JPH01122378A - Prime mover - Google Patents

Prime mover

Info

Publication number
JPH01122378A
JPH01122378A JP27764387A JP27764387A JPH01122378A JP H01122378 A JPH01122378 A JP H01122378A JP 27764387 A JP27764387 A JP 27764387A JP 27764387 A JP27764387 A JP 27764387A JP H01122378 A JPH01122378 A JP H01122378A
Authority
JP
Japan
Prior art keywords
rotor
superconductors
superconductor
transition temperature
prime mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27764387A
Other languages
Japanese (ja)
Inventor
Yoshihiro Mori
美裕 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27764387A priority Critical patent/JPH01122378A/en
Publication of JPH01122378A publication Critical patent/JPH01122378A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To obtain a driving force directly from heat and to generate a high torque by composing a prime mover of a rotor to which a superconductor is secured, a magnet and a heat source. CONSTITUTION:A prime mover is composed of a columnar rotor 1 employed at its center as a rotary shaft, superconductors 2a-2d so secured to the surface of the side of the rotor 1 as to be symmetrical with respect to the rotary shaft, magnets 3a-3b for applying a magnetic field to the superconductors, a hot heat source 4 for heating the superconductors 2a-2d to a transition temperature or higher, and a cold heat source 5 for cooling to a transition temperature or lower. W hen the superconductors 2a-2d are cooled to the transition temperature or lower, Meissner effect is generated, only the superconductor 2 near the magnets 3a-3b is cooled to the transition temperature or lower, thereby obtaining a driving force. Thus, since a torque generated at this time is also generated at the time of stopping, a high torque is obtained at a low speed rotation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は低回転で高トルクが必要とされる原動機に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a prime mover that requires high torque at low rotation speeds.

従来の技術 原動機としては電気を用いる直流モータ、交流モータ、
ガソリンエンジン、蒸気機関のようなピストンを用いる
もの、タービンを用いるもの等がある。これらの原動機
は高速が要求されるもの。
Conventional technology motors include DC motors, AC motors, and AC motors that use electricity.
There are engines that use pistons, such as gasoline engines and steam engines, and engines that use turbines. These prime movers require high speed.

高トルクが要求されるもの、小型が要求されるもの等、
使用目的により種々のものが存在する。
Items that require high torque, items that require small size, etc.
There are various types depending on the purpose of use.

発明が解決しようとする問題点 ところが、以上の原動機は熱を直接エネルギとして用い
、小型、高トルクのものはなかった。
Problems to be Solved by the Invention However, the above-mentioned prime movers use heat directly as energy, and there have been no small-sized, high-torque ones.

本発明は上記問題点に鑑み、磁界を印加した超電導体を
冷却し、完全反磁性とすることから力を得、簡単な構成
で、小型、高トルクの原動機を提供することを目的とす
る。
In view of the above problems, it is an object of the present invention to provide a compact, high-torque prime mover with a simple configuration, which obtains power by cooling a superconductor to which a magnetic field is applied and making it completely diamagnetic.

問題点を解決するための手段 この目的を達成するために、本発明の原動機は、円柱状
の中心を回転軸としたロータと、ロータの側面の表面に
、ロータの回転軸に対称となるよう複数個固定された超
電導体と、一部の超電導体に磁場を印加する磁石と、磁
石により磁場が印加された超電導体を転移温度Tc以下
へ冷却する冷熱源と、その他の一部の超電導体を転移温
度10以上へ熱する温熱源によ多構成されることを特徴
とする。
Means for Solving the Problems In order to achieve this object, the prime mover of the present invention includes a rotor with a cylindrical center as the rotation axis, and a rotor with a rotor on the side surface of the rotor so as to be symmetrical with the rotation axis of the rotor. A plurality of fixed superconductors, a magnet that applies a magnetic field to some of the superconductors, a cold source that cools the superconductor to which the magnetic field is applied by the magnet to below the transition temperature Tc, and some other superconductors It is characterized by comprising a heat source that heats the temperature to a transition temperature of 10 or more.

作用 本発明による作用は、超電導体が転移温度Tc以下に冷
却された時、完全反磁性を示し、超電導体の内部の磁場
が常にゼロであシ、外部の磁場を打ち消す向きに磁化す
るという、いわゆるマイスナー効果を用い、磁石付近の
超電導体のみを転移温度以下とすることで、駆動力を得
ることで実現する。
Effect The effect of the present invention is that when a superconductor is cooled below the transition temperature Tc, it exhibits complete diamagnetic properties, the magnetic field inside the superconductor is always zero, and the superconductor is magnetized in a direction that cancels out the external magnetic field. This is achieved by using the so-called Meissner effect to obtain driving force by lowering only the superconductor near the magnet to a temperature below the transition temperature.

すなわち、回転軸に対して対称に、超電導体を配し、一
部の超電導体に磁石により磁場を印加し、冷熱源により
転移温度T。以下へ冷却する。すると、磁場が印加され
、転移温度−Tc以下へ冷却された超電導体のみに、超
電導体に印加される磁場が小さくなる方向へ超電導体が
移動する向きへ方が発生し、この力により回転トルクが
発生し、ロータを回転させ、原動機として動作する。こ
の時発生するトルクは、静止時にも発生するため、低回
転で高トルクが得られる原動機となる。
That is, superconductors are arranged symmetrically with respect to the rotation axis, a magnetic field is applied to some of the superconductors by a magnet, and the transition temperature T is reached by a cold source. Cool to below. Then, a magnetic field is applied to the superconductor, which has been cooled to below the transition temperature -Tc, so that the superconductor moves in the direction in which the magnetic field applied to the superconductor becomes smaller, and this force causes rotational torque to increase. occurs, causing the rotor to rotate and act as a prime mover. The torque generated at this time is also generated when the engine is stationary, so it becomes a prime mover that can obtain high torque at low rotation speeds.

実施例 以下、本発明の一実施例について図面を参照しながら説
明する。第1図で、1は中心を回転軸とする円柱状のロ
ータ、22L〜2dはロータ1の側面の表面に、ロータ
1の回転軸に対して対称となるよう固定されている超電
導体、3a、3bは超電導体22L〜2dへ磁場を印加
する磁石、4は超電導体2+L〜2dを転移温度10以
上へ加熱するための温熱源、5は超電導体2a〜2dを
転移温度以下へ冷却するだめの冷熱源である。図では略
したが、ロータ1の回転から動力を得るための機構、磁
石32L 、 3b 、温熱源4.冷熱源6を固定する
ための構造体が必要である。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. In FIG. 1, 1 is a cylindrical rotor with its rotation axis at the center, 22L to 2d are superconductors fixed to the side surface of the rotor 1 so as to be symmetrical with respect to the rotation axis of the rotor 1, and 3a , 3b is a magnet that applies a magnetic field to the superconductors 22L to 2d, 4 is a heat source for heating the superconductors 2+L to 2d to a transition temperature of 10 or higher, and 5 is a heat source for cooling the superconductors 2a to 2d to below the transition temperature. It is a source of cooling and heat. Although not shown in the figure, a mechanism for obtaining power from the rotation of the rotor 1, magnets 32L, 3b, heat source 4. A structure for fixing the cold source 6 is required.

第2図を用い、本実施例の動作を説明する。第2図は超
電導体の温度と抵抗の関係を示した図で、転移温度Tc
以下では抵抗が0となり、完全反磁性を示す。今、温熱
源4の温度をT4.冷熱源6の温度をT2(T2<To
<T、 )とし、ロータ1が第1図の位置にある時の超
電導体2&の温度をT3.超電導体2bの温度をT4.
超電導体2Cの温度をT5゜超電導体2dの温度をT6
とする。超電導体2a〜2dの温度T5〜T4が第2図
に示すように、次の関係である時、 To<T5(T、             ・・・・
・・(1)T2<T5〈To・・・・・・(2) To<T4. T6(T5          ・・・
・・・(3)転移温度Tc以下の温度になり、磁場が印
加されている超電導体2cのみに、磁場が小さくなる方
向へ力fが働き、ロータ1は左回転することになる。ロ
ータ1が回転していくと、超電導体2Cの温度T5は転
移温度Tcを越え、力がなくなるが、この時、超電導体
2dの温度T6が下が9、転移温度以下となる、この時
前述したように、力が働き、ロータ1の回転を堅持する
。超電導体2a〜2dの温度が転移温度Tc以下となる
位置が、磁場の対称線より、冷熱源5に近い領域大であ
れば、ロータ1の回転方向は一意的に定まる。この位置
がBの領域であっても、ロータ1の回転がBから人の方
向(左回転)であれば、超電導体2a〜2dの比熱によ
り、ロータ1の回転中は、転移温度T。
The operation of this embodiment will be explained using FIG. 2. Figure 2 is a diagram showing the relationship between temperature and resistance of a superconductor, with transition temperature Tc
Below, the resistance becomes 0 and complete diamagnetism is exhibited. Now, set the temperature of heat source 4 to T4. The temperature of the cold heat source 6 is set to T2 (T2<To
<T, ), and the temperature of the superconductor 2& when the rotor 1 is in the position shown in FIG. 1 is T3. The temperature of the superconductor 2b is set to T4.
The temperature of superconductor 2C is T5° The temperature of superconductor 2d is T6
shall be. As shown in FIG. 2, when the temperatures T5 to T4 of the superconductors 2a to 2d have the following relationship, To<T5(T, . . .
...(1) T2<T5<To...(2) To<T4. T6 (T5...
(3) Force f acts in the direction of decreasing the magnetic field only on the superconductor 2c whose temperature is below the transition temperature Tc and to which the magnetic field is applied, causing the rotor 1 to rotate counterclockwise. As the rotor 1 rotates, the temperature T5 of the superconductor 2C exceeds the transition temperature Tc and the force disappears, but at this time, the temperature T6 of the superconductor 2d decreases to 9, which is below the transition temperature, as mentioned above. As shown, the force acts and keeps the rotor 1 rotating. If the position where the temperature of the superconductors 2a to 2d becomes equal to or lower than the transition temperature Tc is in a large area closer to the cold source 5 than the line of symmetry of the magnetic field, the rotation direction of the rotor 1 is uniquely determined. Even if this position is in the region B, if the rotor 1 is rotating in the direction from B to the person (rotation to the left), the specific heat of the superconductors 2a to 2d will keep the rotor 1 at a transition temperature T during the rotation.

以下となる位置が人の領域とな9、回転が持続するQ 第1図で、温熱源4と冷熱源5の働きを交換すれば、ロ
ータ1の回転方向は右回υとなる。また磁石3bを冷熱
源5に対し、反対の位置へ置いてもロータ1の回転方向
が逆になり、ロータ1の回転方向の制御が可能である。
The following positions are in the human area9, and the rotation continues Q In Fig. 1, if the functions of the heat source 4 and the cold source 5 are exchanged, the rotation direction of the rotor 1 will be clockwise υ. Further, even if the magnet 3b is placed in a position opposite to the cold source 5, the rotational direction of the rotor 1 is reversed, and the rotational direction of the rotor 1 can be controlled.

また冷熱源5.温熱源4の温度2位置、磁石3a 、 
3bの磁場の強さ、位置によりロータ1の回転速度の制
御が可能である。磁石3aは、熱源の交換を行わない場
合必要でない。
Also a cold source 5. Temperature 2 position of heat source 4, magnet 3a,
The rotational speed of the rotor 1 can be controlled by the strength and position of the magnetic field 3b. The magnet 3a is not required if the heat source is not replaced.

また転移温度Tcが室温以下の場合、温熱源4が、転移
温度Tcが室温以上の場合、冷熱源5が必ずしも必要と
されない。
Furthermore, when the transition temperature Tc is below room temperature, the heat source 4 is not necessarily required, and when the transition temperature Tc is above room temperature, the cold source 5 is not necessarily required.

なお、本実施例では超電導体は4つに分割しであるが、
第3図に示すように、ロータ1の表面。
In this example, the superconductor is divided into four parts, but
As shown in FIG. 3, the surface of the rotor 1.

全体をおおうものであっても同様の動作をする。Even if it covers the whole thing, it works in the same way.

発明の効果 以上のように本発明の原動機は、超電導体が固定された
ロータと磁石、熱源という簡単な構成であり、熱から直
接駆動力を得ることができる。また低速度で高トルクを
発生することから、減速機等を必要とせず、簡単な構成
で動力を伝達することが可能となる。
Effects of the Invention As described above, the prime mover of the present invention has a simple structure consisting of a rotor to which a superconductor is fixed, a magnet, and a heat source, and can obtain driving force directly from heat. Furthermore, since high torque is generated at low speeds, power can be transmitted with a simple configuration without the need for a speed reducer or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における原動機の構成を示す
概略図、第2図は同原動機の温度と超電導体の抵抗の関
係を示す特性図、第3図は本発明の他の実施例の構成を
示す概略図である。 1・・・・・・ロータ、2,2&〜2d・・山・超電導
体、32L 、 3t)・・・・・・磁石、4・・・・
・・温熱源、5・旧・・冷熱源0 代理人の氏名 弁理士 中 尾 敏 男 はが1名7−
−−ロータ 20〜2d−一一月1L番林 3α、ab−磁石 4−一一温気源 5−一一冷\熱派 第1図 / 第2図 第3図
Figure 1 is a schematic diagram showing the configuration of a prime mover in one embodiment of the present invention, Figure 2 is a characteristic diagram showing the relationship between the temperature of the prime mover and the resistance of the superconductor, and Figure 3 is another embodiment of the present invention. FIG. 1...Rotor, 2,2&~2d...Mountain/superconductor, 32L, 3t)...Magnet, 4...
・Heat source, 5 Old ・Cold source 0 Agent's name Patent attorney Toshi Nakao Male 1 person 7-
--Rotor 20~2d-November 1L Banbayashi 3α, ab-Magnet 4-11 Hot air source 5-11 Cold\hot fan Fig. 1/ Fig. 2 Fig. 3

Claims (4)

【特許請求の範囲】[Claims] (1)円柱状の中心を回転軸としたロータと、前記ロー
タの側面の表面に、前記ロータの回転軸に対称となるよ
う複数個固定された超電導体と、一部の前記超電導体に
磁場を印加する磁石と、前記磁石により磁場が印加され
た前記超電導体を転移温度T_c以下へ冷却する冷熱源
と、その他の一部の前記超電導体を転移温度T_c以上
に熱する温熱源を複数備えた原動機。
(1) A rotor with a cylindrical center as its rotation axis, a plurality of superconductors fixed to the surface of the side surface of the rotor so as to be symmetrical to the rotation axis of the rotor, and a magnetic field applied to some of the superconductors. , a cold source that cools the superconductor to which a magnetic field is applied by the magnet to below the transition temperature T_c, and a plurality of hot sources that heat some of the superconductors above the transition temperature T_c. prime mover.
(2)温熱源と冷熱源はその位置を相互に交換すること
が可能であり、前記温熱源、前記冷熱源により熱される
あるいは冷却される超電導体に磁場を印加する磁石が、
前記温熱源からロータの回転軸を見た位置と、前記冷熱
源から前記ロータの回転軸を見た位置が対称となる位置
へ複数備えられたことを特徴とする特許請求の範囲第1
項記載の原動機。
(2) The hot source and the cold source can exchange their positions, and the magnet that applies a magnetic field to the superconductor heated or cooled by the hot source and the cold source,
Claim 1: A plurality of rotors are provided at positions where the position from the heat source viewed from the rotation axis of the rotor and the position from the cold heat source viewed from the rotation axis of the rotor are symmetrical.
The prime mover described in section.
(3)超電導体はロータの側面の少くとも表面をすべて
おおうことを特徴とする特許請求の範囲第1項記載の原
動機。
(3) The prime mover according to claim 1, wherein the superconductor covers at least the entire surface of the side surface of the rotor.
(4)温熱源と冷熱源は少くとも一方を備えず、外部か
ら供給されることを特徴とする特許請求の範囲第1項記
載の原動機。
(4) The prime mover according to claim 1, wherein at least one of the heat source and the cold source is supplied from the outside.
JP27764387A 1987-11-02 1987-11-02 Prime mover Pending JPH01122378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27764387A JPH01122378A (en) 1987-11-02 1987-11-02 Prime mover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27764387A JPH01122378A (en) 1987-11-02 1987-11-02 Prime mover

Publications (1)

Publication Number Publication Date
JPH01122378A true JPH01122378A (en) 1989-05-15

Family

ID=17586287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27764387A Pending JPH01122378A (en) 1987-11-02 1987-11-02 Prime mover

Country Status (1)

Country Link
JP (1) JPH01122378A (en)

Similar Documents

Publication Publication Date Title
US7884562B2 (en) Brushless multiphase self-commutation controller
KR101227395B1 (en) Cooling system in a rotating reference frame
Liu et al. A new electric magnetic-geared machine for electric unmanned aerial vehicles
JPS63148061A (en) Magnetic refrigerator and method thereof
CN106533096B (en) A kind of full superconducting magnetic gear motor and its application
JPS63217968A (en) Superconducting driving device with double reverse propeller
US9539914B2 (en) Brushless multiphase self-commutation control (or BMSCC) and related invention
JPS59165941A (en) Inverter drive rotary electric machine
JPH01122378A (en) Prime mover
Hakuraku et al. A rotary magnetic refrigerator for superfluid helium production
CN208094422U (en) A kind of superconduction magnetic barrier type magnetic regulating device
JPH0742737A (en) Superconductive magnetic bearing device
CN101262169A (en) Axial magnetic pass electromagnetic deceleration high-temperature superconductive electromotor
JPS6260985A (en) Twin crank type shape-memory heat engine
RU2368057C1 (en) Method of generating electrical energy using electromechanically actuated contra-rotating generator and device to this end
JPH06165478A (en) Superconducting rotating machine
Michael et al. Noncontact high-torque magnetic coupler for superconducting rotating machines
JPH05219717A (en) Superconducting motor
CN207150356U (en) A kind of torque motor with refrigerant cooling function
JPH01194875A (en) Superconduction motor
SU892256A1 (en) Stand for internal combustion engine running-in and testing
JP2834733B2 (en) Power transmission control device
Liu et al. Electromagnetic performance analysis of novel HTS doubly fed flux-modulated machines
JP2668903B2 (en) Superconducting rotor
JPH06351222A (en) Heat motor using thermosensitive magnetic substance