JPH06351222A - Heat motor using thermosensitive magnetic substance - Google Patents

Heat motor using thermosensitive magnetic substance

Info

Publication number
JPH06351222A
JPH06351222A JP18862593A JP18862593A JPH06351222A JP H06351222 A JPH06351222 A JP H06351222A JP 18862593 A JP18862593 A JP 18862593A JP 18862593 A JP18862593 A JP 18862593A JP H06351222 A JPH06351222 A JP H06351222A
Authority
JP
Japan
Prior art keywords
phase
magnetic
field
motor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18862593A
Other languages
Japanese (ja)
Inventor
Kazumasa Senda
和正 仙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HODAKA DENSHI KOGYO KK
Original Assignee
HODAKA DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HODAKA DENSHI KOGYO KK filed Critical HODAKA DENSHI KOGYO KK
Priority to JP18862593A priority Critical patent/JPH06351222A/en
Publication of JPH06351222A publication Critical patent/JPH06351222A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To enhance the conversion efficiency of low-temperature thermal energy by a method wherein, by utilizing a change in the permeability of the Curie point of a thermosenstive magnetic substance, thermal energy is converted into a change in a magnetic flux and then into rotating-machine energy. CONSTITUTION:When a thermosensitive magnetic substance 1U is cooled to the Curie point T0 or lower and a -1U is heated to the T0 or higher, the permeability of the 1U is high and that of the -1U is low. As a result, a magnetic flux which comes out from the N-pole of a field magnet 3U is passed through the thermosensitive magnetic substance 1U, and field magnetic poles 40, -4U, and it is returned to the S-pole of the field magnet 3U. Inversely, when the thermosensitive magnetic substance 1U is heated to the Curie temperature T0 or higher and the -1U is cooled to the T0 or lower, the permeability of the 1U is low and that of the -1U is high. As a result, a magnetic flux which comes out from the N-pole of the field magnet 3U is passed through field magnetic poles -4U, 411. In addition, the same is caused in the V-phase of a field unit. However, since the magnetic phase angle of the U-phase is deviated by 90 deg. from that of the V-phase, a rotating magnetic field can be generated by the U-phase and the V-phase. As a result, low-temperature thermal energy can be converted into mechanization energy with high efficiency.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、現在未利用のエネル
ギー源である150℃以下の比較的低レベルの熱エネル
ギーを機械エネルギーに変換する装置である。現在社会
的にほとんど廃棄されていて、しかもどこにでも豊富に
存在する低温度熱エネルギーを回収する事ができ、発電
所、製鉄所、ゴミ焼却場などから出る産業用熱廃水や太
陽熱温水気器等のエネルギー源により、家庭用又は業務
用エアコンを駆動したり、ソーラーカー等の無公害交通
機関の原動機として利用、又小型の機器では芝刈機、チ
ェンソー、大工道具等の携帯用機器にも応用する事がで
きる。 【0002】 【従来の技術】従来の低レベルの熱エネルギーから機械
エネルギーへの変換装置と言えば水を蒸気に変えてター
ビンを回す方法か、最近再び研究がされ始めたスターリ
ングエンジンによる方法、又は形状記憶合金による熱機
械エネルギー変換装置がある。蒸気タービン及びスター
リングエンジンについては少なくとも150°以上の熱
エネルギーが必要であり、又形状記憶合金による方法で
は低温エネルギーでの動作は可能であるが、そのエネル
ギー変換効率は高くて10%程度である。 【0003】 【発明が解決しようとする課題】熱エネルギー機器で問
題となる事は、熱耐久性とエネルギー変換効率の問題で
ある。小型、軽量化等も必要である。この点本発明は低
温域で動作させる為熱耐久性の問題も無く、従来の蒸気
機関と比べれば熱エネルギー変換効率、及び装置重量、
専有体積の点でも格段にすぐれている事は言うまでもな
い。 【0004】 【課題を解決するための手段】上記課題を解決するため
に、従来の蒸気機関では水の沸点の体積変化を利用して
いたが本発明では感熱磁性体のキキューリー,点の透磁
率の変化(図1参照)を利用して熱エネルギーを磁束変
化に変換し、回転機械エネルギーに変えている。 【0005】この発明の構成を図2の2相4極熱モータ
ーの場合について説明する。(1U) 効率が高くなっている。この砂粒状感熱磁性体は熱伝導
及びヒステリシス磁気、 る。 【0006】 トV相が磁気位相角90度(機械的取付角度で45度)
ずらして取り付けられてある。 【0007】(5)は回転子マグネット又はカゴ型回転
子で図8のように4極に着磁されており、シャフト
(6)と切換弁及びポンプ(7)と連結されている。又
熱エネルギー供給流体(温・冷水等)が漏れないようオ
イル・シール・リング(12)が入 化は図7のような位相関係にある。以上の各部品がケー
ス(13)の中に収納されている。 【0008】 【作用】図2で温水導入口(8)及び冷水導入口(9)
より入った熱エネルギー供給流体は、切換弁及びポンプ
(7)で温水−冷水−温水−冷水……と言う具合に温・ 【0009】この切換弁及びポンプ(7)については既
出願特許 平4−38841にその基本的な説明がされ
ております。今回使用した切換弁及びポンプ(7)の構
造を ンプ(7)からの取出位置は図6で示す位置から取り出
されているので、吐出パ 化は図7で示す位相関係となり、吐出しパイプ(10
U)内に流れる流体の熱エネルギー・時間変化と、吐出
パイプ(10V)内に流れる流体の熱エネルギー・時間
変化は移送差が90度(吐出パイプ取出位置は45度)
ずれている。 【0010】 化は、それぞれ吐出パイプ(10U)及び(10V)内
に内に流れるものと位相差が180度(吐出パイプ取出
位置にして90度)ずれている。 【0011】 にする必要がある。 【0012】感熱磁性体は図1に示すように温度の変化
に対してその磁性体の持性で決定されるキューリー点
(To点)を境にして急激な透磁率の変化を示し、この
温度の前後で磁束を導通または遮断することができる。 【0013】このキューリー点(To点)はサーモライ
トの組成を変えることで任意の動作温度(−15℃〜+
130℃)のものが製作可能である。 【0014】図3及び図4は動作説明の為に図2の界磁
コニット1相分(U相)のみを抜き出した図です。いま
感熱磁性体(1U)がキューリー点 To以下に冷却さ
れ、 ネット(3U)のN極から出た磁束は感熱磁性休(1
U)を通り、界磁磁極(4 戻る(矢印Aの通路) 【0015】逆に感熱磁性体(1U)がキューリー点
To以上に加熱され、感熱磁性体 通路) 【0016】これと同じ事が図2の界磁ユニットV相に
も起こりますが、界磁ユニットU相と界磁ユニットV相
は磁気位相角が90度(取付位置角度は45度)ずれて
いる エネルギーが供給されると、界磁ユニットU相と界磁ユ
ニットV相で回転磁界を発生させる事ができる。 【0017】従って、界磁ユニットU相及びV相の内部
に取り付けられ、図8の如く4極に着磁された回転子マ
グネットまたはカゴ型回転子(5)を回転させる力が発
生する。図9はカゴ型回転子の例で、誘導電動機に使用
されているものと同じカゴ型回転子を2個接合した構造
をしている。 【0018】図2に示す熱モーターは後部に切換弁及び
ポンプ(7)を直結しているので、熱モーター起動時に
は、手動又は起動用モーターで始動してやる必要があ
る。この構造の熱モーターの回転特性は丁度、直巻式直
流電気モーターに相当する特性を示す。 【0019】切換弁およびポンプ(7)が熱モーターと
直結している構造においては図6に 磁界の回転方向を逆転させる事ができ、回転子マグネッ
ト又はカゴ型回転子(5)を逆回転させる事ができる。 【0020】また、切換弁及びポンプ(7)を熱モータ
ー本体から取り外し、別の制御用小型モーター(25)
等で回転させる場合は、前記のような起動時の問題は無
く、この構造の場合の熱モーターの回転特性は、丁度同
期型交流モーター又は誘導型交流モーターに相当する特
性を示す。従って切換弁及びポンプ(7)を別駆動する
方式では駆動用小型モーター(25)の回転数を変えて
やると自由に熱モーターの回転数を変える事ができる。 【0021】切換弁及びポンプ(7)を別駆動する方式
では、駆動用小型モーター(25)の回転方向を逆転し
てやると、回転磁界の回転方向.逆転させる事ができ、
回転子マグネット又はカゴ型回転子(15)を逆回転す
る事ができる。 【0022】以上は界熱磁極が4極の場合で説明した
が、4極以外でも2極、6極、8極、10極……等多極
熱モーターが製作可能で、使用目的及び希望する回転
数、トルク特性等により選択する事ができる。多極熱モ
ーターの場合は切換弁及びポンプ せば良い。 【0023】 【実施例1】本発明の作用説明は2相モーターで述べた
が、界磁コニットW相をもう一つ追加すれば3相式熱モ
ーターとする事ができる。この例を図10に示す。高出
力のモーターの場合は3相式とした方が有利である。2
相モーターと異なる点は界磁ユニットがU相 V相 W
相の3相分あることと、切換弁及びポンプ.(7)より
取り出す吐出パイプ4本から6本に増え、その位相角が
90度から120度になっ ある。図14は3相式カゴ型回転子の例で 誘導電動機
に使用されているものと同じカゴ型回転子を3個接続し
た構造をしている。 【0024】 【実施例2】図15は家庭用エアコンディショナーの動
力源に太陽熱エネルギーを利用した空調システムの応用
例を示す。熱エネルギー源として家庭用太陽熱温水器
(15)により得た温水源と、夜間の低温度を蓄冷した
冷水器(17)による蓄冷タンク(18)より得た冷水
源(または水道水や地下水を冷水源としてもよい)との
温度差エネルギーにより、エアコンディショナーの動力
源にしようとするものである。効率を良くするためにエ
アコンの廃熱を熱源に加えている。切換バルブ(27)
は廃熱を冷房のときは温水側に、暖房のときは冷水側に
返すようになっている。 【0025】熱モーターは切換弁及びポンプ(7)を小
型電気モーター(25)で駆動し、温度制御信号により
熱モーターの回転数を制御できる様になっている。 【0026】 【発明の効果】本発明は以上説明したように構成されて
いるので、以下に記載されるような効果を奏する。 【0027】エネルギー変換効率が高い。キューリー点
が低い感熱磁性体を使用しているので、従来不可能に近
かった低温熱エネルギーの機械エネルギーへの高効率変
換が可能になった。 【0028】クリーンなエネルギー変換装置で、廃棄ガ
ス等を出さない。 【0029】電源の供給が無いか供給が困難な場所での
動力源として使用でき、携帯用とする事も可能である。
又、電気は蓄える事が困難であるが、本発明は熱エネル
ギーを動力源としているので、熱エネルギーを貯蔵し必
要に応じて機械エネルギーを取り出す事ができる。 【0030】小型、軽量である。 【0031】電動モーターと違い、発火性の危険が無い
ので、基本的に防爆構造のモーターである。 【0032】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is an apparatus for converting a relatively low level of thermal energy below 150 ° C., which is an energy source which is currently unused, into mechanical energy. Currently, it is possible to recover low temperature thermal energy, which is almost abandoned socially and is abundant everywhere, and is used for industrial waste heat and solar water heaters from power plants, steelworks, garbage incinerators, etc. Drives air conditioners for home or business with the energy source of, and is used as a prime mover for pollution-free transportation such as a solar car, and is also applied to portable equipment such as lawn mowers, chainsaws, carpentry tools, etc. for small equipment. I can do things. Speaking of conventional low-level heat energy to mechanical energy converters, water is converted into steam to rotate a turbine, or a Stirling engine, which has recently been studied again, or There is a thermo-mechanical energy converter using shape memory alloy. The steam turbine and the Stirling engine require thermal energy of at least 150 ° or more, and the method using the shape memory alloy can operate at low temperature energy, but the energy conversion efficiency is high at about 10%. [0003] Problems to be solved by thermal energy equipment are problems of thermal durability and energy conversion efficiency. It is also necessary to reduce the size and weight. In this respect, since the present invention operates in a low temperature range, there is no problem of thermal durability, and the heat energy conversion efficiency and the weight of the device are higher than those of the conventional steam engine.
It goes without saying that it is also outstanding in terms of its proprietary volume. In order to solve the above problems, in the conventional steam engine, the volume change of the boiling point of water was used, but in the present invention, the Kikurie of the heat-sensitive magnetic material and the magnetic permeability of the point are used. (See FIG. 1) is used to convert the thermal energy into a magnetic flux change, which is converted into rotating mechanical energy. The structure of the present invention will be described for the case of the two-phase four-pole heat motor shown in FIG. (1U) Efficiency is high. This sand-grained heat-sensitive magnetic material has heat conduction and hysteresis magnetism, It [0006] V phase has a magnetic phase angle of 90 degrees (mechanical mounting angle of 45 degrees)
It is attached in a staggered manner. Reference numeral (5) is a rotor magnet or a cage rotor, which is magnetized to have four poles as shown in FIG. 8, and is connected to the shaft (6), the switching valve and the pump (7). In addition, an oil seal ring (12) is inserted to prevent leakage of heat energy supply fluid (hot / cold water, etc.). The conversion has a phase relationship as shown in FIG. The above components are housed in a case (13). In FIG. 2, the hot water inlet (8) and the cold water inlet (9) are shown.
The supplied heat energy supply fluid is heated by the switching valve and the pump (7) in the following manner: hot water-cold water-hot water-cold water. The basic description of this switching valve and pump (7) is given in the already filed Japanese Patent Application No. 4-38841. The structure of the switching valve and pump (7) used this time The ejection position from the pump (7) is taken out from the position shown in FIG. The phase relationship shown in FIG.
U) The thermal energy / time change of the fluid flowing into the discharge pipe (10 V) and the thermal energy / time change of the fluid flowing into the discharge pipe (10 V) have a transfer difference of 90 degrees (the discharge pipe extraction position is 45 degrees)
Deviated. [0010] The phase difference is 180 degrees (90 degrees at the discharge pipe extraction position) with respect to those flowing in the discharge pipes (10U) and (10V). [0011] Need to As shown in FIG. 1, the heat-sensitive magnetic material exhibits a drastic change in magnetic permeability with respect to the Curie point (To point) determined by the magnetic property of the magnetic material as a boundary. The magnetic flux can be conducted or blocked before and after. The Curie point (To point) is set at an arbitrary operating temperature (-15 ° C to +) by changing the composition of the thermolite.
It can be manufactured at 130 ° C. FIGS. 3 and 4 are diagrams in which only one phase of the field connit (U phase) of FIG. 2 is extracted for the purpose of explaining the operation. Now the thermosensitive magnetic material (1U) is cooled below the Curie point To, The magnetic flux emitted from the N pole of the net (3U) is a thermosensitive magnetic suspension (1
U), field magnetic pole (4 Return (path of arrow A) On the contrary, the thermosensitive magnetic material (1U) is the Curie point
Heat-sensitive magnetic material that is heated above To Passage) [0016] The same thing occurs in the field unit V phase of FIG. 2, but the magnetic phase angle of the field unit U phase and the field unit V phase is 90 degrees (mounting position angle is 45 degrees). Deviated When energy is supplied, a rotating magnetic field can be generated in the field unit U phase and the field unit V phase. Therefore, a force for rotating the rotor magnet or the cage rotor (5) which is mounted inside the U-phase and V-phase of the field unit and is magnetized to have four poles as shown in FIG. 8 is generated. FIG. 9 shows an example of a cage rotor, which has a structure in which two cage rotors that are the same as those used in an induction motor are joined. Since the switching valve and the pump (7) are directly connected to the rear portion of the heat motor shown in FIG. 2, it is necessary to start the heat motor manually or by using the starting motor. The rotation characteristics of the heat motor having this structure are exactly equivalent to those of a direct-winding type DC electric motor. FIG. 6 shows a structure in which the switching valve and the pump (7) are directly connected to the heat motor. The rotation direction of the magnetic field can be reversed, and the rotor magnet or the cage rotor (5) can be rotated in the reverse direction. Further, the switching valve and the pump (7) are removed from the heat motor body, and another small motor for control (25) is provided.
In the case of rotating the motor by the above-mentioned method, there is no problem at the time of starting as described above, and the rotation characteristic of the thermal motor in the case of this structure shows the characteristic equivalent to that of the synchronous AC motor or the induction AC motor. Therefore, in the system in which the switching valve and the pump (7) are separately driven, the rotational speed of the thermal motor can be freely changed by changing the rotational speed of the driving small motor (25). In the system in which the switching valve and the pump (7) are separately driven, when the rotation direction of the small driving motor (25) is reversed, the rotation direction of the rotating magnetic field is reduced. Can be reversed,
The rotor magnet or the cage rotor (15) can be rotated in the reverse direction. In the above description, the field heat magnetic pole has been described as having four poles, but other than four poles, a multipole heat motor such as two poles, six poles, eight poles, ten poles, etc. can be manufactured. It can be selected according to the rotation speed, torque characteristics, etc. Switching valve and pump for multi-pole heat motors You can do it. [First Embodiment] Although the operation of the present invention has been described with respect to a two-phase motor, a three-phase thermal motor can be obtained by adding another field conit W-phase. An example of this is shown in FIG. In the case of a high output motor, it is advantageous to use a three-phase type. Two
The difference from the phase motor is that the field unit is U phase V phase W
There are three phases, and the switching valve and pump. The number of discharge pipes taken out from (7) was increased from 4 to 6 and the phase angle was changed from 90 to 120 degrees. is there. FIG. 14 shows an example of a three-phase cage rotor, which has a structure in which three cage rotors that are the same as those used in an induction motor are connected. [Embodiment 2] FIG. 15 shows an application example of an air conditioning system utilizing solar heat energy as a power source of a home air conditioner. A hot water source obtained by a household solar water heater (15) as a heat energy source and a cold water source (or tap water or ground water obtained from a cold storage tank (18) by a cold water cooler (17) that stores low temperature at night. It may be used as a power source) and the temperature difference energy between the power source and the air conditioner. Waste heat from the air conditioner is added to the heat source to improve efficiency. Switching valve (27)
Is designed to return waste heat to the hot water side when cooling and to the cold water side when heating. In the heat motor, the switching valve and the pump (7) are driven by a small electric motor (25), and the rotation speed of the heat motor can be controlled by a temperature control signal. Since the present invention is constructed as described above, it has the following effects. High energy conversion efficiency. Since a thermosensitive magnetic material with a low Curie point is used, it has become possible to convert low-temperature heat energy into mechanical energy, which was nearly impossible in the past, with high efficiency. It is a clean energy conversion device and does not generate waste gas. It can be used as a power source in a place where power is not supplied or is difficult to supply, and it can be portable.
Further, although it is difficult to store electricity, since the present invention uses thermal energy as a power source, it is possible to store thermal energy and take out mechanical energy as needed. It is small and lightweight. Unlike an electric motor, there is no danger of ignition, so it is basically an explosion-proof motor. [0032]

【図面の簡単な説明】 図1 感熱磁性体の透磁率の温度変化を示すグラフ
の例である。 図2 感熱磁性体を用いた2相式熱モーターの構成
図を示す。 図3 相当りの界磁磁極構造図を示す。(立体図) 図4 相当りの界磁磁極構造図を示す。(断面図) 図5 切換弁及びポンプの構造図を示す。 図6 2相4極式熱モーターの切換弁及びポンプの
吐出パイプ取出位置を示す。 図7 2相4極式熱モーターの各吐出パイプ内を流
れる流体の温度一時間変化を示す。 図8 2相4極式回転子マジネットの着磁伏況を示
す。 図9 2相式カゴ型回転子の例を示す。 図10 感熱磁性体を用いた3相6極式熱モーターの
構成図を示す。 図11 3相6極式熱モーターの切換弁及びポンプの
吐出パイプ取出位置を示す。 図12 3相6極式熱モーターの各吐出パイプ内を流
れる流体の温度一時間変化を示す。 図13 3相6極式回転子マグネットの着磁状況を示
す。 図14 3相式カゴ型回転子の例を示す。 図15 太陽熱エネルギーを動力源とした空調システ
ムの応用例を示す。 【0033】 【符号の説明】 1U 感熱磁性体 正側、U相 1V 感熱磁性体 正側、V相 1W 感熱磁性体 正側、W相 2U 感熱磁性体容器 正側、U相 2V 感熱磁性体容器 正側、V相 2W 感熱磁性体容器 正側、W相 3U 界磁マグネット 正側、U相 3V 界磁マグネット 正側、V相 3W 界磁マグネット 正側、W相 4U 界磁磁極 正側、U相 4V 界磁磁極 正側、V相 4W 界磁磁極 正側、W相 5 回転子マグネット又はカゴ型回転子 6 回転軸 7 切換弁及びポンプ 8 温水導入口 9 冷水導入口 10U 吐出パイプ 正側、U相 10V 吐出パイプ 正側、V相 10W 吐出パイプ 正側、W相 11 軸受(ベアリング) 12 オイル・シール・リング 13 ケース 14 ドレイン 15 太陽熱温水器 16 蓄熱タンク 17 冷水器 18 蓄冷タンク 19 感熱磁性体を用いた熱モーター, 20 コンプレッサー 21 熱交換器 22 ファン及びファンモーター 23 エアコン室外機 24 エアコン室内機 25 回転数制御用小型モーター 26 温度コントローラー 27 切換バルブ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an example of a graph showing changes in magnetic permeability of a thermosensitive magnetic material with temperature. FIG. 2 shows a configuration diagram of a two-phase heat motor using a heat-sensitive magnetic material. FIG. 3 shows a structure diagram of a field magnetic pole corresponding to FIG. (Three-dimensional diagram) FIG. 4 shows a field magnetic pole structure diagram corresponding to FIG. (Cross-sectional view) FIG. 5 shows a structural diagram of a switching valve and a pump. FIG. 6 shows the switching valve of the two-phase four-pole heat motor and the discharge pipe extraction position of the pump. FIG. 7 shows the temperature of the fluid flowing in each discharge pipe of the two-phase four-pole heat motor for one hour. FIG. 8 shows the magnetization state of the two-phase four-pole rotor magnet. FIG. 9 shows an example of a two-phase cage rotor. FIG. 10 shows a configuration diagram of a 3-phase 6-pole heat motor using a heat-sensitive magnetic material. FIG. 11 shows a discharge valve extraction position of a switching valve and a pump of a three-phase six-pole heat motor. FIG. 12 shows the temperature of the fluid flowing in each discharge pipe of the three-phase six-pole heat motor for one hour. FIG. 13 shows a magnetized state of a three-phase six-pole rotor magnet. FIG. 14 shows an example of a three-phase cage rotor. FIG. 15 shows an application example of an air conditioning system using solar thermal energy as a power source. [Description of Reference Signs] 1U thermosensitive magnetic body positive side, U phase 1V thermosensitive magnetic body positive side, V phase 1W thermosensitive magnetic body positive side, W phase 2U Thermosensitive magnetic container positive side, U phase 2V Thermosensitive magnetic container positive side, V phase 2W Thermosensitive magnetic container positive side, W phase 3U field magnet positive side, U phase 3V field magnet positive side, V phase 3W field magnet positive side, W phase 4U field magnetic pole positive side, U phase 4V field magnetic pole positive side, V phase 4W field magnetic pole positive side, W phase 5 Rotor magnet or basket type rotor 6 Rotating shaft 7 Switching valve and pump 8 Hot water inlet 9 Cold water inlet 10U Discharge pipe positive side, U phase 10V Discharge pipe positive side, V phase 10W Discharge pipe positive side, W phase 11 Bearings 12 Oil Seal Ring 13 Case 14 Drain 15 Solar Water Heater 16 Heat Storage Tank 17 Water Cooler 18 Cooling Storage Tank 19 Heat Motor Using Thermosensitive Magnetic Material, 20 Compressor 21 Heat Exchanger 22 Fan and Fan Motor 23 Air conditioner outdoor unit 24 Air conditioner indoor unit 25 Small motor 26 for temperature control 26 Temperature controller 27 Switching valve

Claims (1)

【特許請求の範囲】 【請求項1】 界磁マグネット(3U)及び砂粒状の感
熱磁性体(1U)及 トU相と、磁気位相角が90°異なる位置に取り付けら
れたもうひとつの界磁ユ ガス等)とキューリー点より低い温度エネルギーを与え
る流体を交互に供給する事により、界磁極に回転磁界を
作り出し、回転子マグネット又はカゴ型回転子(5)を
駆動する感熱磁性体を用いた2相式モーター。 【請求項2】 【請求項1】におけると同じ界磁ユニット3個 U相、
V相、W相を各々磁気位相角が120°異なる位置に取
り付け、切換弁及びポンプ(7) リー点より高い温度エネルギーを与える流体(水又は
油、水素ガス等)とキューリー点より低い温度エネルギ
ーを与える流体を交互に供給する事により界磁極に回転
磁界を作り出し、回転子マグネット又はカゴ型回転子
(5)を駆動する感熱磁性体を用いた3相式モーター。
What is claimed is: 1. A field magnet (3U) and a sand-grained heat-sensitive magnetic material (1U). Another field unit installed at a position where the magnetic phase angle differs from the U phase by 90 °. (2) using a thermosensitive magnetic body that drives a rotor magnet or a cage rotor (5) by alternately supplying a fluid that gives a temperature energy lower than the Curie point to the rotating magnetic field. Phase motor. 2. The same field unit as in claim 1, three U-phases,
The V phase and the W phase are installed at positions where the magnetic phase angles differ by 120 °, respectively, and a switching valve and a pump (7) A rotating magnetic field is created in the field pole by alternately supplying a fluid (water or oil, hydrogen gas, etc.) that gives a higher temperature energy than the Lee point and a fluid that gives a lower temperature energy than the Curie point, and then a rotor magnet or cage rotation A three-phase motor that uses a thermosensitive magnetic material that drives the child (5).
JP18862593A 1993-06-04 1993-06-04 Heat motor using thermosensitive magnetic substance Pending JPH06351222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18862593A JPH06351222A (en) 1993-06-04 1993-06-04 Heat motor using thermosensitive magnetic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18862593A JPH06351222A (en) 1993-06-04 1993-06-04 Heat motor using thermosensitive magnetic substance

Publications (1)

Publication Number Publication Date
JPH06351222A true JPH06351222A (en) 1994-12-22

Family

ID=16226968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18862593A Pending JPH06351222A (en) 1993-06-04 1993-06-04 Heat motor using thermosensitive magnetic substance

Country Status (1)

Country Link
JP (1) JPH06351222A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19811361A1 (en) * 1997-10-24 1999-05-06 Magdeburger Hafen Gmbh Ship loading and unloading method
US20100117482A1 (en) * 2007-03-28 2010-05-13 Abb Research Ltd. Valve apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19811361A1 (en) * 1997-10-24 1999-05-06 Magdeburger Hafen Gmbh Ship loading and unloading method
DE19811361C2 (en) * 1997-10-24 2000-04-27 Magdeburger Hafen Gmbh Method and device for loading and unloading ships
US20100117482A1 (en) * 2007-03-28 2010-05-13 Abb Research Ltd. Valve apparatus

Similar Documents

Publication Publication Date Title
CN100449228C (en) Heat pump device
Jape et al. Comparison of electric motors for electric vehicle application
CN101346595A (en) Application of a switched reluctance motion control system in a chiller system
CN1495396A (en) Air conditioner, outdoor unit and refrigerating unit
Ali et al. Solar powered air conditioner using BLDC motor
Jahromi et al. Simulation of a stirling engine solar power generation system using Simulink
JPH06351222A (en) Heat motor using thermosensitive magnetic substance
KR20220012841A (en) Heating, ventilation, air conditioning and/or refrigeration systems with compressor motor cooling systems
EP0026584A1 (en) Improvements in and relating to turbo electric generators
CN102102546A (en) Impeller generator and method for generating power
Molla et al. Water cooled chiller based HVAC system used in a linear generator for oceanic wave energy conversion
Khlifi et al. Efficient off grid solar powered DC air conditioning system
CN207583644U (en) A kind of air cooling blower fan
US20220077798A1 (en) Multi-stage serial turbo-generator system for supercritical co2 power cycles
Skala The heat and cooling of electronically switching synchronous machine as a main drive of a car
CN205013330U (en) Direct -cooled thermal power plant is with external rotor permanent magnetism fan system
Mohanasundaram et al. Design of a wind-solar hybrid energy air conditioning system using BLDC motor for the Indian home environment
KR102002467B1 (en) Hybrid renewable energy system for cooling and heating generation equipped with the permanent magnet structure in the process of fluid pressure conversion
CN2557714Y (en) Multi-purpose pipe line type electromechanical device
Ramsden et al. High-performance electric machines for renewable energy generation and efficient drives
JP2023516062A (en) Cooling system for variable torque generator electrical machines
KR101438045B1 (en) Turbine-integrated generator for Heat pump system
Mohanasundaram et al. Design of a Wind-Solar Hybrid Energy Air Conditioning System Using BLDC Motor for the Residential Buildings
WO2023033642A1 (en) A system for clean, renewable and sustainable power generation
BR102019025472A2 (en) standalone electric power generator system