JPH05219717A - Superconducting motor - Google Patents

Superconducting motor

Info

Publication number
JPH05219717A
JPH05219717A JP4022779A JP2277992A JPH05219717A JP H05219717 A JPH05219717 A JP H05219717A JP 4022779 A JP4022779 A JP 4022779A JP 2277992 A JP2277992 A JP 2277992A JP H05219717 A JPH05219717 A JP H05219717A
Authority
JP
Japan
Prior art keywords
rotor
superconductor
stator
motor
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4022779A
Other languages
Japanese (ja)
Inventor
Makoto Takenaka
誠 竹中
Kazuo Morimoto
一夫 森本
Kazuyoshi Hayakawa
数良 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4022779A priority Critical patent/JPH05219717A/en
Publication of JPH05219717A publication Critical patent/JPH05219717A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Induction Machinery (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To provide a superconducting motor simple in control and in structure. CONSTITUTION:A superconducting motor has a stator 3 for generating a rotating magnetic field, a coil 4 and a rotor 2. For example, a cylindrical and integrally constituted superconductor 1 is fixed to the rotor 2. This superconductor 1 receives the rotating magnetic field generated by the stator 3 and coil 4 to generate torque so that the rotor 2 rotates.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は誘導モータの改良に関
し、特に、ロータに超電導体を用いた超電導誘導モータ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved induction motor, and more particularly to a superconducting induction motor using a superconductor for a rotor.

【0002】[0002]

【従来の技術】従来の常電導誘導モータは、図8(a)
及び(b)に示されるように、ステータ3内のロータ2
に銅やアルミニュウム等の金属からなる部材を常電導状
態で配置し、このロータ2を回転磁界中に置くことによ
り発生する誘導電流と磁界の相互作用により回転力を得
ている。4はステータ3に設けたコイルである。
2. Description of the Related Art A conventional normal conduction induction motor is shown in FIG.
And (b), the rotor 2 in the stator 3 is
A member made of a metal such as copper or aluminum is placed in the normal conductive state, and the rotor 2 is placed in a rotating magnetic field to generate a rotating force by the interaction between the induced current and the magnetic field. Reference numeral 4 is a coil provided on the stator 3.

【0003】一方、特許公開公報昭63−265560
には、超電導モータが開示されている。この超電導モー
タは、図9に示されるように、分割された超電導体18
A〜18Hをロータ24に配置している。そして、ロー
タの回転角を位相検出器22で検出し、ステータ21内
の凸極19A〜19C内のコイル20A〜20Cに電流
を制御して流し、超電導体18A〜18Hがコイル20
A〜20Cから丁度遠ざかろうとする時に、タイミング
良く電磁石に電流を流して磁気反発力を発生し、この反
発力を回転力に変換している。この超電導モータの制御
方式は従来のステップモータの回転制御と同様である。
従って、この従来の超電導モータを超電導ステップモー
タと呼ぶ。
On the other hand, Japanese Patent Laid-Open Publication No. 63-265560.
Discloses a superconducting motor. This superconducting motor, as shown in FIG.
A to 18H are arranged on the rotor 24. Then, the rotation angle of the rotor is detected by the phase detector 22, the current is controlled to flow through the coils 20A to 20C in the salient poles 19A to 19C in the stator 21, and the superconductors 18A to 18H are in the coil 20.
When just trying to move away from A to 20C, a current is passed through the electromagnet at a good timing to generate a magnetic repulsive force, and this repulsive force is converted into a rotational force. The control method of this superconducting motor is the same as the rotation control of the conventional step motor.
Therefore, this conventional superconducting motor is called a superconducting step motor.

【0004】[0004]

【発明が解決しようとする課題】従来の常電導モータで
は、ロータの誘導電流が流れる部分に常電導体を用いて
いるため、次のような欠点がある。1、電気抵抗のた
め、ジュール損失があり、効率を悪くする。2、ジュー
ル損失による熱が発生するため、この冷却を考える必要
がある。3、電気抵抗のため、誘導電流が減衰するの
で、回転磁界の速度が遅いとき、発生トルクが小さい。
4、ジュール損失による発熱のため、ロータに流れる誘
導電流の密度を高くできず、ロータが大型となる。
The conventional normal-conduction motor has the following drawbacks because the normal conductor is used in the portion of the rotor through which the induced current flows. 1. Due to the electric resistance, there is a Joule loss, which deteriorates the efficiency. 2. Since heat is generated due to Joule loss, it is necessary to consider this cooling. 3. Since the induced current is attenuated due to the electric resistance, the generated torque is small when the speed of the rotating magnetic field is slow.
4. Due to heat generation due to Joule loss, the density of the induced current flowing through the rotor cannot be increased and the rotor becomes large.

