JPS6330609B2 - - Google Patents

Info

Publication number
JPS6330609B2
JPS6330609B2 JP59021475A JP2147584A JPS6330609B2 JP S6330609 B2 JPS6330609 B2 JP S6330609B2 JP 59021475 A JP59021475 A JP 59021475A JP 2147584 A JP2147584 A JP 2147584A JP S6330609 B2 JPS6330609 B2 JP S6330609B2
Authority
JP
Japan
Prior art keywords
lens
group
amount
refractive power
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59021475A
Other languages
Japanese (ja)
Other versions
JPS60165608A (en
Inventor
Hiroki Nakayama
Yasuhisa Sato
Yasuyuki Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2147584A priority Critical patent/JPS60165608A/en
Publication of JPS60165608A publication Critical patent/JPS60165608A/en
Publication of JPS6330609B2 publication Critical patent/JPS6330609B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はコンパクトな撮影レンズに関し、特に
無限遠物体から至近物体にフオーカシングする際
の収差変動の小さい至近距離の比較的短いコンパ
クトな撮影レンズに関する。 従来よりレンズ系の第1面から像面までの距離
が比較的短い4枚から5枚程度のレンズで構成さ
れたコンパクトな撮影レンズは種々提案されてい
る。このような撮影レンズにおいては物体距離を
近づけて撮影する場合、フオーカシングの為のレ
ンズ群の繰り出し量を物体距離が近づくにつれ
て、大きくしなければならなかつた。 しかしながら、レンズ群の繰り出し量を多くす
ると、軸外光束が撮影レンズの瞳中心を通らなく
なる場合が生じ、絞りを小絞りにしたとき、画面
周辺部での光束のケラレ量が増大してしまう。こ
の為多くの撮影レンズにおいては光束のケラレを
防ぐ為に撮影レンズの前玉レンズ径を比較的大き
くしている。又無限遠物体から至近物体へとフオ
ーカシングを行う際、レンズ枚数が少ないことも
あつて収差変動が比較的大きかつた。この為至近
距離を近づけることが困難であつた。 本発明は無限遠物体から至近物体までフオーカ
シングによる収差変動の少ないコンパクトな撮影
レンズの提供を目的とする。 本発明の目的を達成する為のレンズ構成の主た
る特徴は物体側より順に物体側に凸面を向けた正
の屈折力のメニスカス状の第1レンズ、両レンズ
面が凹面の負の屈折力の第2レンズ、両レンズ面
が凸面の第3レンズ、負の屈折力の第4レンズそ
してメニスカス状の第5レンズの5つのレンズで
構成し、前記第1,第2,第3そして第4レンズ
の前群を一体的に繰り出すと共に前記第5レンズ
の後群を前群より少ない量だけ繰り出すことによ
つて無限遠物体から至近物体へとフオーカシング
を行うことである。 このように前群を前述の如く正,負,正そして
負の屈折力の4つのレンズで構成し、繰り出して
フオーカシングを行うことによつてフオーカシン
グの際の収差変動を少なくし更に前玉レンズ径の
増大を防止しつつ撮影レンズのコンパクト化を図
つている。 又本実施例においては前群と第5レンズから成
る後群の双方を繰り出してフオーカシングを行つ
ても良い。このときは前群と後群の繰り出し量を
変えることによつて前玉レンズ径をあまり大きく
せずに軸外光束が撮影レンズの瞳中心を通るよう
にして全体的なコンパクト化を図つている。 尚、本発明においては後群の屈折力は正でも又
負でもよい。又後群をメニスカス状のレンズとす
ることによつて後群をフオーカシングの際固定し
ておくこともできるが、前群より少ない量だけ繰
り出すことによつて無限遠物体から至近物体への
収差変動をより少なくすることが可能となる。 以上のレンズ構成で本発明の目的は達成される
が、更に好ましくは前群と後群の全系の焦点距離
をf、前群の焦点距離をf1、後群の焦点距離をf2
とするとき 0.9<1/<1.1 ……(1) −0.025<12<0.025 ……(2) なる条件を満足させるのが好ましい。 条件式(1),(2)は撮影レンズの基本的な屈折力配
置を定めたものであり、これにより軸外光束の諸
収差であるハロー,コマ収差,像画彎曲を良好に
補正している。 条件式(1)の下限値を越えると前群の屈折力が大
きくなり無限遠物体から至近距離へのフオーカシ
ングの際の収差変動、特に像画彎曲の変動が大き
くなつてしまう。 一方上限値を越えると前群の焦点距離が長くな
りレンズ全長が長くなり撮影レンズのコンパクト
化が困難となる。 条件式(2)は前群と後群の屈折力の関係を示して
おり、下限値を越えると中間画角における光束の
うち下方においてハローが顕著になり、又周辺画
角においては外向性のコマ収差が増大し、更に像
面彎曲が正の方向に増大してしまう。 上限値を越えると中間画角での外向性のコマ収
差、周辺画角でのハローが増大し、更に像面彎曲
が負の方向へ増大してしまう。 このように本発明においては後群の屈折力を前
群に比べ小さくし、前群と後群の間隔を変化させ
フオーカシングを行うことによつて収差変動を少
なくしている。特に後述する数値実施例の如く前
群の繰り出し量をS1、後群の繰り出し量をS2とし
たとき 0.2<S2/S1<0.7 ……(3) の範囲にするのが好ましい。 条件式(3)の下限値を越えると後群の繰り出し量
が少なくフオーカシングによる収差変動を少なく
するのが困難となり上限値を越えると後群の繰り
出し量が多くなり全体繰り出しと同等となり前玉
レンズ径が増大してきてしまい好ましくない。 一般に撮影レンズにおいて基本の諸収差を良好
に補正するには、軸外光束のうち光軸から高い位
置を通る光線を特に良く補正する必要がある。本
発明においては軸外の光線が光軸から高い位置を
通るレンズ面、例えば第1レンズ,第2レンズの
物体側のレンズ面や像面側のレンズ面に非球面を
導入して、軸外光束の収差補正を行うと本発明の
目的をより良好に達成することができる。本発明
においては非球面の形状として好ましいのは画面
周辺部を通る軸外光束を下方へ曲げる形状のもの
がハロー,コマ収差を良好に補正するのに好まし
い。具体的には前記第1レンズの物体側のレンズ
面、第2レンズの物体側のレンズ面においてはレ
ンズ周辺で近軸半径からの物体側へ逸脱量が増加
し、第1レンズの像側のレンズ面、第2レンズの
像側のレンズ面においてはレンズ周辺で近軸半径
からの像側への逸脱量が増加するものが好まし
い。 前述の如く本発明において非球面を用いると、
軸外光束の光軸から高い点を通る光線による収差
の悪化を良好に補正し、基本的な諸収差を良好に
補正することができる。 以上のように本発明によれば良好な収差補正を
達成したフオーカシングによる収差変動の小さい
コンパクトな撮影レンズを得ることができる。 次に本発明の数値実施例を示す。数値実施例に
おいてRiは物体側より順に第i番目のレンズ面の
曲率半径、Diは物体側より順に第i番目のレンズ
厚及び空気間隔、Niとνiはそれぞれ物体側より順
に第i番目のレンズのガラスの屈折率とアツベ数
である。ai,biは次の式に従う非球面の非球面偶
係数及び非球面奇係数である。記号「D―04」は
「10-4」の意味である。 非球面の形状は光軸方向にX軸、光軸と垂直な
方向にY軸、その進行方向を正とし、レンズ面の
頂点とX軸との交点を原点にとり非球面と焦点距
離決定に寄与する球面を延長した面とのX軸方向
の差をΔX、Riを物体側より順に第i面の近軸曲
率半径とし、Ri *を Ri *=1/1/Ri+2a1で定義されるレンズ基準面の曲 率半径とし なる展開式で表したものとする。 数値実施例1,2の前群と後群の繰り出し量の
比は2:1である。 数値実施例3では前群と後群の繰り出し量の比
は10:3である。 いずれの場合も全系の焦点距離をとしたと
き、像面から物体までの距離が無限遠から、17
〜19程度の至近距離まで収差変動も小さく良好
なる収差補正がなされている。
The present invention relates to a compact photographic lens, and more particularly to a compact photographic lens with a relatively short close distance and with small fluctuations in aberrations when focusing from an object at infinity to a close object. 2. Description of the Related Art Various compact photographic lenses have been proposed in the past that are composed of about four to five lenses whose distance from the first surface of the lens system to the image plane is relatively short. In such a photographic lens, when photographing with a close object distance, it is necessary to increase the amount of extension of the lens group for focusing as the object distance approaches. However, if the amount of extension of the lens group is increased, the off-axis light beam may not pass through the center of the pupil of the photographic lens, and when the aperture is set to a small aperture, the amount of vignetting of the light beam at the periphery of the screen increases. For this reason, in many photographic lenses, the diameter of the front lens of the photographic lens is made