JPH0392809A - Reflection and refraction type optical system - Google Patents

Reflection and refraction type optical system

Info

Publication number
JPH0392809A
JPH0392809A JP1230156A JP23015689A JPH0392809A JP H0392809 A JPH0392809 A JP H0392809A JP 1230156 A JP1230156 A JP 1230156A JP 23015689 A JP23015689 A JP 23015689A JP H0392809 A JPH0392809 A JP H0392809A
Authority
JP
Japan
Prior art keywords
lens
reflector
refractive
reflection
refracting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1230156A
Other languages
Japanese (ja)
Other versions
JP2518055B2 (en
Inventor
Hitoshi Mukoya
向谷 仁志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1230156A priority Critical patent/JP2518055B2/en
Publication of JPH0392809A publication Critical patent/JPH0392809A/en
Application granted granted Critical
Publication of JP2518055B2 publication Critical patent/JP2518055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements

Abstract

PURPOSE:To obtain a large aperture ratio of an about F3.5 and reduce the size of the lens system on the whole and to obtain high optical performance over the entire picture plane by setting respective lens elements of a reflection and a refraction system. CONSTITUTION:The optical system is equipped with a positive lens L1, a refracting concave reflector L2, a refracting reflector L3, a positive lens L4, and a negative lens L5 in order from the object side. Conditions shown by inequalities I - III are satisfied, where (f) is the focal length of the whole system f2 the focal length of the refracting concave reflector L2, f3 the focal length of the lens L1, refracting reflector L3, and the system R11 the radius of curvature of the object-side lens surface of the lens L4, and D2 the interval between the lens L1 and refracting concave reflector L2. Consequently, the large aperture radio and the lens diameter are reduced on the whole and a reflection and refraction optical system having high optical performance is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は反射系と屈折系を用いた反射屈折式光学系に関
し、特に収差補正を良好に維持しっつFナンバー3.5
と大口径比化及びレンズ系全体の小型化を図った写真用
カメラやビデオカメラ等に好通な大口径比の反射屈折式
光学系に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a catadioptric optical system using a reflective system and a refractive system, and in particular to a catadioptric optical system that maintains aberration correction well and has an F number of 3.5.
This invention relates to a catadioptric optical system with a large aperture ratio, which is suitable for photographic cameras, video cameras, etc., and which aims to increase the aperture ratio and downsize the entire lens system.

(従来の技術) 従来より反射屈折式光学系は反射面を用いることによっ
て色収差を極めて小さく、又反射面で発生するコマ収差
を屈折系を用いて補正することが容易で、又望遠比(焦
点距離に対する第1レンズ面から像面までの距離の比)
を小さくすることが出来る為、長焦点距離の光学系に多
く用レ)られている。
(Prior art) Conventionally, catadioptric optical systems have extremely small chromatic aberrations by using reflective surfaces, and it is easy to correct coma aberration that occurs on reflective surfaces using refractive systems. ratio of the distance from the first lens surface to the image plane)
It is often used in optical systems with long focal lengths because it can make the lens small.

これら反射屈折式光学系は、例えば特公昭40−18:
154号公報、特公昭43−5951号公報、特公昭6
0−18045号公報、特開昭60−184223号公
報等で提案されている。
These catadioptric optical systems are, for example,
Publication No. 154, Special Publication No. 43-5951, Special Publication No. 6
This method has been proposed in Japanese Patent Application Laid-open No. 0-18045, Japanese Patent Laid-Open No. 184223-1980, and the like.

しかしながら反射屈折式光学系は一般に口径比を大きく
し、かつレンズ系全体の小型化を行うのが難しい為、従
来の多くは口径比を犠牲にしてレンズ系全体の小型化を
図っていた.例えば特公昭60−32853号公報や特
開昭62−184425号公報では口径比を犠牲にして
レンズ全長の短縮化を図った反射屈折式光学系を提案し
ている。
However, with catadioptric optical systems, it is generally difficult to increase the aperture ratio and downsize the entire lens system, so in many conventional systems, the aperture ratio has been sacrificed in order to downsize the entire lens system. For example, Japanese Patent Publication No. 60-32853 and Japanese Patent Application Laid-open No. 62-184425 propose catadioptric optical systems in which the overall length of the lens is shortened at the expense of the aperture ratio.

