JPH01123209A - Large-aperture lens - Google Patents

Large-aperture lens

Info

Publication number
JPH01123209A
JPH01123209A JP28111387A JP28111387A JPH01123209A JP H01123209 A JPH01123209 A JP H01123209A JP 28111387 A JP28111387 A JP 28111387A JP 28111387 A JP28111387 A JP 28111387A JP H01123209 A JPH01123209 A JP H01123209A
Authority
JP
Japan
Prior art keywords
lens
refracting
optical axis
light
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28111387A
Other languages
Japanese (ja)
Other versions
JP2559601B2 (en
Inventor
Kohei Ota
耕平 大田
Mutsuhito Yoshima
吉間 睦仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP62281113A priority Critical patent/JP2559601B2/en
Publication of JPH01123209A publication Critical patent/JPH01123209A/en
Application granted granted Critical
Publication of JP2559601B2 publication Critical patent/JP2559601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To shorten the axial thickness and overall lens length of a lens by specifying the band-shaped step parts which constitute the boundaries between the refracting surfaces of central parts and the refracting surfaces of peripheral parts. CONSTITUTION:The two front and rear refracting surfaces in the optical axis direction of a piece of the lens made of a synthetic resin consist of respectively of the refracting surfaces A1, A2 of the central parts and the refracting surfaces B1, B2 of the peripheral parts. These surfaces are so connected that the refracting surface A1 is recessed with respect to the refracting surface B1 and the refracting surface A2 is recessed with respect to the refracting surface B2 respectively in the band-shaped step part constituting the boundary between the refracting surfaces A1 and B1 and the band-shaped step part constituting the boundary between the refracting surfaces A2 and B2. The lens having the small axial thickness and the overall lens length is thereby obtd. while the sufficient aperture ratio and imaging performance as light projecting and receiving lenses are maintained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、カメラの測距装置の投光、受光レンズに用
いられる大口径レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a large-diameter lens used as a light projecting and light receiving lens of a distance measuring device of a camera.

(従来技術) オートフォーカスカメラ等の′lr!距装置において。(Conventional technology) Autofocus camera, etc.'lr! In distance equipment.

投光、受光レンズには、一般に合成樹脂製の大口径単レ
ンズが用いられている。まず測距光学系の概要を示す、
第5図において1は赤外LEDなどの投光光源であり、
光源1を発した光束は2の投光レンズにより集光され、
被写体に向は射出される。この光束は被写体で反射され
、投光光学系から基線長りだけ隔たった受光レンズ3に
より光電変換手段4の受光面に集光される。4の出力は
測距信号として利用される。
A large diameter single lens made of synthetic resin is generally used for the light emitting and light receiving lenses. First, we will give an overview of the distance measuring optical system.
In FIG. 5, 1 is a floodlight source such as an infrared LED,
The light beam emitted from the light source 1 is focused by the projection lens 2,
The light is emitted towards the subject. This light beam is reflected by the object and is focused on the light receiving surface of the photoelectric conversion means 4 by the light receiving lens 3 which is spaced from the light projecting optical system by the base line length. The output of No. 4 is used as a ranging signal.

このような光学系において、十分な測距可能距離あるい
は十分な測距精度を得るためには、投光レンズの口径比
が大きく、照射光量が大であることと、受光レンズが大
口径で受光光量力を大であることが必要である。受光素
子の大きさと受光レンズのコンパクト性との制約から受
光レンズの焦点距離を長くすることはできないため、受
光レンズを大口径化するには口径比を大きくする必要が
ある。
In such an optical system, in order to obtain sufficient ranging distance or sufficient ranging accuracy, the aperture ratio of the light emitting lens must be large and the amount of irradiated light must be large, and the receiving lens must have a large aperture to receive light. It is necessary to have a large amount of light. Because the focal length of the light-receiving lens cannot be increased due to restrictions on the size of the light-receiving element and the compactness of the light-receiving lens, it is necessary to increase the aperture ratio in order to increase the diameter of the light-receiving lens.

(この発明が解決しようとする問題点)上記のように投
光、受光レンズとも明るいレンズであることが望まれる
が、Fl、0以下程度の明るさを得ようとすると軸上レ
ンズ厚が大となり、この結果以下の欠点が生じる。
(Problems to be Solved by the Invention) As mentioned above, it is desirable that both the light emitting and light receiving lenses be bright lenses, but in order to obtain brightness below Fl, 0, the axial lens thickness becomes large. As a result, the following drawbacks occur.

