JPS63221622A - Dry-type thin film processing equipment - Google Patents

Dry-type thin film processing equipment

Info

Publication number
JPS63221622A
JPS63221622A JP5503087A JP5503087A JPS63221622A JP S63221622 A JPS63221622 A JP S63221622A JP 5503087 A JP5503087 A JP 5503087A JP 5503087 A JP5503087 A JP 5503087A JP S63221622 A JPS63221622 A JP S63221622A
Authority
JP
Japan
Prior art keywords
generation chamber
plasma generation
waveguide
vacuum window
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5503087A
Other languages
Japanese (ja)
Other versions
JPH0620058B2 (en
Inventor
Masahiko Toki
雅彦 土岐
Kiyoshi Oiwa
大岩 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fujitsu Ltd
Original Assignee
Fuji Electric Co Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fujitsu Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5503087A priority Critical patent/JPH0620058B2/en
Publication of JPS63221622A publication Critical patent/JPS63221622A/en
Publication of JPH0620058B2 publication Critical patent/JPH0620058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To facilitate processing of a thin film highly efficiently by a method wherein one end surface of a plasma generating chamber which is coupled with a waveguide with a vacuum window between is so constructed as to be cooled with coolant and the heat created in the vacuum window by the transmission of microwave is led out to the end surface of the plasma generating chamber. CONSTITUTION:The end surface 3b of a plasma generating chamber 3 is so formed as to have a flat hollow ring shape and cooling water is supplied into the hollow part and drained out through a drain pipe 5e to keep the temperature of the top surface of the end surface 3b always low. A vacuum window has a double-window structure composed of two dielectric plates 2A and 2B. Even if the window 2A on the plasma generating chamber side is broken, a sudden application of atmospheric pressure load can be avoided and the leakage of the gas from the plasma generating chamber can be avoided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、マイクロ波プラズマを利用したドライエツ
チングおよびCV D  (Chemlcal Vap
ourDepoaitlon、ガス状物質が反応して基
板上に固体を析出する反応)による成膜が可能な薄膜加
工装置でありで、マイクロ波を発生する手段と、このマ
イクロ波を伝達する導波管と、筒状に形成され前記導波
管と板状の導電体からなる真空窓を介して該筒の一方の
端面で結合され該真空窓を介してマイクロ波が導入され
るとともにガス供給手段を介して送入されたガスを前記
マイクロ波との共鳴効果によりプラズマ化して活性な原
子1分子またはイオンを生ずる磁力線を発生する励磁ソ
レノイドを備えかつ軸線が該ソレノイドが生ずる磁力線
束の中心軸と一致する開口を他方の端面に有するプラズ
マ生成室と、前記開口を介して前記プラズマ生成室と結
合され該開口から前記磁力線束に沿って流出する前記活
性な原子1分子またはイオンにより表面にエツチングが
施されまたは薄膜が形成される基板が配される処理室と
、前記プラズマ生成室と処理室と・の排気を行なう排気
手段とを備えたものに関゛する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to dry etching using microwave plasma and chemical vapor vapor deposition (CVD).
This is a thin film processing device capable of forming a film by a reaction in which a gaseous substance reacts to deposit a solid on a substrate, and includes a means for generating microwaves, a waveguide for transmitting the microwaves, The waveguide is formed in a cylindrical shape and is connected to the waveguide at one end surface of the cylinder through a vacuum window made of a plate-like conductor, and the microwave is introduced through the vacuum window and is also connected to the waveguide through a gas supply means. An opening comprising an excitation solenoid that generates magnetic lines of force that generate a single active atom molecule or ion by turning the introduced gas into plasma due to the resonance effect with the microwave, and whose axis coincides with the central axis of the flux of magnetic lines of force generated by the solenoid. a plasma generation chamber having a plasma generation chamber on the other end surface, and the surface is etched by the active atom molecule or ion coupled to the plasma generation chamber through the opening and flowing out from the opening along the magnetic flux, or The present invention relates to a device comprising a processing chamber in which a substrate on which a thin film is to be formed is disposed, and an exhaust means for evacuating the plasma generation chamber and the processing chamber.