(発明が解決しようとする問題点) 般に反射屈折式光学系において大口径比化を図るには特
に球面収差を良好に補正する必要がある。この場合、主
鏡と副鏡との間隔を広くするのが球面収差を良好に補正
するのに好ましい。しかしながら例えば特公昭40−1
8354号公報で提案されているように、このような方
法をとると全系の焦点距離に比してレンズ全長が長く(
テレ比が大きくなり)、レンズ系全体が大型化し、又主
鏡に比して副鏡の屈折力が小さくなりすぎバックフォー
カスが短くなってくるという問題点が生じてくる。
(Problems to be Solved by the Invention) In general, in order to achieve a large aperture ratio in a catadioptric optical system, it is necessary to particularly correct spherical aberration well. In this case, it is preferable to widen the distance between the primary mirror and the secondary mirror in order to properly correct spherical aberration. However, for example,
As proposed in Publication No. 8354, if such a method is used, the total length of the lens will be long compared to the focal length of the entire system (
The problem arises that the telephoto ratio becomes large), the entire lens system becomes large, and the refractive power of the secondary mirror becomes too small compared to the primary mirror, resulting in a short back focus.

この他、特公昭40−18354号公報や特開昭60−
184223号公報では主鏡の中央部に穴をあけてこの
穴部にレンズ系を支持しているか主鏡に穴をあけること
は加工上大変難しく、又レンズ系を保持するのが難しい
という問題点があった. 又、反射屈折式光学系は多くの場合、副鏡により軸上及
び軸外光束が多くケラレ光量比が低下してくるという問
題点がある. 本発明は反射系及び屈折系の各レンズ要素を適切に設定
することによりFナンバー3.5と反射屈折式光学系と
しての大口径比及び所定量のバックフォーカスを維持し
つつ、レンズ系全体の小型化を図り、又副鏡による光束
のケラレな少なくし、画面全体にわたり高い光学性能を
有した反射屈折式光学系の提供を目的とする。
In addition, Japanese Patent Publication No. 18354/1983
No. 184223 discloses that a hole is made in the center of the primary mirror and the lens system is supported in this hole.Drilling a hole in the primary mirror is very difficult in terms of processing, and it is also difficult to hold the lens system. was there. In addition, in many cases, catadioptric optical systems have the problem that the secondary mirror produces a large amount of on-axis and off-axis light fluxes, resulting in a decrease in the vignetting light quantity ratio. The present invention maintains an F number of 3.5, a large aperture ratio as a catadioptric optical system, and a predetermined amount of back focus by appropriately setting each lens element of the reflective system and refractive system. The object of the present invention is to provide a catadioptric optical system that is downsized, reduces vignetting of a light beam by a secondary mirror, and has high optical performance over the entire screen.

(問題点を解決するための手段) 本発明の反射屈折式光学系は、物体からの光束を順に正
のレンズL1を介し、物体側に凹面を向けたメニスカス
状の像面側のレンズ面の周辺部を反射面M1とした屈折
凹面反射鏡L2で物体側へ屈折反射させ、該レンズL1
を介し、像面側のレンズ面を該レンズL1の物体側のレ
ンズ面に接合され物体側のレンズ面を反射面M2とした
屈折反射鏡L3で像面側へ反射させ、該レンズL1と両
レンズ面が凸面で像面側のレンズ面を該屈折凹面反射鏡
の物体側のレンズ面と接合させた正のレンズL4を介し
、該屈折凹面反射鏡L2の中央透過部を通過させた後、
像面側に凹面を向けたメニスカス状の負のレンズL5を
介し、像面に導光する際、全系の焦点距離なf、該屈折
凹面反射鏡の焦点距離なf2、該レンズL1と該屈折反
射1!L3で構成される系の焦点距離をf3、該レンズ
L4の物体側のレンズ面の曲率半径をR11、該レンズ
L1と該屈折凹面反射tl!L2の間隔をD2とすると
き 2.0  <lf2/f31<2.7  ・・(1)0
.1    <   D27f     <0.2  
 ・・ (2)0.01<  R11/f  <0.3
  ・・〈3)なる条件を満足することを特徴としてい
る。
(Means for Solving the Problems) The catadioptric optical system of the present invention sequentially passes a light beam from an object through a positive lens L1 to a meniscus-shaped lens surface on the image plane side with a concave surface facing the object side. The lens L1 is refracted and reflected toward the object side by a refractive concave reflector L2 whose peripheral portion is a reflective surface M1.
The lens surface on the image side is reflected to the image side by a refractive reflector L3 which is joined to the object side lens surface of the lens L1 and whose object side lens surface is the reflective surface M2. After passing through the central transmission part of the refractive concave reflector L2 through a positive lens L4 whose lens surface is convex and whose image side lens surface is joined to the object side lens surface of the refractive concave reflector L2,
When guiding light to the image plane through a meniscus-shaped negative lens L5 with a concave surface facing the image plane, the focal length of the entire system is f, the focal length of the refractive concave reflector is f2, the lens L1 is Refractive reflection 1! The focal length of the system composed of L3 is f3, the radius of curvature of the object-side lens surface of the lens L4 is R11, and the lens L1 and the refractive concave reflection tl! When the interval of L2 is D2, 2.0 <lf2/f31<2.7...(1)0
.. 1 < D27f <0.2
... (2) 0.01< R11/f <0.3
It is characterized by satisfying the condition (3).