1、レンズ全長すなわちレンズ先端から投光、受光素子
までの長さが大となるため、カメラのレイアウトが大き
く制限され、コンパクト性をそこなうことにもなる。
1. Since the total length of the lens, that is, the length from the tip of the lens to the light emitting and light receiving elements is long, the layout of the camera is greatly restricted and the compactness is impaired.

2、成形時のシゴットタイムが長くなるためコスト高と
なる。従来、非球面を用いることにより。
2. The manufacturing time during molding becomes longer, resulting in higher costs. Conventionally, by using an aspheric surface.

結像性能を向上させると共にこれらの欠点も改善されて
はいるが、十分ではなかった。
Although these drawbacks have been improved along with improved imaging performance, it has not been sufficient.

この発明の目的は、投光、受光レンズにおける上述の欠
点を改良し、投光、受光レンズとして十分な口径比と結
像性能を維持しながら、軸上厚及びレンズ全長の小さい
レンズを得ることである。
The purpose of the present invention is to improve the above-mentioned drawbacks of light projecting and light receiving lenses, and to obtain a lens that has a small axial thickness and a small overall lens length while maintaining sufficient aperture ratio and imaging performance as a light projecting and light receiving lens. It is.

(この問題点を解決するための手段) この発明のレンズは、合成樹脂製の一枚のレンズであっ
て、光軸方向前後二つの屈折面はそれぞれ中心部の屈折
面A0、A2と周辺部の屈折面B1゜B2とからなり、
屈折面A1と81との境界をなす帯状の段差部と屈折面
A2とB2との境界をなす帯状の段差部とにおいて、上
記屈折面A1が屈折面B1に対して陥没するように、か
つ、屈折面A2がそれぞれ屈折面B2に対して陥没する
ように連結されていることを特徴とする。
(Means for solving this problem) The lens of the present invention is a single lens made of synthetic resin, and the two refractive surfaces in the optical axis direction are the refractive surfaces A0 and A2 in the center and the peripheral portion. It consists of refractive surfaces B1 and B2,
The refracting surface A1 is recessed with respect to the refractive surface B1 in the band-shaped step portion that forms the boundary between the refractive surfaces A1 and 81 and the band-shaped step portion that forms the boundary between the refractive surfaces A2 and B2, and It is characterized in that the refracting surfaces A2 are each connected to the refracting surface B2 so as to be recessed.

また、これらの屈折面の中、共役距離の長い側の周辺部
の屈折面が、光軸から離れた位置における法線ほど光軸
との交点がレンズより遠ざかる非球面であることが望ま
しい。
Furthermore, among these refractive surfaces, it is desirable that the peripheral refractive surface on the side with a longer conjugate distance be an aspheric surface such that the point of intersection with the optical axis is farther away from the lens as the normal line is further away from the optical axis.

(作用) この発明の作用を実施例に即して説明する。(effect) The operation of this invention will be explained based on examples.

第1図はこの発明の投光、受光レンズの実施例の形状を
示す断面図である。また第2図は周辺部が、第1図にお
ける周辺部と同一の形状をしている従来の投光、受光レ
ンズの断面形状図である。
FIG. 1 is a sectional view showing the shape of an embodiment of the light projecting and light receiving lens of the present invention. Further, FIG. 2 is a cross-sectional view of a conventional light emitting/receiving lens whose peripheral portion has the same shape as the peripheral portion in FIG. 1.

第1図において屈折面B0、B2からなる周辺部に関す
る焦点距離、主点位置などの近軸特性を。
In Fig. 1, paraxial characteristics such as focal length and principal point position are shown for the peripheral area consisting of refractive surfaces B0 and B2.

第2図の従来レンズと同一の近軸特性で表わすことにす
る。いまこのようにして表わした屈折面B1、B2から
なる周辺部の光軸、焦点距離、共役距離の短い側の主点
位置と、屈折面A1.A、からなる中心部の光軸、焦点
距離、共役距離の短い側の主点位置とがそれぞれ一致し
ていると、共役距離の長い側にある十分遠方の物点に対
して、周辺部による像と中心部による像とがほぼ同じ位
置にできることになる。この作用により第1図に示した
この発明のレンズは第2図に示した従来レンズと近軸的
にほぼ同じ結像作用を有することができる。
It will be expressed by the same paraxial characteristics as the conventional lens shown in FIG. Now, the position of the principal point on the shorter side of the optical axis, focal length, and conjugate distance of the peripheral portion consisting of the refractive surfaces B1 and B2 represented in this way, and the refractive surface A1. If the central optical axis, focal length, and principal point position on the shorter conjugate distance side of This means that the image and the image formed by the center are formed at approximately the same position. Due to this effect, the lens of the present invention shown in FIG. 1 can have substantially the same imaging effect paraxially as the conventional lens shown in FIG. 2.

一方、共役距離の長い側の主点位置は、実用上、周辺部
と中心部とで一致している必要はない6従って共役距離
の長い側の面において、屈折面A1を屈折面B、に対し
て境界部で陥没する位置関係に配置できる。このとき中
心部の主点間隔が短縮されるため、付随的に共役距離の
短い側においても屈折面A2が屈折面8つに対して境界
部で陥没する配置になる。このようにしてこの発明のレ
ンズは従来レンズにくらべて軸上厚を短縮することがで
きる。このときレンズ全長が短縮されていることも勿論
である。
On the other hand, the position of the principal point on the side with the longer conjugate distance does not need to be the same between the peripheral part and the center in practical terms. On the other hand, it can be arranged in a positional relationship where it collapses at the boundary. At this time, since the distance between the principal points at the center is shortened, the refracting surface A2 is concave at the boundary with respect to the eight refractive surfaces even on the side where the conjugate distance is short. In this way, the lens of the present invention can have a shorter axial thickness than conventional lenses. Of course, the total length of the lens is also shortened at this time.

またこの発明のレンズにおいては、共役距離の長い側の
周辺部の屈折面を光軸から離れた位置における法線ほど
光軸との交点がレンズより遠ざかる非球面とすることに
より、球面収差を補正すると同時に、光軸方向のサグが
小さくなるため結果としてレンズの軸上厚をより小さく
することが可能となる。
In addition, in the lens of this invention, spherical aberration is corrected by making the refractive surface at the periphery on the side with a longer conjugate distance an aspheric surface whose intersection with the optical axis is farther away from the lens as the normal line at a position farther from the optical axis. At the same time, since the sag in the optical axis direction is reduced, it is possible to further reduce the axial thickness of the lens.

また1段差部による光量損失を少なくするために、共役
距離の長い側の軸上無限遠物点に対して、屈折面A1を
通る光束と屈折面A2を通る光束がほぼ一致するように
、また屈折面B1を通る光束と屈折面B2を通る光束が
ほぼ一致するように、前後二つの段差部の位置が整合さ
れていることが望ましい。
In addition, in order to reduce the loss of light amount due to the one-step difference, the light flux passing through the refraction surface A1 and the light flux passing through the refraction surface A2 are made to almost match with respect to the object point at infinity on the axis on the side where the conjugate distance is longer. It is desirable that the positions of the front and rear two step portions are aligned so that the light flux passing through the refraction surface B1 and the light flux passing through the refraction surface B2 are substantially the same.

なお、段差部の正面形状は円形でも矩形でも良b1゜ (実施例) 以下、この発明の実施例を示す。断面形状図は第1図に
示したものであるが、レンズデータ、収差曲線図は中心
部と周辺部とで別個に記載する。
Note that the front shape of the stepped portion may be circular or rectangular and may be 1° (Example) Examples of the present invention will be described below. Although the cross-sectional shape diagram is shown in FIG. 1, lens data and aberration curve diagrams are described separately for the center and peripheral parts.

