JPH01120772A - Fuel cell system - Google Patents

Fuel cell system

Info

Publication number
JPH01120772A
JPH01120772A JP62277496A JP27749687A JPH01120772A JP H01120772 A JPH01120772 A JP H01120772A JP 62277496 A JP62277496 A JP 62277496A JP 27749687 A JP27749687 A JP 27749687A JP H01120772 A JPH01120772 A JP H01120772A
Authority
JP
Japan
Prior art keywords
electrolyte
fuel cell
side end
gas
connecting bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62277496A
Other languages
Japanese (ja)
Other versions
JP2792626B2 (en
Inventor
Mitsuie Matsumura
光家 松村
Toshihide Tanaka
俊秀 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62277496A priority Critical patent/JP2792626B2/en
Priority to US07/265,815 priority patent/US4898793A/en
Publication of JPH01120772A publication Critical patent/JPH01120772A/en
Application granted granted Critical
Publication of JP2792626B2 publication Critical patent/JP2792626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To maintain good performance for a long time by installing an electrolyte supplementing means which supplements an electrolyte to a unit cell, and installing a connecting bridge having ion conductivity. CONSTITUTION:A connecting bridge 15 electrically connects adjacent electrolyte layers of stacked plural unit cells 4 by the ion conductivity. An electrolyte supplementing means 14 supplements an electrolyte to a unit cell 4a which locates on the most positive side on a potential basis. Since the electrolyte supplementing means 14 supplements the electrolyte to the unit cell in which the shortage of electrolyte may most easily occur, the electrolyte shortage in this unit cell is prevented. The electrolyte supplemented is sequentially transferred to unit cells on the negative side through the connecting bridge 14, and supplemented to the all unit cells. The electrolyte is simply supplemented, and good performance is steadily obtained for a long time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、簡便かつ効果的に電解質の補給を行なうこ
とによシ長期にわたり安定した運転が行なえるような燃
料電池装置の構造に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to the structure of a fuel cell device that allows stable operation over a long period of time by simply and effectively replenishing electrolyte. be.

〔従来の技術〕 第4図は溶融炭酸塩形の燃料電池装置として一般的な構
造の一例を、一方切欠いて示す斜視図である。この種の
燃料電池装置は、酸化ガス側電極(1)、燃料ガス側電
極(2)、これら電極(1)、(2)の間に介装された
電解質層(3)などによシ構成された燃料電池単体(4
)(以下、「単電池」という)をセパレータ部材(ア)
を介して積層してなる積層体(5)を有している。そし
て、積層体(5)の(ト)側端部およびH側端部には、
(ト)側端部材(6a)及び(へ)側端部材(6b)が
それぞれ重合されている。上記…側及びH側端部材(6
a) 、 (6b)ならびにセパレータ部材(7)は不
透気性を有し、酸化ガス側電極(1)及び燃料ガス側電
極(2)各々に反応ガスを供給する反応ガス流路(8L
a)、(81b)を形成し、また電子伝導性を有してお
シ、単電池(4)を電気的に直列に接続する機能を有す
る。積層体(5)の側面部には酸化ガス及び燃料ガスを
各々の反応ガス流路(81a)、(lHb)に分配供給
(又は排出)するためのガスマニホルド(8a) 、 
(8b)を備えている。積層体(6)とガスマニホルド
(8a)、 (8b)との当接部にはガスケット(9)
が介装されている。なお、図中、矢印Aは酸化ガスの流
れな、矢印Bは燃料ガスの流れを示す。
[Prior Art] FIG. 4 is a perspective view showing an example of a general structure of a molten carbonate fuel cell device with one side cut away. This type of fuel cell device consists of an oxidizing gas side electrode (1), a fuel gas side electrode (2), an electrolyte layer (3) interposed between these electrodes (1), (2), etc. single fuel cell (4
) (hereinafter referred to as "cell battery") as a separator member (a)
It has a laminate (5) formed by laminating the two layers with each other in between. At the (G) side end and H side end of the laminate (5),
(g) The side end member (6a) and (f) the side end member (6b) are each superposed. Above... side and H side end member (6
a), (6b) and the separator member (7) have air impermeability, and a reaction gas flow path (8L) that supplies the reaction gas to the oxidizing gas side electrode (1) and the fuel gas side electrode (2), respectively.
a), (81b), has electronic conductivity, and has the function of electrically connecting the unit cells (4) in series. A gas manifold (8a) for distributing and supplying (or discharging) oxidizing gas and fuel gas to each of the reaction gas channels (81a) and (lHb) is provided on the side surface of the stacked body (5).
(8b). A gasket (9) is provided at the contact area between the stacked body (6) and the gas manifolds (8a) and (8b).
is interposed. In the figure, arrow A indicates the flow of oxidizing gas, and arrow B indicates the flow of fuel gas.