〔従来の技術〕[Conventional technology]

この発明の属する技術分野において、最近ECRプラズ
マを用いたプロセス技術が注目されている11ECRと
はElectron Cyclotron Reaoa
ancv(電子サイクロトロン共鳴)の略号であり、磁
場とマイクロ波との共鳴効果を用いて電子を加速し、こ
の電子の運動エネルギを用いてガスを電離せしめプラズ
マを得るものである。マイクロ波に励振された電子は磁
力線のまわりを円運動し、その際、遠心力とローレンツ
力とがバランスする条件がECR条件と呼ばれる。遠心
力をsrω−ローレンツ力を−qrωBで表わすと、こ
れらがバランスする条件はω/ B = q / mで
ある。ここでωはマイクロ波の月速度、Bは磁束密度、
q/mは電子の比電荷である。マイクロ波周波数は工業
用に認められている2)45GHzが一般に用いられ、
その場合0.0875Tが共鳴磁束密度である。
In the technical field to which this invention pertains, process technology using ECR plasma has recently been attracting attention.11ECR is Electron Cyclotron Reaoa.
ancv (electron cyclotron resonance), which accelerates electrons using the resonance effect of a magnetic field and microwaves, and uses the kinetic energy of the electrons to ionize gas to obtain plasma. Electrons excited by microwaves move circularly around magnetic lines of force, and the condition where centrifugal force and Lorentz force are balanced is called the ECR condition. When the centrifugal force is expressed as srω and the Lorentz force is expressed as -qrωB, the condition for their balance is ω/B = q/m. Here, ω is the lunar velocity of the microwave, B is the magnetic flux density,
q/m is the specific charge of the electron. The microwave frequency generally used is 2) 45 GHz, which is approved for industrial use.
In that case, 0.0875T is the resonant magnetic flux density.

ECRプラズマを応用した薄膜加工装置として例えば第
2図に示す方法が知られている。この装置ではプラズマ
生成室3.処理室9を図示しない排気手段により真空排
気しておき、ガス供給手段としての原料ガス導入管路4
からN、ガスをプラズマ生成室3へ流したところへ、マ
イクロ波をその伝達手段である導波管lと、板状の誘電
体からなり大気圧下にあろ導波管側と真空排気されたプ
ラズマ生成室3内とを気密に隔離するための真空窓2と
を介してプラズマ生成室へ送り込む、プラズマ生成室3
の下部には中心に大口径の孔7を待9た金属板17が取
り付けられており、この金属板とプラズマ生成室3とで
半開放のマイクロ波共振器を構成゛している。この共振
器の外部には励磁ソレノイド6が配置され、共振器内に
ECR条件を満たす磁場が発生しているため、共振器内
にECRプラズマが発生する。このプラズマが処理室9
内へ押し出され、試料台10へ向かう空間内にガス人口
12からシランガス(SiH*)を送りこんで、このガ
スを上記プラズマにより活性化すると、発生した活性種
が被加工試料である基板11と反応して基板表面に薄膜
が形成される。
For example, a method shown in FIG. 2 is known as a thin film processing apparatus that applies ECR plasma. In this device, plasma generation chamber 3. The processing chamber 9 is evacuated by an evacuation means (not shown), and the raw material gas introduction pipe 4 is used as a gas supply means.
From there, the gas was flowed into the plasma generation chamber 3, where the microwave was transferred to the waveguide 1, which was a means of transmitting the microwave, and the waveguide side, which was made of a plate-shaped dielectric material and was under atmospheric pressure, was evacuated. The plasma generation chamber 3 is fed into the plasma generation chamber via a vacuum window 2 for airtightly isolating the inside of the plasma generation chamber 3.
A metal plate 17 with a large-diameter hole 7 in the center is attached to the lower part of the plasma generating chamber 3, and this metal plate and the plasma generation chamber 3 constitute a semi-open microwave resonator. An excitation solenoid 6 is disposed outside the resonator, and a magnetic field that satisfies the ECR conditions is generated within the resonator, so that ECR plasma is generated within the resonator. This plasma
When silane gas (SiH*) is pushed inward and directed from the gas population 12 into the space toward the sample stage 10 and activated by the plasma, the generated active species react with the substrate 11, which is the sample to be processed. A thin film is formed on the surface of the substrate.