(実施例) 第1図,第2図は各々本発明の数値実施例1.2のレン
ズ断面図である。同図において本実施例の反射屈折式先
学系の各光学要素を光束の進行順に説明する。
(Example) FIG. 1 and FIG. 2 are lens sectional views of numerical example 1.2 of the present invention, respectively. In the figure, each optical element of the catadioptric system of this embodiment will be explained in the order in which the light beam travels.

LLは両レンズ面が凸面の正のレンズ、L2は物体側に
凹面を向けたメニスカス形状で像面側のレンズ面の周辺
部を反射而M1、中心部分を透過面とし主鏡として使用
する屈折凹面反射鏡、L3は像面側のレンズ面をレンズ
L1の物体側のレンズ面と接合し、又物体側のレンズ面
(凸面)を反射面M2とし副鏡として使用する屈折反射
鏡、L4は両レンズ面が凸面の正のレンズであり、像面
側のレンズ面は屈折凹面反射鏡L2の物体側のレンズ面
と接合されている。L5は像面側に凹面を向けたメニス
カス状の負のレンズである。
LL is a positive lens with both lens surfaces being convex, L2 is a meniscus shape with a concave surface facing the object side, and the peripheral part of the lens surface on the image side is reflective, M1 is a refractor whose center part is a transmitting surface and is used as a primary mirror. A concave reflecting mirror, L3, is a refractive reflecting mirror whose image side lens surface is joined to the object side lens surface of lens L1, and whose object side lens surface (convex surface) is a reflecting surface M2, which is used as a secondary mirror. Both lens surfaces are positive lenses with convex surfaces, and the lens surface on the image side is cemented to the object side lens surface of the refractive concave reflecting mirror L2. L5 is a meniscus-shaped negative lens with a concave surface facing the image plane side.

尚、G1は着脱可能のフィルターであり、例えば絞りの
代わりに濃度の異ったNDフィイルターを交換的に挿着
している。G2はビデオカメラ等のときに使用されるロ
ーバスフィルター 赤外カットフィルター等の光学部材
である。Qは像而である。
Incidentally, G1 is a removable filter, and for example, an ND filter with a different density is inserted in place of a diaphragm. G2 is an optical member such as a low-pass filter or an infrared cut filter used in a video camera or the like. Q is an image.

本実施例では同図に示すように物体(不図示)からの光
束をレンズL1で集光し、屈折凹面反射鏡L2の屈折面
と反射面M1により物体側へ屈折反射させている。次い
でレンズL1で屈折させ屈折反射鏡L3の反射面M2で
物体側へ反射させた後、レンズL1を介して屈折射出さ
せている。そしてレンズL4と屈折凹面反射鏡L2の中
心部分の透過面とレンズL5を順次屈折通過させた後、
結像而Qに集光し、物体像を形成している。
In this embodiment, as shown in the figure, a light beam from an object (not shown) is condensed by a lens L1, and is refracted and reflected toward the object side by a refractive surface of a refractive concave reflector L2 and a reflective surface M1. Next, the light is refracted by the lens L1, reflected toward the object side by the reflective surface M2 of the refractive reflector L3, and then refracted and emitted through the lens L1. After passing through the lens L4, the transmitting surface at the center of the refractive concave reflector L2, and the lens L5 in order,
The light is focused on the image Q and forms an object image.