また、第5図は例えば特開昭61−24159号公報に
示された、電解質を外部より電解質層(3)に補給する
ための補給パイプ(lO)を設けた電解質補給用セパレ
ータ部材(7a)である。第4図における燃料電池装置
においては、セパレータ部材(ア)として電解質補給用
セパレータ部材(7a)を用いることにより、外部より
電解質の補給が可能な燃料電池装置を得ることができる
Further, FIG. 5 shows an electrolyte replenishment separator member (7a) provided with a replenishment pipe (lO) for replenishing electrolyte from the outside to the electrolyte layer (3), as shown in, for example, JP-A-61-24159. It is. In the fuel cell device shown in FIG. 4, by using the electrolyte replenishment separator member (7a) as the separator member (a), a fuel cell device in which electrolyte can be replenished from the outside can be obtained.

次に動作について説明する。Next, the operation will be explained.

溶融炭酸塩形燃料電池における電解質層(3)は、化学
的に安定で且つ電気絶縁性を有した素材(例えばLiA
l0□)よりなる多孔質構造に電解質として動作する物
質(VAlえばLiKCO3)を保持せしめたもので、
1池の電解質層として機能すると同時に。
The electrolyte layer (3) in the molten carbonate fuel cell is made of a chemically stable and electrically insulating material (for example, LiA).
A substance that acts as an electrolyte (LiKCO3 for VA1) is held in a porous structure consisting of
At the same time, it functions as the electrolyte layer of the pond.

燃料ガス(0111を極に供給される燃料ガスと酸化ガ
ス側電極に供給される酸化ガスとが混合するのを防ぐガ
ス分離層としても機能する。何らかの理由により電解質
層(3)中の電解質量が不足すると、電池の内部抵抗が
増大し電池特性が低下すると共に、過度に不足する場合
にはガス分離機能が不十分となシ燃料ガスと酸化ガスの
一方混合により燃料電池の運転が難しくなる。
It also functions as a gas separation layer that prevents the fuel gas (0111) supplied to the electrode from mixing with the oxidizing gas supplied to the oxidizing gas side electrode.For some reason, the amount of electrolyte in the electrolyte layer (3) If there is a shortage, the internal resistance of the battery will increase and the battery characteristics will deteriorate, and if there is an excessive shortage, the gas separation function will be insufficient, making it difficult to operate the fuel cell due to one-sided mixing of the fuel gas and the oxidizing gas. .

現実の溶融炭酸塩形燃料電池においては、電池の動作に
伴い電解質が電解質層よシ消失してゆくため、上述した
理由に基づき電解質の不足が燃料電池の寿命を制限する
結果となる。−例として。
In actual molten carbonate fuel cells, the electrolyte disappears from the electrolyte layer as the cell operates, and the lack of electrolyte limits the life of the fuel cell for the reasons mentioned above. -As an example.

単電池試験では電池の寿命が例えばlO,000時間程
度、積層電池試験では例えば5.000時間程度となっ
ている。従って何らかの手段により電解質層中の電解質
の不足を抑えることが、燃料電池の長寿命化、特性向上
にとって不可欠である。
In the single cell test, the battery life is, for example, about 10,000 hours, and in the stacked battery test, it is about 5,000 hours, for example. Therefore, it is essential to suppress the shortage of electrolyte in the electrolyte layer by some means to extend the life of the fuel cell and improve its characteristics.

単電池の寿命試験における電解質の補給の効果について
は、本発明者らの実験においても、第6図に示すように
確認されている。即ち、同試験において、運転開始から
3,200時間及び5 、500時間経過した時点で電
解質の補給を行ったが、電解質の補給によシ内部抵抗が
大きく減少し、且つ電池特性が改善し1本手法が有効で
あることが確認された。
The effect of electrolyte replenishment in cell life tests has been confirmed in experiments conducted by the present inventors, as shown in FIG. 6. That is, in the same test, electrolyte was replenished 3,200 and 5,500 hours after the start of operation, and electrolyte replenishment significantly reduced internal resistance and improved battery characteristics. The effectiveness of this method was confirmed.