なお、原料ガス導入管路4からN富ガスの代わりにエツ
チング用ガスを流しこむことにより、この装置は基板の
エツチング加工用に用いることができる。なお、5はプ
ラズマ生成室3の外周面を冷却する冷却筒である。また
、16はOIJソングあって導波管1をプラズマ生成室
3に結合するために−4波管端部に固着されたフランジ
1aに設けられたパツキン溝に挿入され、プラズマ生成
室3と外気とを気密に遮断している。このフランジla
の内側には板状誘電体からなる真空窓−2とリング板状
パツキン15とが収容され、フランジlaを0リング1
6を圧縮しながらプラズマ生成室3の端面3aに締めつ
けることにより、プラズマ生成室3と導波管lの内側と
を気密に遮断している。この場合、リング板状パツキン
15は、プラズマ生成室からの熱的な影響を小さくする
ため、真空窓の導波管側に挿入され、プラズマ生成室と
外気との気密は0リングにより、またプラズマ生成室と
導波管内側との気密はパツキン15により行ない、この
両パツキンにそれぞれ気密部位を分担させている。
Note that this apparatus can be used for etching a substrate by flowing an etching gas instead of the N-rich gas from the raw material gas introduction pipe 4. Note that 5 is a cooling cylinder that cools the outer peripheral surface of the plasma generation chamber 3. Further, 16 is an OIJ song, which is inserted into a packing groove provided in a flange 1a fixed to the end of the -4 wave tube in order to connect the waveguide 1 to the plasma generation chamber 3, and connects the plasma generation chamber 3 and the outside air. It is airtightly sealed off. This flange la
A vacuum window 2 made of a plate-shaped dielectric and a ring plate-shaped packing 15 are housed inside the flange la.
6 is compressed and tightened onto the end surface 3a of the plasma generation chamber 3, thereby airtightly sealing off the plasma generation chamber 3 and the inside of the waveguide l. In this case, the ring plate-shaped packing 15 is inserted on the waveguide side of the vacuum window in order to reduce the thermal influence from the plasma generation chamber, and the O-ring and the plasma Airtightness between the generation chamber and the inside of the waveguide is achieved by a gasket 15, and these two gaskets each serve as an airtight portion.

〔発明が解決しようとする問題点1 以上のように構成された乾式薄膜加工装置における問題
点は次の通りである。すなわち導波管とプラズマ生成室
との間に介装された真空窓2は通常エツチングガスのプ
ラズマに侵されにくい酸化アルミニウム (以下慣用I
II :アルミナの語を用いる)の板として形成される
が、この窓を大電力のマイクロ波が通過すると、アルミ
ナ中に含まれる不純物に基因する発熱が生じ、この熱に
よる歪みのために窓が破壊する危険がある。窓が破壊す
るとプラズマ生成室および処理室に導波管内の空気が流
入し、真空排気系に対して排気のための負荷が急増して
有害であるばかりでなく、薄膜加工に用いる、人体に有
害なガスの流出も考えられ、擺めて危険である。さらに
エピタキシャル成長による成膜や酸化などのために基板
をヒータで加熱する場合には、このヒータからの熱によ
り、真空窓2およびプラズマ生成室の端面3aが加熱さ
れ、プラズマ生成室内へ導入しようとするマイクロ波電
力がたとえば1kWよりも小さい小電力の場合において
も、真空窓が破壊されたり、0リング16などの構成部
材が損傷を受けたりして、装置の安定した運用に支障を
きたす。
[Problem 1 to be solved by the invention Problems in the dry thin film processing apparatus configured as described above are as follows. That is, the vacuum window 2 interposed between the waveguide and the plasma generation chamber is usually made of aluminum oxide (hereinafter commonly used as I), which is not easily attacked by etching gas plasma.
II: using the word alumina), but when high-power microwaves pass through this window, heat is generated due to impurities contained in the alumina, and the window is distorted due to this heat. There is a risk of destruction. If the window breaks, air in the waveguide will flow into the plasma generation chamber and processing chamber, rapidly increasing the load on the vacuum pumping system, which is not only harmful, but also harmful to the human body, which is used for thin film processing. There is also the possibility of gas leaking out, which is extremely dangerous. Furthermore, when the substrate is heated with a heater for epitaxial growth film formation, oxidation, etc., the vacuum window 2 and the end surface 3a of the plasma generation chamber are heated by the heat from the heater, and the plasma is introduced into the plasma generation chamber. Even when the microwave power is small, for example, less than 1 kW, the vacuum window may be broken or components such as the O-ring 16 may be damaged, which may impede stable operation of the apparatus.