本実施例では以上のように各光学要素を設定すると共に
各光学要素を。前述の条件式(1)〜(3)を満足させ
ることにより大口径比化及びレンズ系全体の小型化を図
り、又副鏡による光束のケラレの少ない高い光学性能を
有した反射屈折式光学系を得ている。
In this embodiment, each optical element is set as described above, and each optical element is By satisfying the above-mentioned conditional expressions (1) to (3), the catadioptric optical system achieves a large aperture ratio and miniaturization of the entire lens system, and also has high optical performance with little vignetting of the light beam due to the secondary mirror. I am getting .

次に前述の各条件式の技術的意味について説明する。Next, the technical meaning of each of the above-mentioned conditional expressions will be explained.

条件式(+) , (2)はレンズ系全体の小型化を図
りつつ、大口径比化を図る際に最も重要となる球面収差
を良好に補正する為のものである。即ち条件式(2)の
如く、主11MIと副鏡M2の間隔をある程度あけて球
面収差を良好に補正しつつ、主鏡系と副鏡系の屈折力(
パワー)を条件式(1)の如くバランス良く保ち、所定
のバックフォーカスを確保しつつレンズ全長の短縮化を
効果的に図っている。
Conditional expressions (+) and (2) are intended to reduce the size of the entire lens system and to satisfactorily correct spherical aberration, which is most important when increasing the aperture ratio. In other words, as shown in conditional expression (2), the refractive power of the primary mirror system and the secondary mirror system (
power) is maintained in a well-balanced manner as shown in conditional expression (1), and the overall length of the lens is effectively shortened while ensuring a predetermined back focus.

条件式(1)の上限値を越えるとバックフォーカスは増
大するが副鏡の屈折力が強くなりすぎ球面収差が補正過
剰となり、又負のべツッパール和が増大し像面湾曲を良
好に補正するのが難しくなってくる。又下限値を越える
と大口径比を維持しつつ所定量のバックフォーカスを得
るのが難しくなってくる。
When the upper limit of conditional expression (1) is exceeded, the back focus increases, but the refractive power of the secondary mirror becomes too strong, resulting in overcorrection of spherical aberration, and the negative Bethespal sum increases, making it impossible to properly correct field curvature. It's getting difficult. Moreover, if the lower limit is exceeded, it becomes difficult to obtain a predetermined amount of back focus while maintaining a large aperture ratio.

条件式(2)の上限値を越えるとレンズ全長の短縮化を
図るのが難しくなり、又下限値を越えると高次の球面収
差が増大し、大口径比化を図るのが難しくなってくる。
If the upper limit of conditional expression (2) is exceeded, it becomes difficult to shorten the overall lens length, and if the lower limit is exceeded, higher-order spherical aberration increases, making it difficult to increase the aperture ratio. .

条件式(3)は副鏡L3を通った後の光束を制御する九
の後部屈折レンズ系の主鏡L2に接合したレンズL4の
物体側のレンズ面の曲率半径を適切に設定する為のもの
である。即ち副鏡L3で反射された収束光は球面収差と
コマ収差がバランス良く補正されている為、主鏡の中央
部を透過屈折光学系として利用する場合、主鏡の第1レ
ンズ面の強い屈折力の凹面の為、球面収差は補正過剰と
なってくる。その為、本実施例では主鏡L2の物体側に
条件式(3)を満足する正のレンズL4を配置してこの
ときの補正過剰の球面収差を良好に補正している。
Conditional expression (3) is used to appropriately set the radius of curvature of the object-side lens surface of lens L4 cemented to primary mirror L2 of the rear refractive lens system that controls the light flux after passing through secondary mirror L3. It is. In other words, since the convergent light reflected by the secondary mirror L3 has spherical aberration and coma aberration corrected in a well-balanced manner, when the central part of the primary mirror is used as a transmissive refractive optical system, the strong refraction of the first lens surface of the primary mirror Due to the concave surface of the force, spherical aberration becomes over-corrected. Therefore, in this embodiment, a positive lens L4 that satisfies conditional expression (3) is arranged on the object side of the primary mirror L2 to satisfactorily correct the overcorrected spherical aberration at this time.

条件式(3)の上限値を越えると副鏡で反射された光束
が大きい入射角でレンズL4の第1レンズ面に入射する
為、球面収差が補正過剰となり、又下限値を越えるとバ
ックフォーカスが短くなりすぎるので良くない。
If the upper limit of conditional expression (3) is exceeded, the light beam reflected by the secondary mirror will enter the first lens surface of lens L4 at a large angle of incidence, resulting in overcorrection of spherical aberration, and if the lower limit is exceeded, back focus will occur. This is not good because it becomes too short.

本実施例ではこれら各条件式を満足させることによって
、良好に収差補正がなされた大口径でありながらレンズ
全長の短い反射屈折式光学系を達成しているが、さらに
後部屈折レンズ系の後群に像面側に強い屈折力の凹面を
向けた負のメニスカスレンズ状のレンズL5を配置する
ことにより、特に非点収差をバランス良く補正し、視野
の拡大を図っている。
In this example, by satisfying each of these conditional expressions, a catadioptric optical system with a large aperture and a short overall lens length with good aberration correction is achieved. By arranging a negative meniscus lens L5 with a concave surface of strong refractive power facing the image plane side, astigmatism in particular is corrected in a well-balanced manner and the field of view is expanded.

尚、本実施例では副鏡M2を構成するレンズL3とレン
ズL1及び後部屈折レンズ系を構成するレンズL4と主
fiMlを構成するレンズL2を接合しているが、これ
らを分離支持しても本発明の目的を達成することができ
る。又、本実施例ではフォーカスは正レンズL1と副m
M2の張り合わせレンズの双方を移動させて行うのが収
差補正上好ましいが、レンズ系全体を移動させてフォー
カスを行ってもよい。
In this embodiment, the lenses L3 and L1 constituting the secondary mirror M2, the lens L4 constituting the rear refractive lens system, and the lens L2 constituting the main fiMl are joined, but even if these are supported separately, the main The purpose of the invention can be achieved. In addition, in this embodiment, the focus is determined by the positive lens L1 and the sub-lens m.
Although it is preferable for aberration correction to be performed by moving both of the M2 laminated lenses, focusing may be performed by moving the entire lens system.

次に本発明の数値実施例を示す。数値実施例においてR
iは光の進行順に第i番目のレンズ面の曲率半径、Di
は光の進行順に第i番目のレンズ厚及び空気間隔、Ni
とνiは各々光の進行順に第i番目のレンズのガラスの
屈折率とアツベ数である。但しDiは光の進行方向左方
より右方へ測った長さを正、その逆を負としている。
Next, numerical examples of the present invention will be shown. In numerical examples R
i is the radius of curvature of the i-th lens surface in the order of light progression, Di
is the i-th lens thickness and air spacing in the order of light progression, Ni
and νi are the refractive index and Abbe number of the glass of the i-th lens in the order of light propagation, respectively. However, Di assumes that the length measured from the left to the right in the direction of light travel is positive, and the opposite is negative.