【0005】また、従来の超電導ステップモータには、
次のような欠点がある。1、ロータ24の位置を検出し
て、固定子の各コイル20A〜20Cに電流をタイミン
グ良く供給する必要があるため、複雑な制御系を必要と
し、制御も難しく、制作費も高くなる。2、超電導体を
分割してロータに固定するため、ロータの構造が複雑と
なり制作費がかかる。この発明は上記実状に勘がみてな
されたもので、従来の常電導モータおよび超電導モータ
の欠点を解決できるモータを提供することにある。この
発明の他の目的は、超電導の特性を生かしつつ、制御お
よび構造が簡単な超電導モータを提供することである。
Further, in the conventional superconducting step motor,
It has the following drawbacks. 1. Since it is necessary to detect the position of the rotor 24 and supply the current to the coils 20A to 20C of the stator in good timing, a complicated control system is required, control is difficult, and production costs are high. 2. Since the superconductor is divided and fixed to the rotor, the structure of the rotor is complicated and the production cost is high. The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a motor capable of solving the drawbacks of the conventional normal-conduction motor and superconducting motor. Another object of the present invention is to provide a superconducting motor which is simple in control and structure while taking advantage of the characteristics of superconducting.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、この発明にかかる超電導モータは、回転磁界を発生
するステータと、前記回転磁界を受けて回転する一体構
成の超電導体を備えるロータ、から構成される。超電導
体は、例えば、円筒状、突起を備える円筒状、或いはか
ご型の一体構造である。ステータに配置されたコイルを
超電導体から構成しても良い。
To achieve the above object, a superconducting motor according to the present invention comprises a stator for generating a rotating magnetic field and a rotor having an integral superconductor rotating for receiving the rotating magnetic field. Composed. The superconductor has, for example, a cylindrical shape, a cylindrical shape with protrusions, or a cage-shaped integral structure. The coil arranged on the stator may be made of a superconductor.

【0007】[0007]

【作用】上記構成の超電導モータにおいては、ステータ
が回転磁界を発生する。超電導体がステータからの回転
磁界を受けて回転力を発生し、ロータが回転する。
In the superconducting motor having the above structure, the stator generates a rotating magnetic field. The superconductor receives a rotating magnetic field from the stator to generate a rotating force, and the rotor rotates.

【0008】超電導体は損失等が少なく、モータの効率
が向上する。また、モータの回転制御に、ロータの位置
検出等の複雑な制御を必要としない。また、超電導体が
一体構成のため、構造が簡単である。
The superconductor has a small loss and the like, and the efficiency of the motor is improved. Further, the motor rotation control does not require complicated control such as rotor position detection. Moreover, since the superconductor is integrated, the structure is simple.

【0009】[0009]

【実施例】初めに、本発明一実施例にかかるモータの動
作原理について常電導モータと比較しつつ簡単に説明す
る。常電導誘導モータ開発の契機となったのは、フラン
スのD.F.Aragoが行った、図6に示す実験であ
る。即ち、銅の円板を自由に回転できるように軽く支え
ておき、その円板の上で、磁石を接触させずに周方向に
速く動かすと、円板も同じ方向に動く。これは、図6
(b)に示すように、電磁誘導により、渦電流が生じ、
その渦電流と磁石による磁場が相互作用を起こし、回転
力を発生するためである。しかし、常電導の場合は、電
気抵抗がある為、この誘導により生じた電流が減衰しや
すく、実際に直径数cm程度の円板をフェライト磁石で
回転させるためには、磁石を数10回転/秒程度の高速
で回転させる必要がある。また、円板の回転速度は、磁
石の回転速度より遅くなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the operating principle of a motor according to an embodiment of the present invention will be briefly described in comparison with a normal conducting motor. The cause of the development of the normal conduction induction motor was D. of France. F. It is the experiment shown in FIG. 6 performed by Arago. That is, if a copper disk is lightly supported so that it can be freely rotated, and if the magnet is quickly moved in the circumferential direction without making contact with the disk, the disk also moves in the same direction. This is shown in FIG.
As shown in (b), eddy current is generated by electromagnetic induction,
This is because the eddy current and the magnetic field generated by the magnet interact to generate a rotational force. However, in the case of normal conduction, since there is electrical resistance, the current generated by this induction is likely to be attenuated, and in order to actually rotate a disk with a diameter of several cm with a ferrite magnet, the magnet must rotate several tens of revolutions / It is necessary to rotate at a high speed of about a second. Further, the rotation speed of the disk becomes slower than the rotation speed of the magnet.

【0010】一方、本願の発明者は超電導体を用いて図
7に示される実験を行った。円板形のBi系高温超電導
体15を糸でぶら下げて水平に静止させ、77°K(液
体窒素温度)に冷却し、超電導状態とする。この円板の
下で、馬蹄形フェライト磁石16を円板に接触しないよ
うに回転させると、超電導体の円板15も同一方向に回
転する。この場合、回転数を0.1回転/秒程度と極め
て遅くしても、超電導体15は磁石16と同じ速度で回
転することが明らかになった。また、磁石16の回転を
止めると直に超電導体15も止まる。
On the other hand, the inventor of the present application conducted the experiment shown in FIG. 7 using a superconductor. The disk-shaped Bi-based high-temperature superconductor 15 is hung with a thread and kept horizontally, cooled to 77 ° K (liquid nitrogen temperature), and brought into a superconducting state. When the horseshoe-shaped ferrite magnet 16 is rotated under the disk so as not to contact the disk, the disk 15 of the superconductor also rotates in the same direction. In this case, it became clear that the superconductor 15 rotates at the same speed as the magnet 16 even when the rotation speed is extremely slowed down to about 0.1 rotations / second. Moreover, when the rotation of the magnet 16 is stopped, the superconductor 15 is also stopped immediately.

【0011】以上のように、回転する磁場中に超電導体
を置くと超電導体も磁場と同じ向きに回る。この回転磁
場を永久磁石を回すのでは無く、コイルと交流を用いて
発生させることにより、新しいタイプの超電導モータが
実現できる。以下、本願発明の実施例にかかる超電導モ
ータを、図1乃至図5を参照して説明する。
As described above, when the superconductor is placed in the rotating magnetic field, the superconductor also turns in the same direction as the magnetic field. A new type of superconducting motor can be realized by generating this rotating magnetic field not by rotating the permanent magnet but by using a coil and an alternating current. Hereinafter, a superconducting motor according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5.

【0012】まず、図1を参照して、この発明の第1実
施例にかかる超電導モータを説明する。このモータはロ
ータ(回転子)2とステータ(固定子)3から構成され
る。ロータ2には、円筒形の超電導体1が固定されてい
る。超電導体1は、例えば、Bi系高温超電導体で、一
体整形されている。ステータ3には、複数のコイルが配
置され、各コイル4に3相交流を流すことにより、ロー
タ2に回転磁場を与える。ステータ3の詳細構造は従来
の常電導誘導モータのステータと実質的に同一である。
ステータ3が回転磁界を発生すると、超電導体1がステ
ータからの回転磁界を受けて回転力を発生してロータ2
と共に回転し、モータとなる。
First, a superconducting motor according to a first embodiment of the present invention will be described with reference to FIG. This motor is composed of a rotor (rotor) 2 and a stator (stator) 3. A cylindrical superconductor 1 is fixed to the rotor 2. The superconductor 1 is, for example, a Bi-based high temperature superconductor and is integrally shaped. A plurality of coils are arranged in the stator 3, and a three-phase alternating current is passed through each coil 4 to give a rotating magnetic field to the rotor 2. The detailed structure of the stator 3 is substantially the same as the stator of the conventional normal conduction induction motor.
When the stator 3 generates a rotating magnetic field, the superconductor 1 receives the rotating magnetic field from the stator and generates a rotating force to rotate the rotor 2
It rotates with it and becomes a motor.

【0013】本発明の第2実施例を図2に示す。この例
では、ステータ3のコイルも超電導コイル6とすること
により、モータのより小型化と高効率化を図っている。
他の部分の構造は図1に示される構造と同一である。
A second embodiment of the present invention is shown in FIG. In this example, the superconducting coil 6 is also used as the coil of the stator 3, so that the motor is further downsized and the efficiency is improved.
The structure of other parts is the same as the structure shown in FIG.

【0014】本発明の第3実施例を図3に示す。この例
では、上述のロータ2の超電導体の部分を図3に示され
るように、かご形にすることにより、回転力に結び着く
軸方向電流を強くしている。他の部分の構造は図1或い
は図2に示される構造と同一である。
A third embodiment of the present invention is shown in FIG. In this example, the portion of the superconductor of the rotor 2 described above is formed into a squirrel cage as shown in FIG. 3 to strengthen the axial current that is linked to the rotational force. The structure of the other parts is the same as the structure shown in FIG. 1 or 2.

【0015】本発明の第4実施例を図4に示す。ロータ
2の超電導体8に突起8aを設け、回転磁場とロータ2
の回転数の同期を良くしている。他の部分の構造は図1
或いは図2に示される構造と同一である。
A fourth embodiment of the present invention is shown in FIG. Protrusions 8a are provided on the superconductor 8 of the rotor 2 so that the rotating magnetic field
The number of rotations is synchronized well. The structure of other parts is shown in Fig. 1.
Alternatively, it is the same as the structure shown in FIG.

【0016】本発明の第5実施例を図5に示す。この例
では、中心軸側をコイル12を持つステータ11とし、
外側を回転可能に配置され、超電導体9から構成された
ロータ2としている。この形式では、ステータ11とコ
イル12が回転磁界を発生し、この回転磁界により、外
側のロータ2が回転する。
A fifth embodiment of the present invention is shown in FIG. In this example, the central axis side is the stator 11 having the coil 12,
The rotor 2 is rotatably arranged on the outer side and is composed of a superconductor 9. In this form, the stator 11 and the coil 12 generate a rotating magnetic field, and the rotating magnetic field causes the outer rotor 2 to rotate.

【0017】この形式では、超電導体9からなるロータ
2の外側に補強材10を設けることが容易である。場合
によっては、この補強材10を焼ばめ、冷やしばめ、ボ
ルト締め、ワイヤ締め等の手段で超電導体9からなるロ
ータ2に固定して、ロータ2に所期の周方向圧縮応力を
与え、超電導体9がより高い回転数による遠心力に絶え
る構造とすることができる。上記第1乃至第5実施例に
かかる超電導モータは、次の効果を有する。 1. ジュール損失が少いため、効率が向上する。ま
た、ジュール損失による熱の発生がなく又は小さく、冷
却の必要が小さい。 2. 電気抵抗による誘導電流の減衰が無いため、回転
磁場の速度が遅くても、比較的高いトルクが発生する。 3. ロータに流す電流を大きくできるので、ロータを
小型にできる。 4. 回転磁場が有れば、ロータを回転することができ
るので、複雑な制御系が不要である。また、回転数の制
御が容易である。 5. 一体型の超電導体をロータに用いているので、従
来の超電導モータに比較してロータの構造が簡単であ
る。
In this type, it is easy to provide the reinforcing material 10 on the outer side of the rotor 2 composed of the superconductor 9. In some cases, the reinforcing material 10 is fixed to the rotor 2 made of the superconductor 9 by means such as shrink fitting, cooling fitting, bolt tightening, wire tightening, etc., and the desired circumferential compressive stress is applied to the rotor 2. The superconductor 9 can have a structure that can withstand centrifugal force due to a higher rotation speed. The superconducting motors according to the first to fifth embodiments have the following effects. 1. Efficiency is improved due to low Joule loss. In addition, no heat is generated due to Joule loss, and the need for cooling is small. 2. Since the induced current is not attenuated by the electric resistance, a relatively high torque is generated even if the speed of the rotating magnetic field is slow. 3. Since the current flowing through the rotor can be increased, the rotor can be downsized. 4. If there is a rotating magnetic field, the rotor can be rotated, so a complicated control system is unnecessary. In addition, it is easy to control the rotation speed. 5. Since the integrated superconductor is used for the rotor, the structure of the rotor is simpler than that of the conventional superconducting motor.

【0018】なお、上記実施例においては、超電導体を
円筒状またはかご型とする例を示したが、この発明はこ
れに限定されず、超電導体の形状は任意である。また、
ロータ2に超電導体1を固定する例を示したが、ロータ
2及び回転軸自体を超電導体で構成しても良い。また、
必要に応じて、補強材を使用しても良い。また、超電導
体の材料としてBi系高温超電導体を示したが、他のセ
ラミック材料或いは金属材料を使用しても良い。
In the above embodiment, the superconductor has a cylindrical shape or a cage shape, but the present invention is not limited to this, and the shape of the superconductor is arbitrary. Also,
Although the example in which the superconductor 1 is fixed to the rotor 2 has been shown, the rotor 2 and the rotating shaft itself may be formed of a superconductor. Also,
A reinforcing material may be used if necessary. Although the Bi-based high temperature superconductor has been shown as the material of the superconductor, other ceramic materials or metal materials may be used.

【0019】[0019]

【発明の効果】この発明にかかる超電導モータは、ロー
タが超電導体から構成されているので、損失が少なく、
効率が良い。また、モータの回転制御に、ロータの位置
検出等の複雑な制御を必要としないので、モータの回転
制御が簡単になる。さらに、ロータの超電導体が一体構
成のため、構造が簡単である。
In the superconducting motor according to the present invention, since the rotor is composed of the superconductor, the loss is small,
Good efficiency. Further, since the motor rotation control does not require complicated control such as rotor position detection, the motor rotation control is simplified. Furthermore, the structure is simple because the superconductor of the rotor is integrally formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例にかかる超電導モータの
断面図であり、(a)は軸方向断面図、(b)は径方向
断面図である。
FIG. 1 is a sectional view of a superconducting motor according to a first embodiment of the present invention, (a) is an axial sectional view, and (b) is a radial sectional view.

【図2】この発明の第2実施例にかかる超電導モータの
径方向断面図。
FIG. 2 is a radial sectional view of a superconducting motor according to a second embodiment of the present invention.

【図3】この発明の第3実施例にかかる超電導モータの
かご型ロータの斜視図。
FIG. 3 is a perspective view of a cage rotor of a superconducting motor according to a third embodiment of the present invention.

【図4】この発明の第4実施例にかかる超電導モータの
径方向断面図。
FIG. 4 is a radial sectional view of a superconducting motor according to a fourth embodiment of the present invention.

【図5】この発明の第5実施例にかかる超電導モータの
径方向断面図。
FIG. 5 is a radial sectional view of a superconducting motor according to a fifth embodiment of the present invention.

【図6】常電導誘導モータの発明のもとになった実験を
説明する図。
FIG. 6 is a diagram for explaining an experiment on which the invention of a normal conduction induction motor is based.

【図7】本発明の超電導モータの発明のもとになった実
験を説明する図。
FIG. 7 is a diagram illustrating an experiment on which the invention of the superconducting motor of the present invention is based.

【図8】(a)は従来の常電導誘導モータの径方向断面
図、(b)は従来の常電導誘導モータの軸方向断面図。
8A is a radial sectional view of a conventional normal conducting induction motor, and FIG. 8B is an axial sectional view of a conventional normal conducting induction motor.

【図9】従来の超電導ステップモータの概略図。FIG. 9 is a schematic view of a conventional superconducting step motor.

【符号の説明】[Explanation of symbols]

1、9、18A〜18H…超電導体、2、24…ロータ
(回転子)、3、21…ステータ(固定子),4、20
A〜20C…コイル,6…超電導コイル、7…かご型超
電導体、8…突起付き超電導体、8a…突起、10…補
強材、11…ステータ、12…コイル、13、16…永
久磁石,14…銅板,15…超電導体の板,19A〜1
9C…凸極、22…位相検出器。
1, 9, 18A to 18H ... Superconductor, 2, 24 ... Rotor (rotor), 3, 21 ... Stator (stator), 4, 20
A to 20C ... Coil, 6 ... Superconducting coil, 7 ... Cage type superconductor, 8 ... Projected superconductor, 8a ... Projection, 10 ... Reinforcing material, 11 ... Stator, 12 ... Coil, 13, 16 ... Permanent magnet, 14 ... Copper plate, 15 ... Superconductor plate, 19A to 1
9C ... Convex pole, 22 ... Phase detector.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】回転磁界を発生するステータと、前記回転
磁界を受けて回転する一体構成の超電導体を備えるロー
タ、から構成されることを特徴とする超電導モータ。
1. A superconducting motor comprising: a stator that generates a rotating magnetic field; and a rotor that includes an integrally formed superconductor that rotates by receiving the rotating magnetic field.
JP4022779A 1992-02-07 1992-02-07 Superconducting motor Withdrawn JPH05219717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4022779A JPH05219717A (en) 1992-02-07 1992-02-07 Superconducting motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4022779A JPH05219717A (en) 1992-02-07 1992-02-07 Superconducting motor

Publications (1)

Publication Number Publication Date
JPH05219717A true JPH05219717A (en) 1993-08-27

Family

ID=12092159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4022779A Withdrawn JPH05219717A (en) 1992-02-07 1992-02-07 Superconducting motor

Country Status (1)

Country Link
JP (1) JPH05219717A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355308B2 (en) * 2003-08-21 2008-04-08 Nikon Corporation Mover combination with two circulation flows
JP2011091893A (en) * 2009-10-20 2011-05-06 Sumitomo Electric Ind Ltd Stacked superconductive coil and rotator
US8432072B2 (en) 2008-04-17 2013-04-30 Nikon Corporation Three axis linear actuator
WO2015147068A1 (en) * 2014-03-28 2015-10-01 国立大学法人東京海洋大学 Radial-gap-type superconducting synchronous machine, magnetization device, and magnetization method
CN105634247A (en) * 2016-01-26 2016-06-01 中国石油大学(华东) Six-phase static sealing high-temperature superconducting motor
DE102017205425A1 (en) * 2017-03-30 2018-10-04 Siemens Aktiengesellschaft Superconductive permanent magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099109U (en) * 1983-12-13 1985-07-06 マツダ株式会社 car air conditioner
JPH0324912U (en) * 1989-07-20 1991-03-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099109U (en) * 1983-12-13 1985-07-06 マツダ株式会社 car air conditioner
JPH0324912U (en) * 1989-07-20 1991-03-14

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355308B2 (en) * 2003-08-21 2008-04-08 Nikon Corporation Mover combination with two circulation flows
US8432072B2 (en) 2008-04-17 2013-04-30 Nikon Corporation Three axis linear actuator
JP2011091893A (en) * 2009-10-20 2011-05-06 Sumitomo Electric Ind Ltd Stacked superconductive coil and rotator
WO2015147068A1 (en) * 2014-03-28 2015-10-01 国立大学法人東京海洋大学 Radial-gap-type superconducting synchronous machine, magnetization device, and magnetization method
JPWO2015147068A1 (en) * 2014-03-28 2017-04-13 国立大学法人東京海洋大学 Radial gap type superconducting synchronous machine, magnetizing device, and magnetizing method
US10594197B2 (en) 2014-03-28 2020-03-17 National University Corporation Tokyo University Of Marine Science And Technology Radial-gap type superconducting synchronous machine, magnetizing apparatus and magnetizing method
US11502590B2 (en) 2014-03-28 2022-11-15 National University Corporation Tokyo University Of Marine Science And Technology Radial-gap type superconducting synchronous machine, magnetizing apparatus, and magnetizing method
CN105634247A (en) * 2016-01-26 2016-06-01 中国石油大学(华东) Six-phase static sealing high-temperature superconducting motor
DE102017205425A1 (en) * 2017-03-30 2018-10-04 Siemens Aktiengesellschaft Superconductive permanent magnet

Similar Documents

Publication Publication Date Title
US7315103B2 (en) Superconducting rotating machines with stationary field coils
KR960003205B1 (en) Full flux reversal variable reluctance machine
JP2001224154A (en) Method and apparatus for multipole magnetically levitating rotation
JPH09507640A (en) Electromagnetic device with permanent magnet rotor
US7049724B2 (en) Superconducting rotating machines with stationary field coils and axial airgap flux
JP4320409B2 (en) Magnetic shaft support electric drive
JP2016116437A (en) Reluctance motor with virtual rotor
Hull et al. Magnetomechanics of internal-dipole, Halbach-array motor/generators
CA2467177C (en) Methods and apparatus for assembling homopolar inductor alternators including superconducting windings
JPH05219717A (en) Superconducting motor
JP6860892B2 (en) Brushless motor
EP0475881B1 (en) Superconducting motor with multiple winding rotor
US7291958B2 (en) Rotating back iron for synchronous motors/generators
WO2007013206A1 (en) Axial motor
JP4706350B2 (en) Inductor type motor
WO2021193714A1 (en) Superconducting rotating machine
US4524293A (en) 4-Pole electric motor
JP3380342B2 (en) Induction motor
JPS63144749A (en) Motor
JPS63265560A (en) Motor
JPH01303046A (en) Motor
JPH11113241A (en) Superconducting direct current generator
JPH08289515A (en) Induction motor
Doyle et al. Development of the shaped field superconductive motor. Research and development report
JP4706351B2 (en) Inductor type motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518