中心部 面番号  r     d    n(A’ )1 m
   55.689 32.48 1.483002 
 −294.874 第1面の非球面係数 K =  −1,82620 A1=  6.99737X10−’   PL=4.
0O00A2=−6,83777xlO−”  p2=
6.0000A 3 =−1,87582X10−14
P 3 =8.0OOO周辺部 面番号  r     d    n(A’ )1傘 
  60.884 59.83 1.483002  
−158.896 第1面の非球面係数 に=  −L47396 A1=   3.37236X10−’    P1=
4.000OA2=−3,60750X10−11  
 P2=6.0OOOA 3 =  −7,36196
X10−”    P 3 =8.0000第2面の非
球面係数 に=:  −7,87890X 10 Al:  4.82969X10”11P1=4.00
0OA2=−2,27867X10−”  P2:6.
0000A 3 =−1,32426XlO−1sP 
3 =a、ooo。
Center surface number r d n (A') 1 m
55.689 32.48 1.483002
-294.874 Aspheric coefficient of the first surface K = -1,82620 A1 = 6.99737X10-' PL = 4.
0O00A2=-6,83777xlO-” p2=
6.0000A 3 = -1,87582X10-14
P 3 = 8.0OOO peripheral part number r d n (A') 1 umbrella
60.884 59.83 1.483002
-158.896 Aspheric coefficient of the first surface = -L47396 A1= 3.37236X10-' P1=
4.000OA2=-3,60750X10-11
P2=6.0OOOA3=-7,36196
X10-" P 3 = 8.0000 Aspherical coefficient of the second surface =: -7,87890X 10 Al: 4.82969X10" 11P1 = 4.00
0OA2=-2,27867X10-” P2:6.
0000A 3 =-1,32426XlO-1sP
3 = a, ooo.

表中串印は非球面である。非球面の頂点を座標原点とし
て、光軸方面にX軸、光軸に垂直な方向にX軸、光軸に
垂直な方向にY軸を選んだとき、非球面形状は次式で表
わされる。
The skewer mark in the front is an aspherical surface. When the apex of the aspheric surface is set as the origin of coordinates, and the X axis is in the direction of the optical axis, the X axis is in the direction perpendicular to the optical axis, and the Y axis is in the direction perpendicular to the optical axis, the shape of the aspheric surface is expressed by the following equation.

(i=1.2.・・・・) °上記レンズデータにおいて、第1面が共役距離の長い
側の屈折面であって、中心部と周辺部とは互いの第1面
の頂点が14.4離れて連結されている。このとき、共
役距離の短い側の主点が中心部と周辺部とで一致してい
る。
(i=1.2...) °In the above lens data, the first surface is the refractive surface with the longer conjugate distance, and the apex of the first surface of the center and peripheral portions is 14 .4 connected apart. At this time, the principal point on the side with the shorter conjugate distance is the same in the center and the periphery.

なお、中心部はFl、5より暗い領域1周辺部はFl、
2より明るい領域をそれぞれ有効領域としている。
In addition, the center part is Fl, the peripheral part of area 1 darker than 5 is Fl,
Areas brighter than 2 are respectively considered effective areas.

第3図、第4図にそれぞれ中心部周辺部の収差曲線図を
示す。
FIGS. 3 and 4 respectively show aberration curve diagrams around the center.

(発明の効果) この発明のレンズは、薄型化と同時にレンズ全長の短縮
を実現したため、従来の測距用投光レンズに較べてカメ
ラのコンパクト化に寄与すると共に、112造時のショ
ットタイムが短縮できるためコストも低減される。また
、フレネルレンズに比して型の製作が容易であると共に
、サイン条件の崩れも少なく、結像性能が勝れている。
(Effects of the Invention) The lens of this invention is thinner and has a shorter overall lens length, so it contributes to making the camera more compact than conventional rangefinder floodlight lenses, and also reduces the shot time when making 112. Since it can be shortened, costs are also reduced. Furthermore, compared to Fresnel lenses, it is easier to manufacture a mold, there is less disruption of the sign condition, and the imaging performance is superior.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のレンズの1実施例の断面形状図、第
2図は従来の測距用投光、受光レンズの一例の断面形状
図、第3図、第4図は上記の実施例のそれぞれ中心部、
周辺部の収差曲線図、第5図はカメラの測距光学系の概
要を示す図である。 第   、   図               第
   2   図第   3   図 球面収差            非点収差第4図
Fig. 1 is a cross-sectional view of an example of the lens of the present invention, Fig. 2 is a cross-sectional view of an example of a conventional distance measuring light emitting and receiving lens, and Figs. 3 and 4 are examples of the above-mentioned embodiment. each center of
The peripheral aberration curve diagram, FIG. 5, is a diagram showing an outline of the distance measuring optical system of the camera. Figure 2 Figure 3 Spherical aberration Astigmatism Figure 4

Claims (1)

【特許請求の範囲】 1 合成樹脂製の一枚のレンズであって、光軸方向前後
二つの屈折面はそれぞれ中心部の屈折面A_1、A_2
と周辺部の屈折面B_1、B_2とからなり、A_1と
B_1との境界をなす帯状の段差部とA_2とB_2と
の境界をなす帯状の段差部とにおいて、A_1がB_1
に対して陥没するように、かつA_2がB_2に対して
陥没するようにそれぞれA_1とB_1、A_2とB_
2とが連結されていることを特徴とする大口径レンズ。 2 共役距離の長い側の周辺部の屈折面が、光軸から離
れた位置における法線ほど光軸との交点がレンズより遠
ざかる非球面である特許請求の範囲第1項を満たす大口
径レンズ。
[Claims] 1. A single lens made of synthetic resin, and the two front and rear refractive surfaces in the optical axis direction are refractive surfaces A_1 and A_2 at the center, respectively.
and peripheral refractive surfaces B_1 and B_2, and in the band-shaped step part that forms the boundary between A_1 and B_1 and the band-shaped step part that forms the boundary between A_2 and B_2, A_1 becomes B_1.
A_1 and B_1, A_2 and B_
A large-diameter lens characterized in that two are connected to each other. 2. A large-diameter lens that satisfies claim 1, wherein the refractive surface of the peripheral portion on the side with a longer conjugate distance is an aspherical surface whose intersection with the optical axis is farther away from the lens as the normal line is further away from the optical axis.
JP62281113A 1987-11-09 1987-11-09 Large aperture lens Expired - Fee Related JP2559601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62281113A JP2559601B2 (en) 1987-11-09 1987-11-09 Large aperture lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62281113A JP2559601B2 (en) 1987-11-09 1987-11-09 Large aperture lens

Publications (2)

Publication Number Publication Date
JPH01123209A true JPH01123209A (en) 1989-05-16
JP2559601B2 JP2559601B2 (en) 1996-12-04

Family

ID=17634534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62281113A Expired - Fee Related JP2559601B2 (en) 1987-11-09 1987-11-09 Large aperture lens

Country Status (1)

Country Link
JP (1) JP2559601B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079426A1 (en) * 2003-03-04 2004-09-16 Nalux Co., Ltd. Imaging optical system
JP2020064289A (en) * 2018-10-15 2020-04-23 ヒュンダイ・モービス・カンパニー・リミテッド Optical device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57109618A (en) * 1980-12-27 1982-07-08 Dainippon Printing Co Ltd Both faces fresnel lens and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57109618A (en) * 1980-12-27 1982-07-08 Dainippon Printing Co Ltd Both faces fresnel lens and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079426A1 (en) * 2003-03-04 2004-09-16 Nalux Co., Ltd. Imaging optical system
JPWO2004079426A1 (en) * 2003-03-04 2006-06-08 ナルックス株式会社 Imaging optics
CN100410714C (en) * 2003-03-04 2008-08-13 纳卢克斯株式会社 Imaging optical system
JP2020064289A (en) * 2018-10-15 2020-04-23 ヒュンダイ・モービス・カンパニー・リミテッド Optical device
US11506822B2 (en) 2018-10-15 2022-11-22 Hyundai Mobis Co., Ltd. Optical device

Also Published As

Publication number Publication date
JP2559601B2 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
US5341186A (en) Active autofocusing type rangefinder optical system
CN107272145B (en) Optical imaging system
CN107203028A (en) Optical imaging system
TW202034013A (en) Optical imaging lens
TWI725283B (en) Electronic device
JP3063485B2 (en) Reflective optical system
JPS6185921A (en) Apparatus for observing and photographing eyebottom
JP4043619B2 (en) Lighting device
US4348090A (en) Inverted Galilean finder
JPS6381413A (en) Spherical lens
JPS61275809A (en) Bright wide-angle zoom lens
JP2002277741A (en) Reflection and refraction type macro projection optical system
JPH01123209A (en) Large-aperture lens
JPH09509265A (en) High symmetry optical system
JPS6396616A (en) Image pickup device
JP3467018B2 (en) Optical system and optical equipment
JPH05173067A (en) Large-diameter wide angle lens
JPH0125046B2 (en)
JPH05157967A (en) Endoscope lighting optical system
JPH0392809A (en) Reflection and refraction type optical system
JPH05119272A (en) Lighting optical system for endoscope
SU1659955A1 (en) 1,5 magnification projection objective
JPH04264411A (en) Albada zoom finder
JPS6330609B2 (en)
US2715354A (en) Photographic objective with wide relative aperture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees