミクロ的に均一化を図る事が
出来る。又、本発明によれば、該FZ法の工程中に熱中
性子照射に依りドープする工程は含まれないために、望
ましい原価で該シリコン単結晶棒を成長させる事が出来
る。等の種々の著効を有す。
As described above, according to the present invention, FZ
In a manufacturing method for growing a silicon single crystal rod having a diameter of 75 mm or more according to the method, the dopant distribution in the cross section in the diameter direction of the silicon single crystal rod can be microscopically uniform. Further, according to the present invention, since the step of doping by thermal neutron irradiation is not included in the step of the FZ method, the silicon single crystal rod can be grown at a desired cost. And so on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るシリコン単結晶成長装置の全体構
成図で、図1(a)はソレノイドコイルを溶融帯域の下
方位置に配設した場合の全体構成図、図1(b)はソレ
ノイドコイルを溶融帯域の上方位置に配設した場合の全
体構成図。
FIG. 1 is an overall configuration diagram of a silicon single crystal growth apparatus according to the present invention. FIG. 1 (a) is an overall configuration diagram in a case where a solenoid coil is disposed below a melting zone, and FIG. 1 (b) is a solenoid. FIG. 4 is an overall configuration diagram when a coil is disposed at a position above a melting zone.

【図2】本発明の第1の実施例に係わるシリコン単結晶
棒の断面内における電気抵抗率変化率Aの分布図で、図
2(a)は磁場を印加しない場合の分布図、図2(b)
は磁場を印加した場合の分布図。
FIG. 2 is a distribution diagram of an electric resistivity change rate A in a cross section of the silicon single crystal rod according to the first embodiment of the present invention, and FIG. 2 (a) is a distribution diagram when no magnetic field is applied; (B)
8 is a distribution diagram when a magnetic field is applied.

【図3】本発明の第1の実施例に係る各種直径のシリコ
ン単結晶棒の成長にあたって、下軸回転速度、及び印加
した磁場の強度を適宜範囲内に変化させたときの、該単
結晶棒の断面内における電気抵抗率変動率aを示す表
図。
FIG. 3 shows the growth of silicon single crystal rods of various diameters according to the first embodiment of the present invention when the lower shaft rotation speed and the intensity of the applied magnetic field are appropriately changed within a range. FIG. 4 is a table showing the electric resistivity variation rate a in the cross section of the rod.

【図4】本発明の第1の実施例に係る各種直径のシリコ
ン単結晶棒の成長にあたって、印加する磁場を形成する
直流電流に含まれるリップル率を変化させたときの、該
単結晶棒断面内における電気抵抗率変動率aを示す表
図。
FIG. 4 is a cross-sectional view of a silicon single crystal rod of various diameters according to a first embodiment of the present invention when the ripple rate included in a direct current forming a magnetic field to be applied is changed. FIG. 4 is a table showing the electrical resistivity fluctuation rate a in FIG.

【図5】本発明の第2の実施例に係る電気抵抗率変化率
Aの値を、前記ウエハの中心からの距離についてプロッ
トした分布図で、図5(a)は磁場を印加しない場合の
分布図、図5(b)は磁場を印加した場合の分布図。
FIG. 5 is a distribution diagram in which values of a change rate of electric resistivity A according to a second embodiment of the present invention are plotted with respect to a distance from the center of the wafer, and FIG. FIG. 5B is a distribution diagram when a magnetic field is applied.

【図6】本発明の第2の実施例に係るシリコン単結晶棒
の成長にあたって、下軸回転速度、及び印加した磁場の
強度を適宜範囲内に変化させたときの、該単結晶棒の断
面内における電気抵抗率変動率aを示す表図。
FIG. 6 is a cross-sectional view of a silicon single crystal rod according to a second embodiment of the present invention, when the lower shaft rotation speed and the intensity of an applied magnetic field are appropriately changed within the range. FIG. 4 is a table showing the electrical resistivity fluctuation rate a in FIG.

【図7】本発明の第2の実施例に係るシリコン単結晶棒
の成長にあたって、印加する磁場を形成する直流電流に
含まれるリップル率を変化させたときの、該単結晶棒断
面内における電気抵抗率変動率aを示す表図。
FIG. 7 is a graph showing the relationship between the electric current in the cross section of a single-crystal silicon rod and the variation of the ripple included in the DC current that forms the applied magnetic field during the growth of the silicon single-crystal rod according to the second embodiment of the present invention. FIG. 4 is a table showing a resistivity variation rate a.

【図8】従来技術によるシリコン単結晶成長装置の全体
構成図。
FIG. 8 is an overall configuration diagram of a conventional silicon single crystal growth apparatus.

【符号の説明】[Explanation of symbols]

1 シリコン多結晶棒 2 高周波コイル 3 シリコン単結晶棒 4 溶融帯域 5 チャンバ 6 絞り 7 種結晶 8 下回転軸 9 ソレノイドコイル DESCRIPTION OF SYMBOLS 1 Silicon polycrystal rod 2 High frequency coil 3 Silicon single crystal rod 4 Melting zone 5 Chamber 6 Restrictor 7 Seed crystal 8 Lower rotation axis 9 Solenoid coil

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/208 H01L 21/208 M H05B 6/32 H05B 6/32 (56)参考文献 JOURNAL OF CRYSTA L GROWTH,55(1981)P.406 −408──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication location H01L 21/208 H01L 21/208 M H05B 6/32 H05B 6/32 (56) Reference JOURNAL OF CRYSTA L GROWTH, 55 (1981) p. 406 -408

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 FZ法に依り直径75mm以上のシリコ
ン単結晶棒を製造する方法において、 高周波誘導加熱コイルとして、コイルの内径が少なくと
も育成単結晶の直径よりも小さい単巻コイルを用い、更
に、溶融帯域の軸方向長さを育成単結晶直径よりも小さ
くなるように設定するとともに、 前記溶融帯域より外れた軸方向の上方位置及び/又は下
方位置の非溶融状態にある原料多結晶棒又は育成単結晶
棒を囲繞する如く磁場形成手段を配し、該磁場形成手段
に依りシリコン単結晶棒の溶融帯域に磁場を印加する事
を特徴とするシリコン単結晶棒の成長方法。
1. A method for producing a silicon single crystal rod having a diameter of 75 mm or more by the FZ method, wherein a single-turn coil having an inner diameter of a coil smaller than at least the diameter of a grown single crystal is used as a high-frequency induction heating coil. The axial length of the melting zone is set to be smaller than the diameter of the grown single crystal, and the raw material polycrystalline rod or the grown material in the non-molten state at an upper position and / or a lower position in the axial direction outside the melting zone. A method for growing a silicon single crystal rod, wherein a magnetic field forming means is arranged so as to surround the single crystal rod, and a magnetic field is applied to the melting zone of the silicon single crystal rod by the magnetic field forming means.
【請求項2】 前記磁場形成手段が、前記非溶融状態に
あるシリコン単結晶棒又は原料多結晶棒の外周を囲繞す
るソレノイドコイルであり、該ソレノイドコイルに直流
電流を供給する事を特徴とする請求項1記載のシリコン
単結晶棒の成長方法。
2. The method according to claim 1, wherein the magnetic field forming means is a solenoid coil surrounding an outer periphery of the silicon single crystal rod or the raw material polycrystal rod in the non-molten state, and supplies a direct current to the solenoid coil. The method for growing a silicon single crystal rod according to claim 1.
【請求項3】 前記直流電流のリップル率を8%以下に
抑えるとともに、上軸(原料多結晶側)の回転数より下
軸(育成単結晶側)の回転数を大に設定した事を特徴と
する請求項2記載のシリコン単結晶棒の成長方法。
3. The method according to claim 1, wherein the ripple rate of the direct current is suppressed to 8% or less, and the number of rotations of the lower axis (growth single crystal side) is set to be larger than the number of rotations of the upper axis (polycrystalline material side). 3. The method for growing a silicon single crystal rod according to claim 2, wherein
【請求項4】 FZ法に依り直径75〜130mmのシ
リコン単結晶棒を製造する方法において、 前記磁場形成手段の磁場強度を150ガウスから600
ガウスの間に設定するとともに、前記シリコン単結晶棒
の溶融帯域に磁場を印加させながら該単結晶棒を回転さ
せ、該回転数を毎分1回転から8回転に設定した事を特
徴とする請求項3記載のシリコン単結晶棒の成長方法。
4. A method for producing a silicon single crystal rod having a diameter of 75 to 130 mm by an FZ method, wherein a magnetic field intensity of said magnetic field forming means is from 150 gauss to 600 gauss.
The method is characterized in that the single crystal rod is rotated while applying a magnetic field to the melting zone of the silicon single crystal rod while being set to be between Gauss, and the number of rotations is set to 1 to 8 rotations per minute. Item 3. The method for growing a silicon single crystal rod according to Item 3.
【請求項5】 直径130mm以上のシリコン単結晶棒
を製造する方法において、 前記磁場形成手段の磁場強度を180ガウスから200
ガウスの間に設定するとともに、該シリコン単結晶棒の
回転数を毎分0.5回転から4回転に設定した事を特徴
とする請求項3記載のシリコン単結晶棒の成長方法。
5. A method for producing a silicon single crystal rod having a diameter of 130 mm or more, wherein the magnetic field intensity of said magnetic field forming means is from 180 gauss to 200 gauss.
4. The method for growing a silicon single crystal rod according to claim 3, wherein the silicon single crystal rod is set between Gauss and the rotation speed of the silicon single crystal rod is set from 0.5 rotations per minute to 4 rotations per minute.
JP3307127A 1991-03-22 1991-10-28 Silicon single crystal rod growth method Expired - Lifetime JP2623390B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69213059T DE69213059T2 (en) 1991-03-22 1992-03-20 Process for growing a single-crystal silicon rod
EP92104900A EP0504929B1 (en) 1991-03-22 1992-03-20 Method of growing silicon monocrystalline rod
US07/855,978 US5258092A (en) 1991-03-22 1992-03-23 Method of growing silicon monocrystalline rod

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8115991 1991-03-22
JP3-81159 1991-03-22

Publications (2)

Publication Number Publication Date
JPH0543377A JPH0543377A (en) 1993-02-23
JP2623390B2 true JP2623390B2 (en) 1997-06-25

Family

ID=13738669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3307127A Expired - Lifetime JP2623390B2 (en) 1991-03-22 1991-10-28 Silicon single crystal rod growth method

Country Status (1)

Country Link
JP (1) JP2623390B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2874722B2 (en) * 1993-06-18 1999-03-24 信越半導体株式会社 Method and apparatus for growing silicon single crystal
US20100107968A1 (en) * 2007-04-13 2010-05-06 Topsil Simiconductor Materials A/S Method and apparatus for producing a single crystal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2538854B2 (en) * 1975-09-01 1979-02-15 Wacker-Chemitronic Gesellschaft Fuer Elektronik-Grundstoffe Mbh, 8263 Burghausen Single-turn induction heating coil for crucible-free zone melting
JPS6385087A (en) * 1986-09-25 1988-04-15 Sony Corp Method for crystal growth

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF CRYSTAL GROWTH,55(1981)P.406−408

Also Published As

Publication number Publication date
JPH0543377A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
JP5485136B2 (en) Method and apparatus for producing a single crystal
KR960006260B1 (en) Method for controlling oxygen content of silicon crystals using a combination of cusp magnetic field and crystal and crucible rotation rates
JP4095975B2 (en) Method and apparatus for producing silicon single crystal, silicon single crystal and semiconductor wafer cut from the same
EP1310583B1 (en) Method for manufacturing of silicon single crystal wafer
US20100101485A1 (en) Manufacturing method of silicon single crystal
KR101304444B1 (en) Apparatus for manufacturing semiconductor single crystal ingot using magnetic field and Method thereof
EP1087040B1 (en) Method for producing silicon single crystal
EP0504929B1 (en) Method of growing silicon monocrystalline rod
JP3086850B2 (en) Method and apparatus for growing single crystal
JP2567539B2 (en) FZ method silicon single crystal ingot growth method and apparatus
JP4193558B2 (en) Single crystal manufacturing method
JP2623390B2 (en) Silicon single crystal rod growth method
JP2020114802A (en) Method for manufacturing silicon single crystal
JP2018002496A (en) Method for manufacturing silicon single crystal
US5089082A (en) Process and apparatus for producing silicon ingots having high oxygen content by crucible-free zone pulling, silicon ingots obtainable thereby and silicon wafers produced therefrom
JP3132412B2 (en) Single crystal pulling method
EP1365048B1 (en) Method for fabricating silicon single crystal
WO2023243357A1 (en) Method for producing silicon single crystal
KR100831052B1 (en) Method for controlling oxygen content in silicon single crystalline ingot, ingot produced thereby
JPS62182190A (en) Production of compound semiconductor single crystal
JPH0524966A (en) Production of semiconductor silicon single crystal by fz method
JP2005306669A (en) Apparatus for pulling up silicon single cryststal and method therefor
JP2000264785A (en) Process and device for producing silicon single crystal
JPS5964592A (en) Method for growing crystal