本発明の目的は、大電力のマイクロ波を、真空窓を破壊
することなくプラズマ生成室内へ導入して高能率な薄膜
加工を可能ならしめるとともに、基板加熱用ヒータによ
り装置が加熱されても支障なく運用可能な乾式薄膜加工
装置を提供することである。
The purpose of the present invention is to enable high-efficiency thin film processing by introducing high-power microwaves into a plasma generation chamber without destroying the vacuum window, and to avoid any hindrance even if the equipment is heated by a heater for heating the substrate. The object of the present invention is to provide a dry thin film processing device that can be operated without any problems.

〔問題点を解決するための手段] 上記目的を達成するために、本発明によれば、マイクロ
波を発生する手段と、このマイクロ波を伝達する導波管
と、筒状に形成され前記導波管と板状の誘電体からなる
真空窓を介して該筒の一方の端面で結合され該真空窓を
介してマイクロ波が導入されるとともにガス供給手段を
介して送入されたガスを前記マイクロ波との共鳴効果に
よりプラズマ化して活性な原子9分子またはイオンを生
ずる磁力線を発生する励磁ソレノイドを備えかつ軸線が
該ソレノイドが生ずる磁力線束の中心軸と一敗する開口
を他方の端面に有するプラズマ生成室と、前記開口を介
して前記プラズマ生成室と結合され該開口から前記磁力
線束に沿って流出する前記活性な原子1分子またはイオ
ンにより表面にエツチングが施されまたは薄膜が形成さ
れる基板が配される処理室と、前記プラズマ生成室と処
理室との排気を行なう排気手段とを備えた乾式薄膜加工
装置を、前記真空窓を介して導波管と結合されたプラズ
マ生成室の一方の端面が冷媒を用いて冷却可能に構成さ
れるとともに前記マイクロ波通過に基づく真空窓の発熱
が、この真空窓と前記プラズマ生成室端面との間および
または導波管との間に介装され導波管とプラズマ生成室
とを気密に結合せしめる弾性シートを介して前記冷却さ
れるプラズマ生成室端面へ導出されるように構成するも
のとする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides means for generating microwaves, a waveguide for transmitting the microwaves, and a cylindrical-shaped waveguide. A wave tube and a vacuum window made of a plate-shaped dielectric material are connected at one end face of the tube, and microwaves are introduced through the vacuum window, and the gas fed through the gas supply means is Equipped with an excitation solenoid that generates magnetic lines of force that turn into plasma and produce nine active atoms molecules or ions due to the resonance effect with microwaves, and has an opening on the other end surface whose axis coincides with the central axis of the flux of magnetic lines of force generated by the solenoid. a plasma generation chamber; and a substrate whose surface is etched or a thin film is formed by the active atom molecule or ions that are coupled to the plasma generation chamber through the opening and flow out from the opening along the magnetic flux. A dry thin film processing apparatus equipped with a processing chamber in which a plasma generating chamber is disposed, and an exhaust means for evacuating the plasma generating chamber and the processing chamber is connected to one side of the plasma generating chamber connected to the waveguide through the vacuum window. The end face of the vacuum window is configured to be coolable using a refrigerant, and the heat generated by the vacuum window based on the passage of the microwave is interposed between the vacuum window and the end face of the plasma generation chamber and/or between the waveguide. The waveguide is configured to be guided to the end face of the plasma generation chamber to be cooled via an elastic sheet that airtightly connects the waveguide and the plasma generation chamber.