relatively large in order to prevent vignetting of the light beam. Also, when focusing from an object at infinity to a close object, aberration fluctuations were relatively large, partly because the number of lenses was small. For this reason, it was difficult to approach them at close range. An object of the present invention is to provide a compact photographic lens with little variation in aberrations due to focusing from an object at infinity to a close object. The main features of the lens configuration for achieving the object of the present invention are: starting from the object side, the first lens has a positive refractive power with a convex surface facing the object side and has a positive refractive power; 2 lenses, a third lens whose both lens surfaces are convex, a fourth lens with negative refractive power, and a meniscus-shaped fifth lens. Focusing is performed from an object at infinity to a close object by extending the front group integrally and extending the rear group of the fifth lens by a smaller amount than the front group. As mentioned above, the front group is composed of four lenses with positive, negative, positive, and negative refractive powers, and by extending them for focusing, it is possible to reduce fluctuations in aberration during focusing, and furthermore, the diameter of the front lens can be reduced. The aim is to make the photographic lens more compact while preventing an increase in the size of the lens. In this embodiment, focusing may be performed by extending both the front group and the rear group consisting of the fifth lens. In this case, by changing the amount of extension of the front and rear groups, the off-axis light beam passes through the center of the pupil of the photographing lens without making the diameter of the front lens too large, thereby making the camera more compact overall. . In the present invention, the refractive power of the rear group may be positive or negative. Also, by making the rear group a meniscus-shaped lens, it is possible to keep the rear group fixed during focusing, but by extending it by a smaller amount than the front group, it is possible to prevent aberration fluctuations from an object at infinity to a close object. It becomes possible to reduce the amount of Although the object of the present invention is achieved with the above lens configuration, it is more preferable that the focal length of the entire system of the front group and the rear group be f, the focal length of the front group be f1 , and the focal length of the rear group be f2.
When 0.9< 1 /<1.1...(1) −0.025< 1/2 <0.025...( 2 ) It is preferable to satisfy the following conditions. Conditional expressions (1) and (2) define the basic refractive power arrangement of the photographic lens, and by this, various aberrations of off-axis light beams such as halo, coma aberration, and image curvature can be well corrected. There is. If the lower limit of conditional expression (1) is exceeded, the refractive power of the front group increases, and aberration fluctuations, particularly fluctuations in image curvature, increase when focusing from an object at infinity to a close distance. On the other hand, if the upper limit is exceeded, the focal length of the front group becomes longer and the overall length of the lens becomes longer, making it difficult to make the photographic lens more compact. Conditional expression (2) shows the relationship between the refractive powers of the front group and the rear group, and when the lower limit is exceeded, a halo becomes noticeable in the lower part of the luminous flux at intermediate angles of view, and an extrovert phenomenon occurs at peripheral angles of view. Comatic aberration increases, and field curvature further increases in the positive direction. If the upper limit is exceeded, extroverted coma aberration at intermediate angles of view and halo at peripheral angles of view will increase, and curvature of field will further increase in the negative direction. As described above, in the present invention, aberration fluctuations are reduced by making the refractive power of the rear group smaller than that of the front group and performing focusing by changing the distance between the front group and the rear group. In particular, as in the numerical examples described below, it is preferable to set the range of 0.2<S 2 /S 1 <0.7 (3) where S 1 is the extension amount of the front group and S 2 is the extension amount of the rear group. If the lower limit of conditional expression (3) is exceeded, the amount of extension of the rear group will be small and it will be difficult to reduce aberration fluctuations due to focusing, and if the upper limit is exceeded, the amount of extension of the rear group will be large and the amount of extension will be equal to that of the entire front lens. The diameter increases, which is not desirable. In general, in order to properly correct various basic aberrations in a photographic lens, it is necessary to particularly well correct rays of off-axis light that pass through a position high from the optical axis. In the present invention, an aspherical surface is introduced into the lens surface where off-axis rays pass through a high position from the optical axis, for example, the object-side lens surface of the first lens and the second lens, or the image-side lens surface, and The object of the present invention can be better achieved by correcting aberrations of the light beam. In the present invention, it is preferable that the aspherical surface has a shape that bends the off-axis light beam passing through the periphery of the screen downward in order to satisfactorily correct halo and coma aberrations. Specifically, on the object side lens surface of the first lens and the object side lens surface of the second lens, the amount of deviation from the paraxial radius increases toward the object side around the lens, and the deviation amount on the image side of the first lens increases. The lens surface, the image side lens surface of the second lens, is preferably one in which the amount of deviation from the paraxial radius toward the image side increases around the lens periphery. As mentioned above, when an aspherical surface is used in the present invention,
It is possible to satisfactorily correct the deterioration of aberrations caused by light rays passing through a point high from the optical axis of the off-axis light beam, and to satisfactorily correct various basic aberrations. As described above, according to the present invention, it is possible to obtain a compact photographic lens that achieves good aberration correction and has small aberration fluctuations due to focusing. Next, numerical examples of the present invention will be shown. In the numerical examples, R i is the radius of curvature of the i-th lens surface in order from the object side, D i is the thickness and air gap of the i-th lens surface in order from the object side, and N i and ν i are the radius of curvature of the i-th lens surface in order from the object side. These are the refractive index and Atsube number of the glass of the i-th lens. a i and b i are the aspheric even coefficient and the aspheric odd coefficient of the aspheric surface according to the following formula. The symbol "D-04" means "10 -4 ". The shape of the aspherical surface is defined by the X-axis in the direction of the optical axis, the Y-axis in the direction perpendicular to the optical axis, and the direction of movement as positive, with the origin being the intersection of the apex of the lens surface and the X-axis, which contributes to determining the aspherical surface and focal length. The difference in the X-axis direction from the extended spherical surface is ΔX, R i is the paraxial radius of curvature of the i-th surface in order from the object side, and R i * is R i * = 1/1/R i + 2a 1. Let the radius of curvature of the defined lens reference plane be Let it be expressed by the expansion formula. The ratio of the extension amount of the front group and the rear group in Numerical Examples 1 and 2 is 2:1. In Numerical Example 3, the ratio of the extension amounts of the front group and the rear group is 10:3. In either case, when the focal length of the entire system is set, the distance from the image plane to the object is from infinity to 17
Aberration fluctuations are small and aberrations are well corrected up to close distances of about 19 to 19 degrees.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は数値実施例1のレンズ断面図、第2―
a図,第2―b図,第2―c図は数値実施例1に
おいて物体距離が全系の焦点距離をとしたとき
に、それぞれ像面より無限遠,55.6,16.7のと
きの収差図である。第3図は数値実施例2のレン
ズ断面図、第4―a図,第4―b図,第4―c図
は数値実施例2において物体距離がそれぞれ像面
より無限遠,55.6,16.7のときの収差図であ
る。第5図は数値実施例3のレンズ断面図、第6
―a図,第6―b図,第6―c図は数値実施例3
において物体距離がそれぞれ像面より無限遠,
55.6,19.4のときの収差図である。 ΔMはメリデイオナル像面、ΔSはサジタル像
面、S、Cは正弦条件である。
Figure 1 is a cross-sectional view of the lens of Numerical Example 1, Figure 2-
Figures a, 2-b, and 2-c are aberration diagrams when the object distance is 55.6 and 16.7, respectively, from the image plane to infinity when the focal length of the entire system is taken as the focal length of the entire system in Numerical Example 1. be. Figure 3 is a cross-sectional view of the lens in Numerical Example 2, and Figures 4-a, 4-b, and 4-c are for Numerical Example 2 with object distances of infinity, 55.6, and 16.7 from the image plane, respectively. FIG. Figure 5 is a cross-sectional view of the lens of Numerical Example 3;
Figure -a, Figure 6-b, and Figure 6-c are numerical example 3.
, the object distance is infinitely far from the image plane,
It is an aberration diagram at the time of 55.6 and 19.4. ΔM is a meridional image plane, ΔS is a sagittal image plane, and S and C are sine conditions.

Claims (1)

【特許請求の範囲】 1 物体側より順に、物体側に凸面を向けた正の
屈折力のメニスカス状の第1レンズ群、両レンズ
面が凹面の負の屈折力の第2レンズ、両レンズ面
が凸面の第3レンズ、負の屈折力の第4レンズ、
そしてメニスカス状の第5レンズの5つのレンズ
で構成し、前記第1,第2,第3,第4レンズよ
り成る前群を一体的に前方へ繰り出すと共に、前
記第5レンズの後群を前記前群の繰り出し量より
少ない量前方へ繰り出すことによつて無限遠物体
から至近物体にフオーカシングを行うと共に、全
系の焦点距離をf、前記前群の焦点距離をf1、前
記後群の焦点距離をf2、前記前群の繰り出し量を
S1、前記後群の繰り出し量をS2としたとき 0.9<f1/f<1.1 −0.025<f1/f2<0.025 0.2<S2/S1<0.7 なる条件を満たすことを特徴とするコンパクトな
撮影レンズ。
[Scope of Claims] 1. In order from the object side, a first lens group having a positive refractive power and a positive refractive power with a convex surface facing the object side, a second lens group having a negative refractive power and having both lens surfaces concave, and both lens surfaces. a third lens with a convex surface, a fourth lens with a negative refractive power,
The front group consisting of the first, second, third, and fourth lenses is integrally extended forward, and the rear group of the fifth lens is Focusing is performed from an object at infinity to a close object by extending forward an amount smaller than the amount of extension of the front group, and the focal length of the entire system is f, the focal length of the front group is f1, and the focal length of the rear group is is f2, and the amount of advance of the front group is
A compact photographic lens that satisfies the following conditions: S1 and S2, the amount of extension of the rear group.
JP2147584A 1984-02-08 1984-02-08 Compact photographic lens Granted JPS60165608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2147584A JPS60165608A (en) 1984-02-08 1984-02-08 Compact photographic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2147584A JPS60165608A (en) 1984-02-08 1984-02-08 Compact photographic lens

Publications (2)

Publication Number Publication Date
JPS60165608A JPS60165608A (en) 1985-08-28
JPS6330609B2 true JPS6330609B2 (en) 1988-06-20

Family

ID=12055994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2147584A Granted JPS60165608A (en) 1984-02-08 1984-02-08 Compact photographic lens

Country Status (1)

Country Link
JP (1) JPS60165608A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041388A (en) * 2013-12-02 2014-03-06 Konica Minolta Inc Imaging lens
TWI594037B (en) 2016-11-24 2017-08-01 大立光電股份有限公司 Photographing lens assembly, image capturing unit and electronic device
TWI613480B (en) 2017-02-08 2018-02-01 大立光電股份有限公司 Optical imaging system, imaging apparatus and electronic device
TWI626487B (en) 2017-03-31 2018-06-11 大立光電股份有限公司 Optical imaging lens system, image capturing unit and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691206A (en) * 1979-12-25 1981-07-24 Canon Inc Wide-angle photographic lens of short overall length
JPS5833211A (en) * 1981-08-21 1983-02-26 Canon Inc Small-sized photographic lens
JPS58107509A (en) * 1981-12-21 1983-06-27 Canon Inc Partial focus system photographing lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691206A (en) * 1979-12-25 1981-07-24 Canon Inc Wide-angle photographic lens of short overall length
JPS5833211A (en) * 1981-08-21 1983-02-26 Canon Inc Small-sized photographic lens
JPS58107509A (en) * 1981-12-21 1983-06-27 Canon Inc Partial focus system photographing lens

Also Published As

Publication number Publication date
JPS60165608A (en) 1985-08-28

Similar Documents

Publication Publication Date Title
JPH1039210A (en) Zoom lens
JPH0354325B2 (en)
JPH043851B2 (en)
JPH0354324B2 (en)
JPH0743606A (en) Wide angle lens
JPS6352364B2 (en)
JPS6210407B2 (en)
JPH11183796A (en) Image pickup optical system
JPH045168B2 (en)
JPH06130291A (en) Standard lens
JPH05224119A (en) Large-diameter intermediate telephoto lens
JPH0961708A (en) Standard lens system
JPS6132653B2 (en)
JPH0414763B2 (en)
JP3005905B2 (en) Shooting lens
JPS6132654B2 (en)
JP2637317B2 (en) Projection lens
JPS635738B2 (en)
JPS6330609B2 (en)
JPH07318798A (en) Photographic lens
JPH05173067A (en) Large-diameter wide angle lens
JPH0772382A (en) Wide-angle lens
JP2605372B2 (en) Zoom lens for finite distance
JPH1096858A (en) Zoom lens
JPH023968B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term