しかし乍ら、第6図に示すように、個々のセパレータ部
材(7a)K電解質を補給する補給パイプ(10)を設
け、外部より個々の単電池(4)の電解質層(3)へ直
接電解質な補給するようKした従来装置においては、上
記第6図に示した試験結果と同様、良好な電解質補給の
効果は認められるが、積層体の構造を着るしく複雑にす
ることは避けられない。
However, as shown in Figure 6, a replenishment pipe (10) is provided to replenish the K electrolyte to each separator member (7a), and the electrolyte is directly supplied to the electrolyte layer (3) of each cell (4) from the outside. In the conventional device designed to replenish the electrolyte, as in the test results shown in FIG. 6, a good electrolyte replenishment effect is observed, but the structure of the laminate is unavoidably complicated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の燃料電池装置は以上のよ5に構成されているので
、積層体の構造が極めて複雑で積層体の薄層化が難しく
、コストも高く、また個々の単電池に各々電解質を補給
してやらねばならないため補給動作も煩雑になる、など
の欠点があった。
Conventional fuel cell devices are configured as described above, so the structure of the laminate is extremely complex, it is difficult to make the laminate thin, the cost is high, and electrolyte must be replenished to each individual cell. There were drawbacks such as the fact that replenishment operations were complicated because of the inconvenience.

この発明は上記のような問題点を解消するためになされ
たもので、簡素な構造で簡便に電解質の補給な行え、長
期に亘り安定して良好な特性で動作が行なえる燃料電池
装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and provides a fuel cell device that has a simple structure, allows easy replenishment of electrolyte, and can operate stably and with good characteristics over a long period of time. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る燃料電池装置は、積層体の(ト)側端部
に位置する単電池に電解質な補給する電解質補給手段を
設けると共K、隣接する単電池の電解質相互を連結し、
上記電解質補給手段によって補給された電解質をH側端
部に向けて輸送し得るイオン伝導性を有する連結ブリッ
ジを備えたものである。
The fuel cell device according to the present invention is provided with an electrolyte replenishing means for replenishing electrolyte to the unit cells located at the (G) side end of the stacked body, and K, connecting the electrolytes of adjacent unit cells to each other,
It is provided with a connecting bridge having ionic conductivity capable of transporting the electrolyte replenished by the electrolyte replenishing means toward the H side end.

〔作用〕[Effect]

この発明における電解質補給手段は、最も電解質の不足
の生じ易い電位的に最も(ト)側の単電池に電解質を補
給することにより、その単電池において電解質の不足が
生じるのが防がれ、さらに上記電解質補給手段によシ供
給された電解質は連結ブリッヂを介して順次H側の単電
池へ輸送され、全ての単電池に電解質が補給される。
The electrolyte replenishment means of the present invention prevents electrolyte shortage from occurring in the unit cell by replenishing electrolyte to the unit cell that is potential-wise closest to (G) where electrolyte shortage is most likely to occur; The electrolyte supplied by the electrolyte replenishing means is sequentially transported to the unit cells on the H side via the connecting bridge, and all the units are replenished with electrolyte.

〔実施例〕〔Example〕

以下1本発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、(16)は積層された複数の単電池(
4)の隣接する電解質層(4)相互をイオン伝導性によ
シミ気的に連結する連結ブリッヂであシ、この実施例で
はガスケット(9)が連結ブリッヂの機能を存している
。(14)は電位的に最も(イ)側に位置する単電池(
4a)に電解質を補給するための電解質補給手段である
。第1図におけるガスケット(9)は例えはジルコニア
粉末中に電解質を含有したものであり、イオン伝導性を
有した連結ブリッヂとして機能する。また電位的に最も
(ト)側に位置する(図中最上部に位置する)単電池(
4a)に隣接した(ト)側端部材(6a)には電解質補
給パイプ(10)が設けられており、也のパイプ(L 
L! 3に電解質を補給することによシ、酸化ガス側電
極(1)を介して電解質層(8)に電解質を補給するこ
とができ、電解質補給手段(14)として機能する。本
発明に特徴的な電解質補給機能を備えた(ト)側端部材
(6a)を第2図に示す。電解質補給パイプ(10)は
端部材(,8a)に設けた補給孔(11)と連なってお
り、酸化ガス流路よシ酸化ガス側電極(2)を介して電
解質層(3)に電解質が補給される。なお、電解質(例
えばLiKCOl)は通常低温域(例えば室温付近)で
は固体であるため、電解質を粉状1粒状にし電解質補給
パイプ(10)に供給し電解質補給パイプ(lO)に振
動を与えたり、または電解質補給パイプ(10)を加熱
し電解質の融点以上に保ち電解質を液化することKより
、更には液化した電解質が重力の作用に従い流下し易い
ように電解質補給パイプ(10)、補給孔(11)に傾
斜をつけるなどの手段により、より容易に電解質の補給
を行うことができる。
In Fig. 1, (16) is a plurality of stacked single cells (
4) is a connecting bridge that connects the adjacent electrolyte layers (4) with each other in an ionically conductive and gaseous manner; in this embodiment, the gasket (9) has the function of the connecting bridge. (14) is the unit cell (
4a) is an electrolyte replenishing means for replenishing electrolyte. The gasket (9) in FIG. 1 is made of, for example, zirconia powder containing an electrolyte, and functions as a connecting bridge with ionic conductivity. Also, the single cell (located at the top in the diagram) located on the (G) side in terms of potential (
An electrolyte replenishment pipe (10) is provided on the (G) side end member (6a) adjacent to 4a).
L! By replenishing electrolyte to 3, the electrolyte can be replenished to the electrolyte layer (8) via the oxidizing gas side electrode (1), and functions as an electrolyte replenishing means (14). (G) A side end member (6a) equipped with an electrolyte replenishment function characteristic of the present invention is shown in FIG. The electrolyte replenishment pipe (10) is connected to the replenishment hole (11) provided in the end member (, 8a), and the electrolyte is supplied to the electrolyte layer (3) through the oxidizing gas flow path and the oxidizing gas side electrode (2). will be replenished. In addition, since the electrolyte (for example, LiKCOl) is usually solid in a low temperature range (for example, near room temperature), the electrolyte may be made into a single powder and supplied to the electrolyte replenishment pipe (10) and vibrated to the electrolyte replenishment pipe (lO). Alternatively, by heating the electrolyte replenishment pipe (10) and keeping it above the melting point of the electrolyte to liquefy the electrolyte, the electrolyte replenishment pipe (10) and replenishment hole (11 ), it is possible to replenish electrolytes more easily.

本発明における電解質補給手段(L4)によシ、電池積
層体において電位的に最も(+側に位置する単電池に補
給された電解質は電池積層体において最も電解質の欠乏
が起こり易い最も(ト)側に位置する単電池において電
解質の欠乏を効果的に防ぎ、従って電解質の欠乏が電位
的KH側に隣接する単電池に伝播することも防ぐ。また
補給された電解質は連結ブリッヂ(16)を介して他の
単電池にも一方順次伝播されるため、長期的には各単電
池に個々に電解質を補給した場合と同様の効果が得られ
る。
According to the electrolyte replenishment means (L4) of the present invention, the electrolyte replenished to the single cell located on the most (+) side in terms of potential in the battery stack is the most (G) where electrolyte deficiency is most likely to occur in the battery stack. It effectively prevents electrolyte depletion in the cells located on the side, and therefore also prevents electrolyte depletion from propagating to the cells adjacent to the potential KH side.The replenished electrolyte is also transferred through the connecting bridge (16). Since the electrolyte is also propagated to other cells one after another, in the long term, the same effect as when replenishing electrolyte to each cell individually can be obtained.

ところで電解質が電解質層(3)よシ消失する主要な要
因として次に示す4つをあげることができる。
By the way, the following four factors can be cited as the main factors that cause the electrolyte to disappear from the electrolyte layer (3).

■ 電解質の蒸発 ■ 電池構成部材との腐食反応による消費■ 間隙への
電解質のしみ出し ■ 局所的な単電池の生成による電気化学的な電解質の
移動 本発明者らは、ti電解質消費量と各消失因子との関係
、各因子の機構などな調べるため寿命試験後の複数の電
池につき電池内部の電解質含有蓋の分布を測定し次に示
す知見を得た。
■ Evaporation of electrolyte ■ Consumption due to corrosive reactions with battery components ■ Seepage of electrolyte into interstices ■ Electrochemical movement of electrolyte due to local cell formation In order to investigate the relationship with the dissipation factors and the mechanism of each factor, we measured the distribution of electrolyte-containing lids inside the batteries for multiple batteries after the life test and obtained the following findings.

■ 単電池試験における電解質消失の主要な原因は局所
的な短絡電池の生成による電解質の輸送である。(例え
ば全消失量のうち50−60%程度が電気化学的な電解
質の輸送による消失である。)■ 電池積層体における
電解質の消失速度は単電池に比し大きい。これはマニホ
ルドのガスケットがイオン導電性な有するため複数の単
電池の電解質層をブリッヂで連結したことと同等となり
■ The main cause of electrolyte loss in single cell tests is electrolyte transport due to the formation of local shorted cells. (For example, about 50-60% of the total loss is due to electrochemical transport of the electrolyte.) ■ The rate of loss of electrolyte in a battery stack is greater than that in a single cell. Since the manifold gasket is ionic conductive, this is equivalent to connecting the electrolyte layers of multiple single cells with a bridge.

単電池に比べよυ多くの短絡電池が形成され、マニホル
ドのガスケットを介して電解質の輸送が行なわれるから
である。
This is because υ more short circuit cells are formed than in single cells, and electrolyte transport takes place through the manifold gasket.

この結果として、電解質の消失に基づく電解質の不足、
電池特性の低下は、電池積層体を構成する複数の単電池
の中で電位的に最も(イ)側の単電池において最初に見
られ、次いで順次その現象がH側に隣接する単電池にも
伝播していく。
This results in electrolyte deficiency due to electrolyte loss;
The deterioration in battery characteristics is first seen in the unit cell that is closest to (A) in terms of potential among the plurality of unit cells that make up the battery stack, and then this phenomenon is sequentially observed in the unit cells adjacent to the H side. It will spread.

この発明は、上記知見をもとに鋭意検討を重ねた結果な
されたものであシ、電解質の輸送に基づく(ト)側端部
の単電池の電解質の欠乏、およびH側に隣接する単電池
への電解質の欠乏の伝播を趙豫的に防ぐことが可能とな
った。
This invention was made as a result of intensive studies based on the above knowledge. It became possible to prevent the spread of electrolyte deficiency to Zhao Yu.

なお、上記実施例では電解質補給手段(14)として、
電解質補給パイプ(1o)と補給孔(11)とを用いて
電解質を補給する通路を形成し電解質を外部よシ補給す
る構造の一例を示したが、これに限定されるものではな
く1例えば電池積層体の内部に当初よシ過剰に電解質な
保持させておき、必要に応じて電解質を燃料電池単体(
4a)に供給するような、電解質リザーバを用いた構造
であっても良い。第8図KW解質リザーバ(12))k
(ト)側端部材(6a)に設けた構造の一例を示す、図
において、多孔構造である電解質保持材(13)に当初
保持された電解質は、電解質層(3)の電解質が欠乏す
るに従い電解質層(3)K移動する。このような電解質
層(3)中の電解質の欠乏に伴い電解質リザーバ(12
)からの電解質の移動は、例えば電解質保持材(13)
の細孔分布を電解質層(3)の細孔分布よりも大きい細
孔にしてやるなどの手法によシ、毛管力を利用すること
により行うことができることは周知のとおりである。な
お、この実施例では電解質リザーバ(12)及び電解質
保持材(11)Kよって電解質補給手段(14)を構成
している。
In addition, in the above embodiment, as the electrolyte replenishment means (14),
Although an example of a structure has been shown in which an electrolyte replenishment pipe (1o) and a replenishment hole (11) are used to form a passage for replenishing electrolyte and the electrolyte is externally replenished, the present invention is not limited to this. Initially, an excessive amount of electrolyte is retained inside the laminate, and if necessary, the electrolyte is added to the fuel cell itself (
4a), a structure using an electrolyte reservoir may also be used. Figure 8 KW solute reservoir (12))k
(G) In the figure showing an example of the structure provided in the side end member (6a), the electrolyte initially retained in the porous electrolyte retaining material (13) gradually decreases as the electrolyte in the electrolyte layer (3) becomes depleted. Electrolyte layer (3) K moves. Due to the lack of electrolyte in the electrolyte layer (3), the electrolyte reservoir (12)
) Transfer of electrolyte from the electrolyte retaining material (13)
It is well known that this can be achieved by making use of capillary force by making the pore distribution of the electrolyte layer (3) larger than that of the electrolyte layer (3). In this embodiment, the electrolyte reservoir (12) and the electrolyte holding material (11) K constitute an electrolyte replenishment means (14).