数値実施例 I F−100.0 R 1吋364.640 R 2−312.861 R 3− −66.385 R  4−  −72.403(  Ml)R 5− 
−1i6.385←R3) R6・−3 12 .88 1 (−R2)R 7− 
364.640(−Rl) R8・−45.391 ( M2) R9・:l64.640 (−Rl) RIO−312.861 (−82) R11−  1:l.999 RI2・−68.385 (−R3) 1113・−72.403 (−R4)RI4・ ■ RI5−  0:I RI6−  12.41[i RI7−   5.595 Rl8−  00 Rl9−  ■ FNo・:1.5        2ω−3.4°D1
・2.703  N I〜1.51633    ν 
1・64.15D2〜15.451 D 3− 2.97:l  N 2−1.51633 
   ν 2〜64.15D4〜2.973  N3−
1.51633(−N2)υ3−64.15(=ν2)
D5璽−15.451 D 6−2.703  N 4−1.51633(−N
l)ν4−64.15(〜νl)D 7−1.622 
 N 5−1.51633    υ 5−64.15
D 8− 1.622  N 6・1.5163:] 
(−N5)ν6−64.15(一ν5)D9・2.70
3  N7・1.51633 (−Nl)ν7−64.
15(一νI)010−10.587 DI1−  4.865   N  8−1.5163
3      ν 8・64 l5012− 2.97
3  8 9−1.51633(−N2)ν9−64.
+5←v2)013・0.541 014−0.541  NIO・1.5+633   
  ν10−64.15Dl51 0.541 DI6−1.081  Nl!・1.60311   
  ν]+−60.70DI7−  1.081 018繻3.243  N+2−1.5+6113  
   ν12嘗64.+5条件式 (1) − 2.2973 (2) − 0.1545 (3)・0.1400 数値実施例 2 F−100.0 R I− 24+.560 R 2−379.861 R 3− −62.425 R4〜−69.843( Ml) R  5−  −62.425(−R3)R 6−37
9.861(−R2) R 7− 241.560(−Rl) R8口−44.479( M2) R 9− 241.560(−Rl) RIO−379.861 (−R2) Rl+−  11.814 Rl2− −62.425(−R3) R]3− −69.843(−R4) RI4−  12.460 RI5・ 5.58] ?No−3.5         2ω=2.63°D
 I−  1.622  N ]−1.5]633  
  v  I−64.15D 2−17.450 D 3−  1.622  N 2麿1.51633 
   υ 2−64.15D 4−1.622  8 
3−1.51633(−N2)ν3−64.15(−ν
2)D 5−17.450 D 6−−1.622  N 4−1.5+633(−
Nl)Z/ 4−64.+5←bl)D 7−1.08
1  N 5−1.51633    ν 5−84.
15D 8” 1.081  N 6−1.51633
(−N5)v6■64.l5(=b5)D 9− 1.
622  N 7−1.51533(−Nl)ν7−6
4.15(一νl)010−14.748 DI+− 2.703  N 8−1.51633  
  υ 8−64.15012−  1.622   
N  9−1.5]633←N2)υ 9−64 .1
5 (−υ2)013− 0.541 0141.081  NIO−1.60311    
vlo−60.70DI5=  1.081 Rl8− DI6〜3.243 NIL−1.51633 ν11冒64.15 RI7− 条件式 (+) ・2368 (2) − 0.1745 (3) − 0.1181 (発明の効果) 本発明によれば前述の如く反射系と屈折系の各レンズ要
素を設定することにより、Fナンバー3.5程度の大口
径比化及びレンズ系全体の小型化を図りつつ画面全体に
わたり高い光学性能を有した反射屈折式光学系を達成す
ることができる。
Numerical Examples I F-100.0 R 1 inch 364.640 R 2-312.861 R 3- -66.385 R 4- -72.403 (Ml) R 5-
-1i6.385←R3) R6・-3 12. 88 1 (-R2)R 7-
364.640 (-Rl) R8・-45.391 (M2) R9・:l64.640 (-Rl) RIO-312.861 (-82) R11- 1:l. 999 RI2・-68.385 (-R3) 1113・-72.403 (-R4) RI4・ ■ RI5- 0:I RI6- 12.41 [i RI7- 5.595 Rl8- 00 Rl9- ■ FNo.: 1.5 2ω-3.4°D1
・2.703 N I ~ 1.51633 ν
1・64.15D2~15.451 D 3- 2.97:l N 2-1.51633
ν 2~64.15D4~2.973 N3-
1.51633(-N2)υ3-64.15(=ν2)
D5 Seal-15.451 D 6-2.703 N 4-1.51633(-N
l) ν4-64.15 (~νl) D 7-1.622
N 5-1.51633 υ 5-64.15
D 8- 1.622 N 6・1.5163:]
(-N5) ν6-64.15 (1 ν5) D9・2.70
3 N7・1.51633 (-Nl) ν7-64.
15 (1 νI) 010-10.587 DI1- 4.865 N 8-1.5163
3 ν 8・64 l5012- 2.97
3 8 9-1.51633 (-N2) ν9-64.
+5←v2)013・0.541 014−0.541 NIO・1.5+633
ν10-64.15Dl51 0.541 DI6-1.081 Nl!・1.60311
ν]+-60.70DI7- 1.081 018 Stain 3.243 N+2-1.5+6113
ν12嘗64. +5 Conditional expression (1) - 2.2973 (2) - 0.1545 (3)・0.1400 Numerical example 2 F-100.0 R I- 24+. 560 R 2-379.861 R 3- -62.425 R4--69.843 (Ml) R 5- -62.425 (-R3) R 6-37
9.861 (-R2) R 7- 241.560 (-Rl) R8 mouth-44.479 (M2) R 9- 241.560 (-Rl) RIO-379.861 (-R2) Rl+- 11.814 Rl2- -62.425(-R3) R]3- -69.843(-R4) RI4- 12.460 RI5・5.58]? No-3.5 2ω=2.63°D
I-1.622 N]-1.5]633
v I-64.15D 2-17.450 D 3- 1.622 N 2 Maro 1.51633
υ 2-64.15D 4-1.622 8
3-1.51633(-N2)ν3-64.15(-ν
2) D 5-17.450 D 6--1.622 N 4-1.5+633(-
Nl) Z/ 4-64. +5←bl)D 7-1.08
1 N 5-1.51633 ν 5-84.
15D 8” 1.081 N 6-1.51633
(-N5)v6■64. l5(=b5)D 9-1.
622 N 7-1.51533(-Nl)ν7-6
4.15 (1 νl) 010-14.748 DI+- 2.703 N 8-1.51633
υ 8-64.15012- 1.622
N 9-1.5]633←N2)υ 9-64. 1
5 (-υ2)013- 0.541 0141.081 NIO-1.60311
vlo-60.70DI5= 1.081 Rl8- DI6~3.243 NIL-1.51633 ν11 64.15 RI7- Conditional expression (+) ・2368 (2) − 0.1745 (3) − 0.1181 ( Effects of the Invention) According to the present invention, by setting each of the lens elements of the reflective system and the refractive system as described above, it is possible to achieve a large aperture ratio of about 3.5 with an F number of about 3.5, and to reduce the size of the entire lens system. It is possible to achieve a catadioptric optical system with high optical performance over the entire range.

【図面の簡単な説明】[Brief explanation of drawings]

第1,第2図は本発明の数値実施例1,2のレンズ断面
図、第3,第4図は本発明の数値実施例1.2の諸収差
図である。収差図において(A).(B)は撮肥倍率β
がβ=0、β一−0.064のときである。 図中、dはd線、gはgB、△Sはサジタル像而、ΔM
はメリディ才ナル像面、Qは像面である。
1 and 2 are lens sectional views of numerical examples 1 and 2 of the present invention, and FIGS. 3 and 4 are various aberration diagrams of numerical example 1.2 of the present invention. In the aberration diagram (A). (B) is the fertilizer magnification β
is when β=0, β-0.064. In the figure, d is the d-line, g is gB, △S is the sagittal image, ΔM
is the Meridian image plane, and Q is the image plane.

Claims (1)

【特許請求の範囲】 (1)物体からの光束を順に正のレンズL1を介し、物
体側に凹面を向けたメニスカス状の像面側のレンズ面の
周辺部を反射面M1とした屈折凹面反射鏡L2で物体側
へ屈折反射させ、該レンズL1を介し、像面側のレンズ
面を該レンズL1の物体側のレンズ面に接合され物体側
のレンズ面を反射面M2とした屈折反射鏡L3で像面側
へ反射させ、該レンズL1と両レンズ面が凸面で像面側
のレンズ面を該屈折凹面反射鏡の物体側のレンズ面と接
合させた正のレンズL4を介し、該屈折凹面反射鏡L2
の中央透過部を通過させた後、像面側に凹面を向けたメ
ニスカス状の負のレンズL5を介し、像面に導光する際
、全系の焦点距離をf、該屈折凹面反射鏡の焦点距離を
f2、該レンズL1と該屈折反射鏡L3で構成される系
の焦点距離をf3、該レンズL4の物体側のレンズ面の
曲率半径をR11、該レンズL1と該屈折凹面反射鏡L
2の間隔をD2とするとき 2.0<|f2/f3|<2.7 0.1<D2/f<0.2 0.01<R11/f<0.3 なる条件を満足することを特徴とする反射屈折式光学系
[Scope of Claims] (1) Refraction and concave reflection in which the light flux from the object is sequentially passed through the positive lens L1, with the peripheral part of the meniscus-shaped lens surface on the image side facing the object as the reflection surface M1. A refracting/reflecting mirror L3 which is refracted and reflected toward the object side by a mirror L2, and whose image side lens surface is joined to the object side lens surface of the lens L1 through the lens L1, with the object side lens surface being a reflective surface M2. through the lens L1 and a positive lens L4, both of whose lens surfaces are convex and whose image side lens surface is joined to the object side lens surface of the refractive concave reflector. Reflector L2
After passing through the central transmitting part of the refractive concave reflector, the light is guided to the image plane through a negative meniscus lens L5 with a concave surface facing the image plane. The focal length is f2, the focal length of the system composed of the lens L1 and the refractive reflector L3 is f3, the radius of curvature of the object-side lens surface of the lens L4 is R11, the lens L1 and the refractive concave reflector L
2 is the interval D2, the following conditions are satisfied: 2.0<|f2/f3|<2.7 0.1<D2/f<0.2 0.01<R11/f<0.3 Features a catadioptric optical system.
JP1230156A 1989-09-05 1989-09-05 Catadioptric optical system Expired - Fee Related JP2518055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1230156A JP2518055B2 (en) 1989-09-05 1989-09-05 Catadioptric optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1230156A JP2518055B2 (en) 1989-09-05 1989-09-05 Catadioptric optical system

Publications (2)

Publication Number Publication Date
JPH0392809A true JPH0392809A (en) 1991-04-18
JP2518055B2 JP2518055B2 (en) 1996-07-24

Family

ID=16903475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1230156A Expired - Fee Related JP2518055B2 (en) 1989-09-05 1989-09-05 Catadioptric optical system

Country Status (1)

Country Link
JP (1) JP2518055B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321536A (en) * 1999-05-14 2000-11-24 Canon Inc Optical device for optical communication
US6560039B1 (en) 1999-09-28 2003-05-06 Tropel Corporation Double mirror catadioptric objective lens system with three optical surface multifunction component
CN108254859A (en) * 2016-12-28 2018-07-06 株式会社腾龙 Catadioptric optical system and photographic device
JP2021067861A (en) * 2019-10-25 2021-04-30 株式会社ニコン Imaging device
JP2021184020A (en) * 2020-05-21 2021-12-02 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Imaging lens of reflection/refraction optical system
JP2022003377A (en) * 2020-06-23 2022-01-11 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing lens for catadioptric system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321536A (en) * 1999-05-14 2000-11-24 Canon Inc Optical device for optical communication
US6560039B1 (en) 1999-09-28 2003-05-06 Tropel Corporation Double mirror catadioptric objective lens system with three optical surface multifunction component
CN108254859A (en) * 2016-12-28 2018-07-06 株式会社腾龙 Catadioptric optical system and photographic device
JP2018109673A (en) * 2016-12-28 2018-07-12 株式会社タムロン Cata-dioptric system and imaging device
CN108254859B (en) * 2016-12-28 2022-04-15 株式会社腾龙 Catadioptric optical system and imaging apparatus
JP2021067861A (en) * 2019-10-25 2021-04-30 株式会社ニコン Imaging device
JP2021184020A (en) * 2020-05-21 2021-12-02 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Imaging lens of reflection/refraction optical system
JP2022003377A (en) * 2020-06-23 2022-01-11 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing lens for catadioptric system

Also Published As

Publication number Publication date
JP2518055B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
KR100473258B1 (en) Projection zoom lens
JPH08248318A (en) Zoom lens
JP3074026B2 (en) Super wide-angle zoom lens
US7038857B1 (en) Projection zoom lens
JPH07225411A (en) Lighting type bright frame finder
US6424465B2 (en) Front tele-converter, and front tele-converter having vibration-reduction function
JPH06281861A (en) Small variable power lens
JPH0961708A (en) Standard lens system
JPH10274739A (en) Zoom lens
US6236518B1 (en) Zoom lens system
JPS5832365B2 (en) zoom lens couch
JP2000028919A (en) Middle telephotographic lens
JPH0392809A (en) Reflection and refraction type optical system
JPH06337348A (en) Gauss type lens
JPH05333266A (en) Small-sized two-group zoom lens
JPH05346542A (en) Small-sized two-group zoom lens
JPH0319527B2 (en)
JPH08227039A (en) Zoom lens
JPH07318798A (en) Photographic lens
JP4444416B2 (en) Zoom lens
JPH06308387A (en) Zoom lens
JPH1172700A (en) Projection optical system and projector using it
JPS63311222A (en) Image-forming lens
JPH0569209B2 (en)
JPH1096858A (en) Zoom lens

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees