JPH01120738A - Microwave ion source - Google Patents

Microwave ion source

Info

Publication number
JPH01120738A
JPH01120738A JP27874587A JP27874587A JPH01120738A JP H01120738 A JPH01120738 A JP H01120738A JP 27874587 A JP27874587 A JP 27874587A JP 27874587 A JP27874587 A JP 27874587A JP H01120738 A JPH01120738 A JP H01120738A
Authority
JP
Japan
Prior art keywords
heat
resistant insulating
insulating plate
microwave
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27874587A
Other languages
Japanese (ja)
Inventor
Hiroshi Inemi
宏 稲実
Koji Matsunaga
幸二 松永
Yoshitaka Sasamura
義孝 笹村
Koji Matsuda
松田 耕自
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP27874587A priority Critical patent/JPH01120738A/en
Publication of JPH01120738A publication Critical patent/JPH01120738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent the damage or the like by high-energy electrons on the first heat-resistant insulating plate with the second heat-resistant insulating plate by vacuum-sealing a microwave guide port with the first heat-resistant insulating plate and covering the microwave guide port portion with the second heat-resistant insulating plate. CONSTITUTION:The microwave guide port 6 of a plasma generating container 2 is vacuum-sealed with the first heat-resistant insulating plate 14, a stepped section 28 is provided from the outside around the microwave guide port 6 of the plasma generating container 2, and the second heat-resistant insulating plate 30 is inserted into it to cover the portion of at least the microwave guide port 6 at the face of the heat-resistant insulating plate 14 inside the plasma generating container 2. High-energy electrons generated in the plasma generating container are prevented from bombarding the vacuum-sealing first heat-resistant insulating plate 14 by the second heat-resistant insulating plate 30, and the damage or the like by high-energy electrons on the first heat-resistant insulating plate 1 is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えばイオンビームエツチング、イオンビ
ームスパッタリング、イオンビームデポジション等に用
いられるものであって、プラズマ生成容器内にマイクロ
波を導入してマイクロ波放電によってプラズマを発生さ
せるマイクロ波イオン源に関し、特に当該プラズマ生成
容器内にマイクロ波を導入する部分の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is used, for example, in ion beam etching, ion beam sputtering, ion beam deposition, etc. The present invention relates to a microwave ion source that generates plasma by microwave discharge, and particularly relates to improvements in the part that introduces microwaves into the plasma generation container.

〔従来の技術〕[Conventional technology]

第3図は、従来のマイクロ波イオン源の一例を示す断面
図である。
FIG. 3 is a cross-sectional view showing an example of a conventional microwave ion source.

このマイクロ波イオン源は、例えばECR型イオン源で
あり、プラズマ生成容器2内にガス導入口8からガス2
0を導入すると共に、磁場コイルlOによってプラズマ
生成容器2内にイオンビーム26引出し軸方向に磁場を
発生させ、かつプラズマ生成容器2内にマイクロ波導入
口6を通して導波管16からのマイクロ波18を導入す
ることによって、プラズマ生成容器2内にマイクロ波放
電を起こさせてプラズマ22を発生させる。このとき、
ECR型イオン源の場合は、電子サイクロトロン共鳴を
利用する。そしてこのプラズマ22から、プラズマ生成
容器2のイオン引出し口4の近傍に設けた引出し電極系
24によって電界の作用でイオンビーム26を引き出す
This microwave ion source is, for example, an ECR type ion source, and a gas 2 is introduced into the plasma generation container 2 from a gas inlet 8.
At the same time, a magnetic field is generated in the direction of the extraction axis of the ion beam 26 in the plasma generation container 2 by the magnetic field coil IO, and the microwave 18 from the waveguide 16 is introduced into the plasma generation container 2 through the microwave inlet 6. By introducing it, microwave discharge is caused in the plasma generation container 2 and plasma 22 is generated. At this time,
In the case of an ECR type ion source, electron cyclotron resonance is used. Then, an ion beam 26 is extracted from this plasma 22 by the action of an electric field by an extraction electrode system 24 provided near the ion extraction port 4 of the plasma generation container 2.

その場合、プラズマ生成容器2内は通常は高真空(例え
ばECR型の場合は10−5〜10−’T o r r
程度)に真空排気され、一方導波管16は大気側にある
ため、プラズマ生成容器2のマイクロ波導入口6を、マ
イクロ波18の導入に支障の無い例えばセラミンク板の
ような耐熱性絶縁板14および0リング12を用いて真
空シールしている。
In that case, the inside of the plasma generation vessel 2 is usually in a high vacuum (for example, in the case of an ECR type, 10-5 to 10-' Torr
On the other hand, since the waveguide 16 is located on the atmosphere side, the microwave inlet 6 of the plasma generation container 2 is connected to a heat-resistant insulating plate 14 such as a ceramic board that does not interfere with the introduction of the microwave 18. and an O-ring 12 for vacuum sealing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが上記のようなマイクロ波イオン源においては、
イオンビーム26の引出しの際にプラズマ22中の高エ
ネルギー電子が磁場コイル10による磁力線に沿ってマ
イクロ波供給側へ進行してマイクロ波導入口6部分の耐
熱性絶縁板14の表面に衝突し、それによって当該耐熱
性絶縁板14がtr4傷を受け、主に当該電子による局
部的加熱によって熱歪が生じてそれが破損するという問
題が起こる。そのようなことが起これば、当該耐熱性絶
縁板14から真空リークが起こり、プラズマ生成容器2
内はもはや真空が維持できなくなり、当該イオン源の動
作は不可能になる。
However, in the microwave ion source as mentioned above,
When the ion beam 26 is extracted, the high-energy electrons in the plasma 22 travel along the magnetic field lines of the magnetic field coil 10 toward the microwave supply side and collide with the surface of the heat-resistant insulating plate 14 at the microwave inlet 6 portion. This causes a problem in that the heat-resistant insulating plate 14 is damaged by tr4 damage, and thermal strain occurs mainly due to localized heating by the electrons, resulting in damage. If such a thing occurs, a vacuum leak will occur from the heat-resistant insulating plate 14, and the plasma generation vessel 2 will be damaged.
A vacuum can no longer be maintained inside, and the ion source becomes inoperable.

そこでこの発明は、このような点を改良したマイクロ波
イオン源を提供することを目的とする。
Therefore, it is an object of the present invention to provide a microwave ion source that is improved in these respects.

〔問題点を解決するための手段〕[Means for solving problems]

この発明のマイクロ波イオン源は、プラズマ生成容器に
設けたマイクロ波導入口を第1の耐熱性絶縁板を用いて
真空シールすると共に、当該耐熱性絶縁板のプラズマ生
成容器内側の面であって少なくともマイクロ波導入口部
分を第2の耐熱性絶縁板で覆っていることを特徴とする
In the microwave ion source of the present invention, a microwave inlet provided in a plasma generation container is vacuum-sealed using a first heat-resistant insulating plate, and at least It is characterized in that the microwave inlet portion is covered with a second heat-resistant insulating plate.

〔作用〕[Effect]

上記構成によれば、第2の耐熱性絶縁板によって、プラ
ズマ生成容器内で発生した高エネルギー電子が真空シー
ル用の第1の耐熱性絶縁板に衝突するのが阻止され、そ
れによって高エネルギー電子による当該第1の耐熱性絶
縁板の破損等が防止される。その場合、高エネルギー電
子の衝突によって第2の耐熱性絶縁板が破損するような
ことが起こったとしても、マイクロ波導入口の真空シー
ル作用は第1の耐熱性絶縁板によって維持されているた
め、当該イオン源の動作に支障は生じない。
According to the above configuration, the second heat-resistant insulating plate prevents high-energy electrons generated within the plasma generation container from colliding with the first heat-resistant insulating plate for vacuum sealing, thereby preventing the high-energy electrons from colliding with the first heat-resistant insulating plate for vacuum sealing. This prevents damage to the first heat-resistant insulating plate due to In that case, even if the second heat-resistant insulating plate is damaged by collision with high-energy electrons, the vacuum sealing effect of the microwave inlet is maintained by the first heat-resistant insulating plate. There is no problem in the operation of the ion source.

その結果、当該イオン源の長時間運転が可能になる。As a result, the ion source can be operated for a long time.

〔実施例〕〔Example〕

第1図は、この発明の一実施例に係るマイクロ波イオン
源を示す断面図である。第3図の例と同一または相当す
る部分には同一符号を付し、以下においてはそれとの相
違点を主に説明する。
FIG. 1 is a sectional view showing a microwave ion source according to an embodiment of the present invention. The same reference numerals are given to the same or corresponding parts as in the example of FIG. 3, and the differences therefrom will be mainly explained below.

この実施例においては、プラズマ生成容器2のマイクロ
波導入口6を第1の前述したような耐熱性絶縁板14を
用いて真空シールすると共に、当該プラズマ生成容器2
のマイクロ波導入口6の周囲に外側から段落し部28を
設けてその中に第2の耐熱性絶縁板30を嵌め込み、そ
れによって耐熱性絶縁板14のプラズマ生成容器2内例
の面であって少なくともマイクロ波導入口6の部分を覆
うようにしている。
In this embodiment, the microwave inlet 6 of the plasma generation vessel 2 is vacuum-sealed using the first heat-resistant insulating plate 14 as described above, and the plasma generation vessel 2 is
A stepped portion 28 is provided from the outside around the microwave inlet 6, and the second heat-resistant insulating plate 30 is fitted into the stepped portion 28, whereby the surface of the heat-resistant insulating plate 14 inside the plasma generation container 2 is At least a portion of the microwave inlet 6 is covered.

両市熱性絶縁板14.30は、耐熱性が大きく、しかも
マイクロ波18の吸収を抑えるために誘電率が小さいも
のが好ましく、従ってこれらには例えばアルミナのよう
なセラミック板や石英板等を用いるのが好ましい。
It is preferable that the thermal insulating plates 14.30 have high heat resistance and low dielectric constant in order to suppress the absorption of microwaves 18. Therefore, it is preferable to use ceramic plates such as alumina, quartz plates, etc. for these. is preferred.

上記構成によれば、導波管16からのマイクロ波18を
両市熱性絶縁板14.30を通して支障無くプラズマ生
成容器2内へ導入することができる。
According to the above configuration, the microwave 18 from the waveguide 16 can be introduced into the plasma generation container 2 through the two heat insulating plates 14 and 30 without any trouble.

しかも、プラズマ生成容器2内で発生して磁場コイルl
Oによる磁力線に沿ってマイクロ波供給側へ進行する高
エネルギー電子が真空シール用の耐熱性絶縁板14に衝
突するのを、耐熱性絶縁板30によって阻止することが
できる。従って当該高エネルギー電子による耐熱性絶縁
板14のt4傷や破損は起こらない。
Moreover, the magnetic field coil l generated in the plasma generation container 2
The heat-resistant insulating plate 30 can prevent high-energy electrons traveling toward the microwave supply side along the magnetic field lines caused by O from colliding with the heat-resistant insulating plate 14 for vacuum sealing. Therefore, t4 damage or damage to the heat-resistant insulating plate 14 due to the high-energy electrons does not occur.

もっとも、耐熱性絶縁板30は、高エネルギー電子の衝
突によって損傷を受け、当該電子による局部的加熱によ
る熱歪によって破損する(クランクが入る)場合もある
が、そのようなことが起こったとしても、マイクロ波導
入口6の真空シール作用は耐熱性絶縁板14によって維
持されているため、従来のような真空リークは発生せず
、従って当該イオン源の動作に支障は生じない。それゆ
え、当該イオン源を長時間に亘り安定して動作させるこ
とができるようになる。
However, the heat-resistant insulating plate 30 may be damaged by collisions with high-energy electrons, and may also be damaged (cranked) due to thermal distortion caused by localized heating by the electrons, but even if such an event occurs, Since the vacuum sealing effect of the microwave inlet 6 is maintained by the heat-resistant insulating plate 14, vacuum leaks as in the conventional case do not occur, and therefore the operation of the ion source is not hindered. Therefore, the ion source can be stably operated for a long period of time.

尚、上記耐熱性絶縁板30は、例えば第2図に示すよう
な2枚重ね、あるいはそれ以上の複数枚重ねにしても良
く、そのようにすれば1枚の場合に比べてより長時間の
運転に耐えることができるようになる。これは、高エネ
ルギー電子の耐熱性絶縁板30への進入深さは当該耐熱
性絶縁板30の厚さに比べて著しく小さく、主に当該電
子による局部的加熱による熱歪によって当該耐熱性絶縁
板30にクラックが入るようなことが起こるが、そのク
ラックは隣接する耐熱性絶縁板30までは進行しないの
で、厚みの薄い耐熱性絶縁板30を複数枚重ねた方が全
体の寿命が長くなるからである。
Note that the heat-resistant insulating board 30 may be stacked, for example, in two layers as shown in FIG. 2, or in a plurality of layers. Be able to withstand driving. This is because the penetration depth of high-energy electrons into the heat-resistant insulating plate 30 is extremely small compared to the thickness of the heat-resistant insulating plate 30, and the heat-resistant insulating plate is mainly affected by thermal strain caused by local heating by the electrons. 30 may develop a crack, but the crack will not propagate to the adjacent heat-resistant insulating board 30, so stacking multiple thin heat-resistant insulating boards 30 will extend the overall lifespan. It is.

また、上記耐熱性絶縁板30の取付は方は、前述したよ
うにマイクロ波導入口6の周囲に段落し部28を設けて
そこに嵌め込むのが簡単で良いが、その他の手段によっ
ても良いのは勿論である。
Further, the heat-resistant insulating plate 30 can be easily attached by providing a stepped portion 28 around the microwave inlet 6 and fitting it there as described above, but other methods may also be used. Of course.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、マイクロ波導入口の真
空シール用の第1の耐熱性絶縁板が高エネルギー電子に
よって損傷を受けたり破損したりするのを、第2の耐熱
性絶縁板によって防止することができる。その結果、当
該イオン源の長時間運転が可能になる。
As described above, according to the present invention, the second heat-resistant insulating plate prevents the first heat-resistant insulating plate for vacuum sealing the microwave inlet from being damaged or broken by high-energy electrons. can do. As a result, the ion source can be operated for a long time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例に係るマイクロ波イオン
源を示す断面図である。第2図は、この発明の他の実施
例に係るマイクロ波イオン源を部分的に示す断面図であ
る。第3図は、従来のマイクロ波イオン源の一例を示す
断面図である。 2・・・プラズマ生成容器、6・・・マイクロ波導入口
、14・・・第1の耐熱性絶縁板、16・・・導波管、
18・・・マイクロ波、22・・・プラズマ、30・・
・第2の耐熱性絶縁板。
FIG. 1 is a sectional view showing a microwave ion source according to an embodiment of the present invention. FIG. 2 is a sectional view partially showing a microwave ion source according to another embodiment of the invention. FIG. 3 is a cross-sectional view showing an example of a conventional microwave ion source. 2... Plasma generation container, 6... Microwave inlet, 14... First heat-resistant insulating plate, 16... Waveguide,
18...Microwave, 22...Plasma, 30...
-Second heat-resistant insulating board.

Claims (1)

【特許請求の範囲】[Claims] (1)プラズマ生成容器内にマイクロ波を導入してマイ
クロ波放電によってプラズマを発生させるマイクロ波イ
オン源において、プラズマ生成容器に設けたマイクロ波
導入口を第1の耐熱性絶縁板を用いて真空シールすると
共に、当該耐熱性絶縁板のプラズマ生成容器内側の面で
あって少なくともマイクロ波導入口部分を第2の耐熱性
絶縁板で覆っていることを特徴とするマイクロ波イオン
源。
(1) In a microwave ion source that introduces microwaves into a plasma generation container and generates plasma by microwave discharge, the microwave inlet provided in the plasma generation container is vacuum-sealed using a first heat-resistant insulating plate. A microwave ion source characterized in that the heat-resistant insulating plate has a second heat-resistant insulating plate covering at least a portion of the microwave inlet, which is a surface of the heat-resistant insulating plate inside the plasma generation container.
JP27874587A 1987-11-04 1987-11-04 Microwave ion source Pending JPH01120738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27874587A JPH01120738A (en) 1987-11-04 1987-11-04 Microwave ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27874587A JPH01120738A (en) 1987-11-04 1987-11-04 Microwave ion source

Publications (1)

Publication Number Publication Date
JPH01120738A true JPH01120738A (en) 1989-05-12

Family

ID=17601611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27874587A Pending JPH01120738A (en) 1987-11-04 1987-11-04 Microwave ion source

Country Status (1)

Country Link
JP (1) JPH01120738A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60264032A (en) * 1984-06-11 1985-12-27 Nippon Telegr & Teleph Corp <Ntt> Microwave ion source
JPS6443950A (en) * 1987-08-10 1989-02-16 Nippon Telegraph & Telephone Microwave ion source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60264032A (en) * 1984-06-11 1985-12-27 Nippon Telegr & Teleph Corp <Ntt> Microwave ion source
JPS6443950A (en) * 1987-08-10 1989-02-16 Nippon Telegraph & Telephone Microwave ion source

Similar Documents

Publication Publication Date Title
KR920002864B1 (en) Apparatus for treating matrial by using plasma
JPS60264032A (en) Microwave ion source
EP0148504B2 (en) Method and apparatus for sputtering
JP4878782B2 (en) Plasma processing apparatus and plasma processing method
EP0217361A2 (en) Ion source
JP3714924B2 (en) Plasma processing equipment
JPH0740566B2 (en) Plasma processing method and apparatus
JP2012138411A (en) Plasma processing apparatus
JPH01120738A (en) Microwave ion source
US20040168631A1 (en) Plasma processing apparatus having protection members
JP2000133497A (en) High-frequency discharge type plasma generation device
JP2522661B2 (en) Microwave ion source
JPH08315998A (en) Microwave plasma treatment device
JP2001042099A (en) High-frequency negative ion source
JP3080471B2 (en) Microwave plasma generator
JP4199864B2 (en) Plasma processing equipment
JPH02132798A (en) Plasma generating equipment and ion source using it
JP2005290442A (en) Ecr sputtering system
JPH05283194A (en) Microwave plasma generator
JPH04276067A (en) Metal plasma source
JP2000021599A (en) Plasma generation device
JPH11106929A (en) Plasma treatment system
JPH0375364A (en) Reactive sputtering device
JPH04192325A (en) Microwave plasma processing equipment and cleaning method of microwave introducing window
JPS63221622A (en) Dry-type thin film processing equipment