また、上記実施例では全てガスマニホルド(18)が燃
料電池積層体(5)の側面に保持された外部マニホルド
方式の燃料電池装置においてガスケット(9)が電解質
の連結ブリッヂ(15)として機能する場合について述
べたが、ガスケットを必要としないような内部マニホル
ド方式の燃料電池装置(図示せず)においても電解質の
連結ブリッヂを別途設けることによシ本発明を実施でき
る。
Furthermore, in all of the above embodiments, the gasket (9) functions as an electrolyte connection bridge (15) in an external manifold type fuel cell device in which the gas manifold (18) is held on the side surface of the fuel cell stack (5). However, the present invention can also be implemented in an internal manifold type fuel cell device (not shown) that does not require a gasket by separately providing an electrolyte connection bridge.

また、電位的に最も国側の単電池(4a)に補給された
電解質は連結ブリッヂの機能により最終的には電位的に
最もH側の単電池に輸送されるため、長期的には最もH
側の単電池において電解質が過剰となる。従って本発明
を実施する際には電位的に最もH側の単電池において過
剰となる電解質を吸収するような構造を併せて採用する
ことは望ましい。このことは具体的には最もH側の単電
池において、燃料ガス側電極、酸化ガス側電極の少くと
もいずれか片方の電極に電解質を吸収保持する電解質リ
ザーバを設けてやったシ、または(@側端部材に上記電
解質リザーバを設けることにより容易に達成できる。
In addition, the electrolyte supplied to the unit cell (4a) that is closest to the country in terms of potential is ultimately transported to the unit cell that is closest to the H side in terms of potential due to the function of the connecting bridge.
Electrolyte becomes excessive in the cell on the side. Therefore, when carrying out the present invention, it is desirable to also employ a structure that absorbs excess electrolyte in the unit cell that is most H in potential. Specifically, this can be achieved by providing an electrolyte reservoir that absorbs and retains electrolyte in at least one of the fuel gas side electrode and oxidizing gas side electrode in the unit cell closest to the H side, or (@ This can be easily achieved by providing the electrolyte reservoir in the side end member.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、燃料電池積する電解
質補給手段を設け、且つ補給された電解質が隣接するH
側の単電池に順次輸送されるようにイオン伝導性を有し
た連結ブリッヂを設けたので、簡単な構造で且つ容易に
効果的に電解質の補給な行なうことかでき、長期に亘り
良好な特性が維持できる燃料電池装置を得ることができ
る。
As described above, according to the present invention, an electrolyte replenishment means is provided in a fuel cell, and the replenished electrolyte is supplied to an adjacent H
Since a connecting bridge with ion conductivity is provided so that the electrolyte is sequentially transported to the side cells, the electrolyte can be replenished easily and effectively with a simple structure, and has good characteristics over a long period of time. A fuel cell device that can be maintained can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による燃料電池装置の要部
な一方切欠いて示す斜視図、第2図は第1図に示す(ホ
)側端部材の詳細を示す斜視図、第3図はこの発明の他
の実施例の要部を示す斜視図、第4図は従来の燃料電池
装置の安部を一方切欠いて示す斜視図、第5図は従来の
電解質補給手段の一列を示す斜視図、第6図は単電池に
おいて電解質の補給が電池特性に及ぼす影響を調べた寿
命試験結果を示す特性図である。 図において、(1)は酸化ガス側電極、(2)は燃料ガ
ス側電極、(3)は電解質層、(4)は燃料電池単体(
単電池)、(5)は積層体、(6a)は…側端部材、(
6b)はH側端部材、(7)はセパレータ部材、  (
14)は電解質補給手段、(15)は連結ブリッヂであ
る。 なお、図中、同一符号は同一、又は相当部分を示す。 菖1図 兇2図 売3図 a 搗50
FIG. 1 is a perspective view showing a main part of a fuel cell device according to an embodiment of the present invention with one cut away; FIG. 2 is a perspective view showing details of the (e) side end member shown in FIG. 1; FIG. 4 is a perspective view showing a main part of another embodiment of the present invention, FIG. 4 is a perspective view showing a conventional fuel cell device with one side cut away, and FIG. 5 is a perspective view showing a row of conventional electrolyte replenishment means. , FIG. 6 is a characteristic diagram showing the results of a life test in which the influence of electrolyte replenishment on battery characteristics in single cells was investigated. In the figure, (1) is the oxidizing gas side electrode, (2) is the fuel gas side electrode, (3) is the electrolyte layer, and (4) is the single fuel cell (
unit cell), (5) is a laminate, (6a) is... side end member, (
6b) is the H side end member, (7) is the separator member, (
14) is an electrolyte replenishment means, and (15) is a connecting bridge. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Iris 1 pcs 2 pcs 3 pcs a Pumpkin 50

Claims (7)

【特許請求の範囲】[Claims] (1)電解質層と、この電解質層の一方の側に設けられ
た酸化ガス側電極と、上記電解質層の他方の側に設けら
れた燃料ガス側電極とを有する燃料電池単体をセパレー
タ部材を介して積層した積層体、この積層体の積層方向
の(+)側端部および(−)側端部にそれぞれ設けられ
た(+)側端部材および(−)側端部材、上記積層体を
構成する各燃料電池単体にガスマニホルドを介して酸化
ガスを供給する手段、上記積層体を構成する各燃料電池
単体にガスマニホルドを介して燃料ガスを供給する手段
、上記積層体の(+)側端部に位置する燃料電池単体に
電解質を補給するように設けられた電解質補給手段、隣
接する燃料電池単体の電解質相互を連結し、上記電解質
補給手段によつて補給された電解質を(−)側端部に向
けて輸送し得るイオン伝導性を有する連結ブリッジを備
えたことを特徴とする燃料電池装置。
(1) A single fuel cell having an electrolyte layer, an oxidizing gas side electrode provided on one side of the electrolyte layer, and a fuel gas side electrode provided on the other side of the electrolyte layer is connected via a separator member. A (+) side end member and a (-) side end member provided at the (+) side end and (-) side end of this laminate, respectively, in the stacking direction of the laminate, forming the above laminate. means for supplying oxidizing gas to each individual fuel cell through a gas manifold; means for supplying fuel gas to each individual fuel cell constituting the stacked body via the gas manifold; and (+) side end of the stacked body. An electrolyte replenishment means provided to replenish electrolyte to a single fuel cell located in the section connects the electrolytes of adjacent fuel cells to each other, and supplies the electrolyte replenished by the electrolyte replenishment means to the (-) side end. 1. A fuel cell device comprising a connecting bridge having ion conductivity capable of transporting ions to a certain point.
(2)連結ブリッジは、燃料電池単体の電解質層に含ま
れる電解質と同種の電解質を保持することによりイオン
伝導性を有していることを特徴とする特許請求の範囲第
1項記載の燃料電池装置。
(2) The fuel cell according to claim 1, wherein the connecting bridge has ionic conductivity by holding the same type of electrolyte as that contained in the electrolyte layer of the single fuel cell. Device.
(3)ガスマニホルドの少くとも1つは、外部マニホル
ド構造であり、この外部マニホルド構造のガスマニホル
ドと燃料電池積層体の側面との間に挾まれたガスケット
が連結ブリツヂとして機能することを特徴とする特許請
求の範囲第1項または第2項記載の燃料電池装置。
(3) At least one of the gas manifolds has an external manifold structure, and a gasket interposed between the gas manifold of the external manifold structure and the side surface of the fuel cell stack functions as a connecting bridge. A fuel cell device according to claim 1 or 2.
(4)電解質補給手段は、(+)側端部材の内部に設け
られた電解質リザーバであることを特徴とする特許請求
の範囲第1項ないし第3項の何れかに記載の燃料電池装
置。
(4) The fuel cell device according to any one of claims 1 to 3, wherein the electrolyte replenishment means is an electrolyte reservoir provided inside the (+) side end member.
(5)電解質補給手段は、(+)側端部材に設けられた
電解質を補給するための通路を備えたものであることを
特徴とする特許請求の範囲第1項ないし第3項の何れか
に記載の燃料電池装置。
(5) Any one of claims 1 to 3, wherein the electrolyte replenishment means includes a passage provided in the (+) side end member for replenishing the electrolyte. The fuel cell device described in .
(6)電解質補給手段は、電位的に最も(+)側である
燃料電池単体の燃料ガス側電極および酸化ガス側電極の
少くとも一方に設けられた電解質リザーバであることを
特徴とする特許請求の範囲第1項ないし第3項の何れか
に記載の燃料電池装置。
(6) A patent claim characterized in that the electrolyte replenishment means is an electrolyte reservoir provided at at least one of the fuel gas side electrode and the oxidizing gas side electrode of the single fuel cell, which are the most (+) side in terms of potential. The fuel cell device according to any one of items 1 to 3 of the range.
(7)連結ブリッヂにより連結された複数の燃料電池単
体のなかで電位的に最も(−)側である燃料電池単体、
またはH側端部材は、余剰の電解質を収蔵する機能を有
した電解質リザーバを備えたことを特徴とする特許請求
の範囲第1項ないし第6項の何れかに記載の燃料電池装
置。
(7) A single fuel cell that is the most (-) side in terms of potential among a plurality of single fuel cells connected by a connecting bridge;
The fuel cell device according to any one of claims 1 to 6, wherein the H-side end member includes an electrolyte reservoir having a function of storing surplus electrolyte.
JP62277496A 1987-11-04 1987-11-04 Fuel cell device and electrolyte replenishing method therefor Expired - Lifetime JP2792626B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62277496A JP2792626B2 (en) 1987-11-04 1987-11-04 Fuel cell device and electrolyte replenishing method therefor
US07/265,815 US4898793A (en) 1987-11-04 1988-11-01 Fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62277496A JP2792626B2 (en) 1987-11-04 1987-11-04 Fuel cell device and electrolyte replenishing method therefor

Publications (2)

Publication Number Publication Date
JPH01120772A true JPH01120772A (en) 1989-05-12
JP2792626B2 JP2792626B2 (en) 1998-09-03

Family

ID=17584407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62277496A Expired - Lifetime JP2792626B2 (en) 1987-11-04 1987-11-04 Fuel cell device and electrolyte replenishing method therefor

Country Status (1)

Country Link
JP (1) JP2792626B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093358A1 (en) * 2000-05-26 2001-12-06 Mtu Friedrichshafen Gmbh Fuel-cell assembly comprising an electrolyte reservoir

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217958A (en) * 1983-05-25 1984-12-08 Fuji Electric Corp Res & Dev Ltd Device for supplying electrolyte for matrix-type fuel cell
JPS6098265U (en) * 1983-12-12 1985-07-04 三菱電機株式会社 stacked fuel cell
JPS62180966A (en) * 1986-02-03 1987-08-08 Ishikawajima Harima Heavy Ind Co Ltd Impregnation method for liquefied electrolyte in fuel cell
JPS6484577A (en) * 1987-09-28 1989-03-29 Hitachi Ltd Fuel cell
JPS6489150A (en) * 1987-09-30 1989-04-03 Hitachi Ltd Molten carbonate fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217958A (en) * 1983-05-25 1984-12-08 Fuji Electric Corp Res & Dev Ltd Device for supplying electrolyte for matrix-type fuel cell
JPS6098265U (en) * 1983-12-12 1985-07-04 三菱電機株式会社 stacked fuel cell
JPS62180966A (en) * 1986-02-03 1987-08-08 Ishikawajima Harima Heavy Ind Co Ltd Impregnation method for liquefied electrolyte in fuel cell
JPS6484577A (en) * 1987-09-28 1989-03-29 Hitachi Ltd Fuel cell
JPS6489150A (en) * 1987-09-30 1989-04-03 Hitachi Ltd Molten carbonate fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093358A1 (en) * 2000-05-26 2001-12-06 Mtu Friedrichshafen Gmbh Fuel-cell assembly comprising an electrolyte reservoir

Also Published As

Publication number Publication date
JP2792626B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
US5998056A (en) Anode substrate for a high temperature fuel cell
CA1257325A (en) Lightweight bipolar metal-gas battery
JPS6130385B2 (en)
JP2008546142A (en) Carbonate fuel cell and its components to add electrolyte late in situ
JPS59146171A (en) Zinc-bromine secondary battery
FR2358028A1 (en) ZINC-OXYGEN ELECTROCHEMICAL CELL
US4467019A (en) Fuel cell with electrolyte feed system
JP2009516325A (en) Lithium secondary battery having compartmented electrolyte
US20140045080A1 (en) Controlling the Location of Product Distribution and Removal in a Metal/Oxygen Cell
US4614025A (en) Method for making a lightweight bipolar metal-gas battery
US9929452B2 (en) Energy conversion cell having an electrochemical conversion unit
JPS61216248A (en) Fuel cell
US3350225A (en) Rechargeable sealed secondary battery
JPH01120772A (en) Fuel cell system
CN109802172A (en) Utilize the blocky solid state battery of ion-electron mixed conductor
JP7248776B2 (en) secondary battery
JP2024013791A (en) Electrochemical cell device, module, and module storage device
JP4025687B2 (en) Fuel cell and fuel cell
JP2612781B2 (en) Fuel cell
US4898793A (en) Fuel cell device
US9166218B2 (en) Electrolyte replenishing system and method
JP7208366B2 (en) Secondary battery system
JP2002280052A (en) Structure to uniformly apply load on each power generating cell of fuel cell
WO2020091013A1 (en) Secondary battery
JPH0145945B2 (en)