〔作用〕[Effect]

装置をこのように構成することにより、プラズマ生成室
端面ば従来よりはるかに低温に維持されうるから、マイ
クロ波通過に基づく真空窓の発熱は弾性シートを介して
効果的に導出され、真空窓の温度上昇が抑制されるとと
もに、Oリングなどプラズマ生成室端面に接触する構成
部材の熱による損傷も防止される結果、大電力マイクロ
波のプラズマ生成室への導入が可能になり、また基板加
熱用ヒータを用いた装置の運用も可能になる。
By configuring the device in this way, the end face of the plasma generation chamber can be maintained at a much lower temperature than before, so the heat generated by the vacuum window due to the passage of microwaves is effectively led out through the elastic sheet, and the temperature of the vacuum window is reduced. In addition to suppressing temperature rise, it also prevents heat damage to components such as O-rings that come into contact with the end face of the plasma generation chamber, making it possible to introduce high-power microwaves into the plasma generation chamber, and also for substrate heating. It also becomes possible to operate a device using a heater.

〔実施例〕〔Example〕

第1図に本発明に基づいて構成される乾式薄膜加工装置
の一実施例を示す、導波管1と結合されるプラズマ生成
室3の端面3bは偏平な中空リング状に形成され、この
中空部に、送水管5aから冷却筒5の底部へ送入された
後、リング状の仕切り板5cに複数個設けられた貫通孔
5dを通過し、プラズマ生成室3の外周面に沿って上昇
する冷却水が送り込まれ、この送り込まれた冷却水は排
水管5eを介して外部へ導出される。これにより、端面
3bの上面は常に低温に保持される。一方、真空窓は、
本実施例では、2枚の板状誘電体2A、−2Bからなる
2重窓構造に形成され、熱的により過酷なストレスを受
けるプラズマ生成室側の窓2Aが破壊して導波管側とプ
ラズマ生成室側との間の気密性能が失われても、真空窓
2Bの存在により、導波管側とプラズマ生成室側との間
がスローリークの状態となるようにして、真空排気系に
対し、急激に大気圧負荷がかかるのを防止するとともに
、人体に有害なガスのプラズマ生成室からの流出を防ぎ
、かつ、このガスが流出したとしたときに起こりうる発
火の危険を防止しているが、これは真空窓2への破壊後
、装置の運転を停止するためのマイクロ波発生の停止、
原料ガスの供給停止、励磁ソレノイドの通電停止、真空
排気系の運転停止など各部停止のための時間を十分に得
て装置の補修への移行を円滑にするためであり、プラズ
マ生成室端面が従来の構成であるかぎり真空窓2Aの破
壊の危険性は依然として存在する。しかし本実施例のよ
うに、端面を3bのように偏平な中空リング状に形成し
、この中空部に冷却水を導入して冷却すれば、真空窓2
Aに発生した熱は弾性シー) 21bを介して端W3b
の上面へ効果的に導出され、また、真空窓2Bに発生し
た熱もフランジ21aを介して端面3bの上面へ導出さ
れるから、両真空窓の温度は常に比較的低温に保持され
、真空窓の破壊に到るほどの熱歪みを生じない。
FIG. 1 shows an embodiment of a dry thin film processing apparatus constructed based on the present invention. After being fed into the bottom of the cooling cylinder 5 from the water pipe 5a, it passes through a plurality of through holes 5d provided in the ring-shaped partition plate 5c and rises along the outer peripheral surface of the plasma generation chamber 3. Cooling water is fed in, and the fed cooling water is led out to the outside via the drain pipe 5e. Thereby, the upper surface of the end surface 3b is always kept at a low temperature. On the other hand, vacuum windows
In this example, the window 2A on the plasma generation chamber side, which is formed in a double window structure consisting of two plate-shaped dielectrics 2A and -2B, which is subjected to severer thermal stress, breaks and the window 2A on the waveguide side Even if the airtight performance between the plasma generation chamber side and the plasma generation chamber side is lost, the presence of the vacuum window 2B ensures that there is a slow leak between the waveguide side and the plasma generation chamber side, and the evacuation system On the other hand, it is necessary to prevent sudden atmospheric pressure loads, prevent gases harmful to the human body from escaping from the plasma generation chamber, and prevent the risk of ignition that could occur if this gas were to escape. However, this means that after the vacuum window 2 is destroyed, the microwave generation is stopped to stop the operation of the device.
This is to ensure that there is enough time to stop various parts, such as stopping the supply of raw material gas, stopping the energization of the excitation solenoid, and stopping the operation of the vacuum exhaust system, to facilitate a smooth transition to repair of the equipment. As long as the configuration is as follows, there is still a risk of destruction of the vacuum window 2A. However, as in this embodiment, if the end face is formed into a flat hollow ring shape as shown in 3b, and cooling water is introduced into this hollow part for cooling, the vacuum window 2
The heat generated at A is transferred to the end W3b via the elastic sheath) 21b.
Since the heat generated in the vacuum window 2B is also led out to the top surface of the end face 3b via the flange 21a, the temperature of both vacuum windows is always kept relatively low, and the temperature of the vacuum window 2B is effectively led out to the top surface. Does not cause thermal distortion that would lead to destruction.

ところで、真空窓2Aと端面3bとの間に介装される弾
性シー) 21bは、真空窓の発熱を、冷却水によって
低温に維持されているプラズマ生成室端面へ効果的に導
出する役目を有しているから、良好な熱伝導性を備えて
いるものを用いるほどより大きい効果をもたらす、そし
て、実施例のように、真空窓とプラズマ生成室端面との
間に介装してプラズマ生成室と外気および導波管内側と
の間の気密を1個所で行なうようにすれば、従来の0リ
ング(第2図、16)と導波管側パツキン(第2図、1
5)とを同時に省略することができる。もちろん、熱伝
導シートを従来のように真空窓と導波管との間に介装し
ても、フランジ21aとプラズマ生成室端面とは金属接
触の状態で結合されているから、真空窓28の発熱はフ
ランジ21aを介してプラズマ生成室の端面へ効果的に
導出され、真空窓2Aと同様に温度上昇が抑えられる。
By the way, the elastic sheet 21b interposed between the vacuum window 2A and the end surface 3b has the role of effectively guiding the heat generated by the vacuum window to the end surface of the plasma generation chamber, which is maintained at a low temperature by cooling water. Therefore, the better the thermal conductivity is used, the greater the effect will be. If airtightness is achieved between the outside air and the inside of the waveguide in one place, the conventional O-ring (Fig. 2, 16) and the waveguide side seal (Fig. 2, 1) will be used.
5) can be omitted at the same time. Of course, even if a thermally conductive sheet is interposed between the vacuum window and the waveguide as in the conventional case, the flange 21a and the end face of the plasma generation chamber are connected in a state of metal contact. The heat generated is effectively led to the end face of the plasma generation chamber via the flange 21a, and the temperature rise is suppressed similarly to the vacuum window 2A.

このため、弾性シートは、材質として、たとえば、熱伝
導性の良い、ボロンニトライドと称する粉末状のものを
、耐熱性の良好な弾性材たとえばシリコンゴムに混入し
てシート状としたものを用いる。このようにすれば弾性
シート自体も比較的低温に保持され、その耐熱性とあい
まって余裕をもって気密弾性を維持した運転が可能とな
る。なお、本実施例のように、真空窓を二重窓構造とす
るときは、真空窓2A、2Bの間に介装される耐熱性リ
ング21Cを、熱伝導シート21hと同一材として装置
の簡易化をはかることも可能である。
For this reason, the material used for the elastic sheet is, for example, a powdered material called boron nitride, which has good thermal conductivity, and is mixed into an elastic material with good heat resistance, such as silicone rubber, to form a sheet. . In this way, the elastic sheet itself is kept at a relatively low temperature, and combined with its heat resistance, it becomes possible to operate the elastic sheet while maintaining airtight elasticity with a margin. Note that when the vacuum window has a double-glazed structure as in this embodiment, the heat-resistant ring 21C interposed between the vacuum windows 2A and 2B is made of the same material as the thermally conductive sheet 21h to simplify the device. It is also possible to improve the

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明ばよれば、導波管と真空窓
を介して結合される筒状のプラズマ生成室端面を冷媒を
用いて冷却可能に構成したので、プラズマ生成室端面ば
従来に比して著しく低温に維持され、この結果、マイク
ロ波の通過に基づく真空窓の発熱は弾性シートを介して
効果的に前記プラズマ生成室端面へ導出され、真空窓の
温度上昇が抑えられて真空窓は比較的低温に保持され、
大電力マイクロ波を真空窓を破壊することなくプラズマ
生成室内へ導入することができるから、高能率な成膜加
工が可能になり、また、基板加熱用ヒータを用いた加工
時にも真空窓や0リングのような装置構成部材の損傷が
避けられ、装置の安定した運用が可能となる。
As described above, according to the present invention, the end face of the cylindrical plasma generation chamber, which is connected to the waveguide through the vacuum window, is configured to be coolable using a refrigerant. As a result, the heat generated by the vacuum window due to the passage of microwaves is effectively led to the end face of the plasma generation chamber through the elastic sheet, and the temperature rise of the vacuum window is suppressed. Vacuum windows are kept relatively cool,
High-power microwaves can be introduced into the plasma generation chamber without destroying the vacuum window, making it possible to perform highly efficient film formation. Damage to device components such as the ring can be avoided, allowing stable operation of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による装置構成図、第2図は従
来装置の例を示す装置構成図である。 1.21:導波管、2.2A、 28:真空窓、3:プ
ラズマ生成室、4:ガス供給手段、5:冷却筒、5a:
送水管、5b、5e:排水管、6:励磁ソレノイド、7
:開口、9:処理室、11:基板、21b  ?弾性シ
ート。 婁莞緋気果 l!空排気系
FIG. 1 is a block diagram of a device according to an embodiment of the present invention, and FIG. 2 is a block diagram of a device showing an example of a conventional device. 1.21: Waveguide, 2.2A, 28: Vacuum window, 3: Plasma generation chamber, 4: Gas supply means, 5: Cooling cylinder, 5a:
Water pipe, 5b, 5e: Drain pipe, 6: Excitation solenoid, 7
: opening, 9: processing chamber, 11: substrate, 21b? elastic sheet. Lou Guan Scarlet Fruit! air exhaust system

Claims (1)

【特許請求の範囲】 1)マイクロ波を発生する手段と、このマイクロ波を伝
達する導波管と、筒状に形成され前記導波管と板状の導
電体からなる真空窓を介して該筒の一方の端面で結合さ
れ該真空窓を介してマイクロ波が導入されるとともにガ
ス供給手段を介して送入されたガスを前記マイクロ波と
の共鳴効果によりプラズマ化して活性な原子、分子また
はイオンを生ずる磁力線を発生する励磁ソレノイドを備
えかつ軸線が該ソレノイドが生ずる磁力線束の中心軸と
一致する開口を他方の端面に有するプラズマ生成室と、
前記開口を介して前記プラズマ生成室と結合され該開口
から前記磁力線束に沿って流出する前記活性な原子、分
子またはイオンにより表面にエッチングが施されまたは
薄膜が形成される基板が配される処理室と、前記プラズ
マ生成室と処理室との排気を行なう排気手段とを備えた
乾式薄膜加工装置において、前記真空窓を介して導波管
と結合されたプラズマ生成室の一方の端面が冷媒を用い
て冷却可能に構成されるとともに前記マイクロ波通過に
基づく真空窓の発熱が、この真空窓と前記プラズマ生成
室端面との間およびまたは導波管との間に介装され導波
管とプラズマ生成室とを気密に結合せしめる弾性シート
を介して前記冷却されるプラズマ生成室端面へ導出され
るようにしたことを特徴とする乾式薄膜加工装置。 2)特許請求の範囲第1項記載の装置において、真空窓
とプラズマ生成室端面との間およびまたは導波管との間
に介装される弾性シートは熱伝導性の良好な熱伝導シー
トであることを特徴とする乾式薄膜加工装置。
[Claims] 1) A means for generating microwaves, a waveguide for transmitting the microwaves, and a vacuum window formed in a cylindrical shape and made of the waveguide and a plate-shaped conductor. Microwaves are introduced through the vacuum window connected at one end face of the cylinder, and the gas fed through the gas supply means is turned into plasma by the resonance effect with the microwave to generate active atoms, molecules, or a plasma generation chamber including an excitation solenoid that generates magnetic lines of force that generate ions, and having an opening on the other end surface whose axis coincides with the central axis of the magnetic line of force generated by the solenoid;
A process in which a substrate is arranged, the surface of which is etched or a thin film is formed by the active atoms, molecules or ions that are coupled to the plasma generation chamber through the opening and flow out from the opening along the magnetic flux. In a dry thin film processing apparatus comprising a chamber and an exhaust means for evacuating the plasma generation chamber and the processing chamber, one end surface of the plasma generation chamber connected to the waveguide through the vacuum window is configured to discharge a coolant. The heat generated by the vacuum window based on the passage of the microwave is interposed between the vacuum window and the end face of the plasma generation chamber and/or between the waveguide and the waveguide and the plasma. A dry thin film processing apparatus characterized in that the plasma is led out to the end face of the plasma generation chamber to be cooled through an elastic sheet that airtightly connects the plasma generation chamber with the generation chamber. 2) In the device according to claim 1, the elastic sheet interposed between the vacuum window and the end face of the plasma generation chamber and/or between the waveguide is a thermally conductive sheet with good thermal conductivity. A dry thin film processing device characterized by the following.
JP5503087A 1987-03-10 1987-03-10 Dry thin film processing equipment Expired - Fee Related JPH0620058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5503087A JPH0620058B2 (en) 1987-03-10 1987-03-10 Dry thin film processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5503087A JPH0620058B2 (en) 1987-03-10 1987-03-10 Dry thin film processing equipment

Publications (2)

Publication Number Publication Date
JPS63221622A true JPS63221622A (en) 1988-09-14
JPH0620058B2 JPH0620058B2 (en) 1994-03-16

Family

ID=12987266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5503087A Expired - Fee Related JPH0620058B2 (en) 1987-03-10 1987-03-10 Dry thin film processing equipment

Country Status (1)

Country Link
JP (1) JPH0620058B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467908A (en) * 1987-09-08 1989-03-14 Sumitomo Metal Ind Plasma processing device
JPH02132826A (en) * 1988-11-14 1990-05-22 Fujitsu Ltd Microwave processor
WO2011156141A2 (en) * 2010-06-08 2011-12-15 Applied Materials, Inc. Window assembly for use in substrate processing systems

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467908A (en) * 1987-09-08 1989-03-14 Sumitomo Metal Ind Plasma processing device
JP2625756B2 (en) * 1987-09-08 1997-07-02 住友金属工業株式会社 Plasma process equipment
JPH02132826A (en) * 1988-11-14 1990-05-22 Fujitsu Ltd Microwave processor
WO2011156141A2 (en) * 2010-06-08 2011-12-15 Applied Materials, Inc. Window assembly for use in substrate processing systems
WO2011156141A3 (en) * 2010-06-08 2012-03-29 Applied Materials, Inc. Window assembly for use in substrate processing systems
CN102934200A (en) * 2010-06-08 2013-02-13 应用材料公司 Window assembly for use in substrate processing systems
US8986454B2 (en) 2010-06-08 2015-03-24 Applied Materials, Inc. Window assembly for use in substrate processing systems

Also Published As

Publication number Publication date
JPH0620058B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
JP4878782B2 (en) Plasma processing apparatus and plasma processing method
US5021114A (en) Apparatus for treating material by using plasma
KR20030004430A (en) Plasma processing device
JPH0963793A (en) Plasma processing device
US4192706A (en) Gas-etching device
JP3585578B2 (en) Plasma processing equipment
EP1300875A1 (en) Plasma processing device
JPS63221622A (en) Dry-type thin film processing equipment
JP3267771B2 (en) Plasma processing equipment
JPH10298786A (en) Surface treating device
JP2000106298A (en) Plasma processing unit
JP3156492B2 (en) Plasma processing apparatus and plasma processing method
JPH0748487B2 (en) Dry thin film processing equipment
JP3337266B2 (en) Scientific deposition equipment for electron cyclotron resonance plasma
CN114360994B (en) Substrate processing apparatus
JP2004031509A (en) Atmospheric pressure plasma processing method and apparatus using microwave
JP7289170B2 (en) High-frequency reaction processing equipment and high-frequency reaction processing system
JP2001118698A (en) Method of generating surface wave excitation plasma and plasma generating apparatus
JP2901331B2 (en) Microwave plasma processing equipment
US20150155141A1 (en) Plasma processing apparatus
JPS63100186A (en) Microwave plasma treating device
JPH11106929A (en) Plasma treatment system
JP2613313B2 (en) Microwave plasma processing equipment
JP3930691B2 (en) Plasma generator
JP3512210B2 (en) Plasma processing equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees