JPH0620058B2 - Dry thin film processing equipment - Google Patents

Dry thin film processing equipment

Info

Publication number
JPH0620058B2
JPH0620058B2 JP5503087A JP5503087A JPH0620058B2 JP H0620058 B2 JPH0620058 B2 JP H0620058B2 JP 5503087 A JP5503087 A JP 5503087A JP 5503087 A JP5503087 A JP 5503087A JP H0620058 B2 JPH0620058 B2 JP H0620058B2
Authority
JP
Japan
Prior art keywords
waveguide
vacuum window
generation chamber
plasma generation
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5503087A
Other languages
Japanese (ja)
Other versions
JPS63221622A (en
Inventor
雅彦 土岐
潔 大岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fujitsu Ltd
Original Assignee
Fuji Electric Co Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fujitsu Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5503087A priority Critical patent/JPH0620058B2/en
Publication of JPS63221622A publication Critical patent/JPS63221622A/en
Publication of JPH0620058B2 publication Critical patent/JPH0620058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、マイクロ波プラズマを利用したドライエッ
チングおよびCVD (Chemical Vapour Deposition,
ガス状物質が反応して基板上に固体を析出する反応)に
よる成膜が可能な薄膜加工装置であって、マイクロ波を
発生する手段と、このマイクロ波を伝達する導波管と、
筒状に形成され前記導波管と板状の導電体からなる真空
窓を介して該筒の一方の端面で結合され該真空窓を介し
てマイクロ波が導入されるとともにガス供給手段を介し
て送入されたガスを前記マイクロ波との共鳴効果により
プラズマ化して活性な原子,分子またはイオンを生ずる
磁力線を発生する励磁ソレノイドを備えかつ軸線が該ソ
レノイドが生ずる磁力線束の中心軸と一致する開口を他
方の端面に有するプラズマ生成室と、前記開口を介して
前記プラズマ生成室と結合され該開口から前記磁力線束
に沿って流出する前記活性な原子,分子またはイオンに
より表面にエッチングが施されまたは薄膜が形成される
基板が配される処理室と、前記プラズマ生成室と処理室
との排気を行なう排気手段とを備えたものに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to dry etching and CVD (Chemical Vapor Deposition,
A thin film processing apparatus capable of forming a film by a reaction in which a gaseous substance reacts to deposit a solid on a substrate, a means for generating a microwave, and a waveguide for transmitting the microwave,
It is coupled at one end face of the tube through a vacuum window formed in a tubular shape and made of a plate-shaped conductor, and microwaves are introduced through the vacuum window and at the same time through a gas supply means. An opening provided with an exciting solenoid for generating a magnetic field line for generating an active atom, molecule or ion by plasmaizing the introduced gas by a resonance effect with the microwave, and an axis line of which coincides with a central axis of a magnetic flux line generated by the solenoid. A plasma generating chamber having the other end face, and the surface is etched by the active atoms, molecules or ions that are coupled to the plasma generating chamber through the opening and flow out from the opening along the magnetic flux. The present invention relates to an apparatus including a processing chamber in which a substrate on which a thin film is formed is arranged, and an exhaust unit for exhausting the plasma generation chamber and the processing chamber.

〔従来の技術〕[Conventional technology]

この発明の属する技術分野において、最近ECRプラズ
マを用いたプロセス技術が注目されている。ECRとは
Electron Cyclotron Resonance(電子サイクロトロン共
鳴)の略号であり、磁場とマイクロ波との共鳴効果を用
いて電子を加速し、この電子の運動エネルギを用いてガ
スを電離せしめプラズマを得るものである。マイクロ波
に励振された電子は磁力線のまわりを円運動し、その
際、遠心力とローレンツ力とがバランスする条件がEC
R条件と呼ばれる。遠心力をmrω,ローレンツ力を−q
rωBで表わすと、これらがバランスする条件はω/B
=q/mである。ここでωはマイクロ波の角速度、Bは
磁束密度、q/mは電子の比電荷である。マイクロ波周
波数は工業用に認められている2.45GHz が一般に用いら
れ、その場合0.0875Tが共鳴磁束密度である。
In the technical field to which the present invention belongs, a process technology using ECR plasma has recently attracted attention. What is ECR
Abbreviation for Electron Cyclotron Resonance, which accelerates electrons using the resonance effect of a magnetic field and microwaves, and uses the kinetic energy of the electrons to ionize gas to obtain plasma. Electrons excited by microwaves move circularly around the lines of magnetic force, and at that time, the condition under which the centrifugal force and the Lorentz force are balanced is EC.
Called the R condition. Centrifugal force is mrω 2 and Lorentz force is −q
When expressed by rωB, the condition for balancing these is ω / B
= Q / m. Here, ω is the angular velocity of the microwave, B is the magnetic flux density, and q / m is the specific charge of the electron. Microwave frequency 2.45 GHz z is generally used as permitted for industrial, in which case 0.0875T is resonance magnetic flux density.

ECRプラズマを応用した薄膜加工装置として例えば第
2図に示す方法が知られている。この装置ではプラズマ
生成室3,処理室9を図示しない排気手段により真空排
気しておき、ガス供給手段としての原料ガス導入管路4
からN2ガスをプラズマ生成室3へ流したところへ、マイ
クロ波をその伝達手段である導波管1と、板状の誘電体
からなり大気圧下にある導波管側と真空排気されたプラ
ズマ生成室3内とを気密に隔離するための真空窓2とを
介してプラズマ生成室へ送り込む。プラズマ生成室3の
下部には中心に大口径の孔7を持った金属板17が取り付
けられており、この金属板とプラズマ生成室3とで半開
放のマイクロ波共振器を構成している。この共振器の外
部には励磁ソレノイド6が配置され、共振器内にECR
条件を満たす磁場が発生しているため、共振器内にEC
Rプラズマが発生する。このプラズマが処理室9内へ押
し出され、試料台10へ向かう空間内にガス入口12からシ
ランガス(SiH4)を送りこんで、このガスを上記プラズマ
により活性化すると、発生した活性種が被加工試料であ
る基板11と反応して基板表面に薄膜が形成される。
As a thin film processing apparatus to which ECR plasma is applied, for example, the method shown in FIG. 2 is known. In this apparatus, the plasma generation chamber 3 and the processing chamber 9 are evacuated by an unillustrated evacuation means, and the raw material gas introduction pipe line 4 as a gas supply means is used.
To the place where the N 2 gas was made to flow into the plasma generation chamber 3, the microwave was evacuated to the waveguide 1 which is a means for transmitting the microwave and the waveguide side which is made of a plate-shaped dielectric and is under atmospheric pressure. It is sent to the plasma generation chamber through a vacuum window 2 for hermetically isolating the inside of the plasma generation chamber 3. A metal plate 17 having a large-diameter hole 7 in the center is attached to the lower part of the plasma generation chamber 3, and the metal plate and the plasma generation chamber 3 form a semi-open microwave resonator. An exciting solenoid 6 is arranged outside the resonator, and an ECR is provided inside the resonator.
Since a magnetic field that satisfies the conditions is generated, EC is
R plasma is generated. When this plasma is pushed out into the processing chamber 9 and silane gas (SiH 4 ) is sent from the gas inlet 12 into the space toward the sample table 10 and this gas is activated by the plasma, the generated active species generate the processed sample. Reacts with the substrate 11 to form a thin film on the substrate surface.

なお、原料ガス導入管路4からN2ガスの代わりにエッチ
ング用ガスを流しこむことにより、この装置は基板のエ
ッチング加工用に用いることができる。なお、5はプラ
ズマ生成室3の外周面を冷却する冷却筒である。また、
16はOリングであって導波管1をプラズマ生成室3に結
合するために導波管端部に固着されたフランジ1aに設け
られたパッキン溝に挿入され、プラズマ生成室3と外気
とを気密に遮断している。このフランジ1aの内側には板
状誘電体からなる真空窓2とリング板状パッキン15とが
収容され、フランジ1aをOリング16を圧縮しながらプラ
ズマ生成室3の端面3aに締めつけることにより、プラズ
マ生成室3と導波管1の内側とを気密に遮断している。
この場合、リング板状パッキン15は、プラズマ生成室か
らの熱的な影響を小さくするため、真空窓の導波管側に
挿入され、プラズマ生成室と外気との気密はOリングに
より、またプラズマ生成室と導波管内側との気密はパッ
キン15により行ない、この両パッキンにそれぞれ気密部
位を分担させている。
By flowing the etching gas instead of the N 2 gas from the raw material gas introduction conduit 4, this apparatus can be used for etching the substrate. Reference numeral 5 is a cooling cylinder for cooling the outer peripheral surface of the plasma generation chamber 3. Also,
Reference numeral 16 denotes an O-ring, which is inserted into a packing groove provided in a flange 1a fixed to the end of the waveguide for coupling the waveguide 1 to the plasma generation chamber 3 and connects the plasma generation chamber 3 and the outside air. It shuts off airtightly. A vacuum window 2 made of a plate-shaped dielectric and a ring-plate packing 15 are housed inside the flange 1a, and the flange 1a is clamped to the end face 3a of the plasma generation chamber 3 while compressing the O-ring 16, so that the plasma is generated. The generation chamber 3 and the inside of the waveguide 1 are hermetically isolated from each other.
In this case, the ring-plate packing 15 is inserted on the waveguide side of the vacuum window in order to reduce the thermal influence from the plasma generation chamber, and the plasma generation chamber and the outside air are hermetically sealed by the O-ring and the plasma. Airtightness between the generation chamber and the inside of the waveguide is performed by the packing 15, and the airtight parts are shared by both packings.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

以上のように構成された乾式薄膜加工装置における問題
点は次の通りである。すなわち導波管とプラズマ生成室
との間に介装された真空窓2は通常エッチングガスのプ
ラズマに侵されにくい酸化アルミニウム(以下慣用語:
アルミナの語を用いる)の板として生成されるが、この
窓を大電力のマイクロ波が通過すると、アルミナ中に含
まれる不純物に基因する発熱が生じ、この熱による歪み
のために窓が破壊する危険がある。窓が破壊するとプラ
ズマ生成室および処理室に導波管内の空気が流入し、真
空排気系に対して排気のための負荷が急増して有害であ
るばかりでなく、薄膜加工に用いる、人体に有害なガス
の流出も考えられ、極めて危険である。さらにエピタキ
シャル成長による成膜や酸化などのために基板をヒータ
で加熱する場合には、このヒータからの熱により、真空
窓2およびプラズマ生成室の端面3aが加熱され、プラズ
マ生成室内へ導入しようとするマイクロ波電力がたとえ
ば1kWよりも小さい小電力の場合においても、真空窓が
破壊されたり、Oリング16などの構成部材が損傷を受け
たりして、装置の安定した運用に支障をきたす。
The problems with the dry type thin film processing apparatus configured as described above are as follows. That is, the vacuum window 2 interposed between the waveguide and the plasma generation chamber is usually made of aluminum oxide (hereinafter referred to as idiom:
It is produced as a plate (using the term alumina), but when high-power microwaves pass through this window, heat is generated due to the impurities contained in the alumina, and the window is destroyed due to this heat distortion. There is danger. When the window breaks, the air in the waveguide flows into the plasma generation chamber and the processing chamber, and the load for exhausting against the vacuum exhaust system suddenly increases, which is not only harmful, but also harmful to the human body used for thin film processing. The outflow of various gases is also considered and is extremely dangerous. Furthermore, when the substrate is heated by a heater for film formation or oxidation by epitaxial growth, the heat from this heater heats the vacuum window 2 and the end surface 3a of the plasma generation chamber, and attempts to introduce the vacuum window 2 into the plasma generation chamber. Even when the microwave power is a small power less than 1 kW, for example, the vacuum window is broken or the components such as the O-ring 16 are damaged, which hinders stable operation of the device.

本発明の目的は、大電力のマイクロ波を、真空窓を破壊
することなくプラズマ生成室内へ導入して高能率な薄膜
加工を可能ならしめるとともに、基板加熱用ヒータによ
り装置が加熱されても支障なく運用可能な乾式薄膜加工
装置を提供することである。
An object of the present invention is to introduce a high-power microwave into the plasma generation chamber without breaking the vacuum window to enable highly efficient thin film processing, and to prevent problems even when the apparatus is heated by the substrate heating heater. It is to provide a dry-type thin film processing apparatus that can be operated without any operation.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明によれば、マイクロ
波を発生する手段と、このマイクロ波を伝達する導波管
と、筒状に形成され前記導波管と板状の誘電体からなる
真空窓を介して該筒の一方の端面で結合され該真空窓を
介してマイクロ波が導入されるとともにガス供給手段を
介して送入されたガスを前記マイクロ波との共鳴効果に
よりプラズマ化して活性な原子,分子またはイオンを生
ずる磁力線を発生する励磁ソレノイドを備えかつ軸線が
該ソレノイドが生ずる磁力線束の中心軸と一致する開口
を他方の端面に有するプラズマ生成室と、前記開口を介
して前記プラズマ生成室と結合され該開口から前記磁力
線束に沿って流出する前記活性な原子,分子またはイオ
ンにより表面にエッチングが施されまたは薄膜が形成さ
れる基板が配される処理室と、前記プラズマ生成室と処
理室との排気を行なう排気手段とを備えた乾式薄膜加工
装置を、前記真空窓を介して導波管と結合されたプラズ
マ生成室の一方の端面が冷媒を用いて冷却可能に構成さ
れるとともに前記マイクロ波通過に基づく真空窓の発熱
が、この真空窓と前記プラズマ生成室端面との間および
または導波管との間に介装され導波管とプラズマ生成室
とを気密に結合せしめる弾性シートを介して前記冷却さ
れるプラズマ生成室端面へ導出されるように構成するも
のとする。
In order to achieve the above object, according to the present invention, means for generating a microwave, a waveguide for transmitting the microwave, and the waveguide formed in a tubular shape and a plate-shaped dielectric body are provided. The gas coupled through one end face of the cylinder through the vacuum window and introduced with the microwave through the vacuum window and the gas introduced through the gas supply means are turned into plasma by the resonance effect with the microwave. A plasma generating chamber having an exciting solenoid for generating magnetic lines of force that generate active atoms, molecules or ions, and having an opening at the other end face whose axis coincides with the central axis of the magnetic flux of the magnetic flux generated by the solenoid; A substrate on which a surface is etched or a thin film is formed by the active atoms, molecules or ions that are coupled to the plasma generation chamber and flow out from the opening along the magnetic flux A dry type thin film processing apparatus comprising a processing chamber and an exhaust means for exhausting the plasma generating chamber and the processing chamber, wherein one end surface of the plasma generating chamber coupled to the waveguide through the vacuum window is a refrigerant. And heat generation of the vacuum window based on the microwave passage, which is configured to be cooled by using a waveguide and a waveguide interposed between the vacuum window and the end face of the plasma generation chamber and / or the waveguide. It is configured to be led out to the end surface of the cooled plasma generation chamber through an elastic sheet that hermetically couples with the plasma generation chamber.

〔作用〕[Action]

装置をこのように構成することにより、プラズマ生成室
端面は従来よりはるかに低温に維持されうるから、マイ
クロ波通過に基づく真空窓の発熱は弾性シートを介して
効果的に導出され、真空窓の温度上昇が抑制されるとと
もに、Oリングなどプラズマ生成室端面に接触する構成
部材の熱による損傷も防止される結果、大電力マイクロ
波のプラズマ生成室への導入が可能になり、また基板加
熱用ヒータを用いた装置の運用も可能になる。
By configuring the apparatus in this way, the end surface of the plasma generation chamber can be maintained at a much lower temperature than before, so that heat generation in the vacuum window due to microwave passage is effectively derived through the elastic sheet, and the vacuum window As the temperature rise is suppressed and damage to the components such as the O-ring that is in contact with the end face of the plasma generation chamber due to heat is prevented, high-power microwaves can be introduced into the plasma generation chamber and also for substrate heating. It is also possible to operate the device using the heater.

〔実施例〕〔Example〕

第1図に本発明に基づいて構成される乾式薄膜加工装置
の一実施例を示す。導波管1と結合されるプラズマ生成
室3の端面3bは偏平な中空リング状に形成され、この中
空部に、送水管5aから冷却筒5の底部へ送入された後、
リング状の仕切り板5cに複数個設けられた貫通孔5dを通
過し、プラズマ生成室3の外周面に沿って上昇する冷却
水が送り込まれ、この送り込まれた冷却水は排水管5eを
介して外部へ導出される。これにより、端面3bの上面は
常に低温に保持される。一方、真空窓は、本実施例で
は、2枚の板状誘電体2A,2B からなる2重窓構造に形成
され、熱的により過酷なストレスを受けるプラズマ生成
室側の窓2Aが破壊して導波管側とプラズマ生成室側との
間の気密性能が失われても、真空窓2Bの存在により、導
波管側とプラズマ生成室側との間がスローリークの状態
となるようにして、真空排気系に対し、急激に大気圧負
荷がかかるのを防止するとともに、人体に有害なガスの
プラズマ生成室からの流出を防ぎ、かつ、このガスが流
出したとしたときに起こりうる発火の危険を防止してい
るが、これは真空窓2Aの破壊後、装置の運転を停止する
ためのマイクロ波発生の停止,原料ガスの供給停止,励
磁ソレノイドの通電停止,真空排気系の運転停止など各
部停止のための時間を十分に得て装置の補修への移行を
円滑にするためであり、プラズマ生成室端面が従来の構
成であるかぎり真空窓2Aの破壊の危険性は依然として存
在する。しかし本実施例のように、端面を3bのように偏
平な中空リング状に形成し、この中空部に冷却水を導入
して冷却すれば、真空窓2Aに発生した熱は弾性シート21
b を介して端面3bの上面へ効果的に導出され、また、真
空窓2Bに発生した熱もフランジ21a を介して端面3bの上
面へ導出されるから、両真空窓の温度は常に比較的低温
に保持され、真空窓の破壊に到るほどの熱歪みを生じな
い。
FIG. 1 shows an embodiment of a dry type thin film processing apparatus constructed according to the present invention. The end surface 3b of the plasma generation chamber 3 coupled to the waveguide 1 is formed in a flat hollow ring shape, and after being fed from the water pipe 5a to the bottom of the cooling cylinder 5 into this hollow portion,
Cooling water that passes through a plurality of through holes 5d provided in the ring-shaped partition plate 5c and rises along the outer peripheral surface of the plasma generation chamber 3 is sent, and the sent cooling water is discharged through the drain pipe 5e. Outsourced. As a result, the upper surface of the end surface 3b is always kept at a low temperature. On the other hand, in the present embodiment, the vacuum window is formed in a double window structure composed of two plate-shaped dielectrics 2A and 2B, and the window 2A on the plasma generation chamber side, which is subjected to severe stress due to heat, is destroyed. Even if the airtight performance between the waveguide side and the plasma generation chamber side is lost, the existence of the vacuum window 2B causes a slow leak state between the waveguide side and the plasma generation chamber side. The vacuum exhaust system is prevented from being suddenly subjected to atmospheric pressure load, the outflow of gas harmful to the human body from the plasma generation chamber is prevented, and the ignition that may occur when this gas is outflowed. Although it prevents danger, this is because after the vacuum window 2A is broken, the microwave generation to stop the operation of the equipment is stopped, the supply of the raw material gas is stopped, the excitation solenoid is de-energized, and the vacuum exhaust system is stopped. Make sure that you have enough time to stop each part to repair the equipment. And in order to facilitate a row, the plasma generating chamber end face the risk of destruction of the vacuum window 2A as long as the conventional configuration still present. However, as in the present embodiment, if the end surface is formed into a flat hollow ring shape like 3b and cooling water is introduced into this hollow portion to cool, the heat generated in the vacuum window 2A is elastic sheet 21.
Since the heat generated in the vacuum window 2B is also effectively discharged to the upper surface of the end face 3b via b, and is also discharged to the upper surface of the end face 3b via the flange 21a, the temperature of both vacuum windows is always relatively low. The thermal strain is not generated so that the vacuum window is broken.

ところで、真空窓2Aと端面3bとの間に介装される弾性シ
ート21b は、真空窓の発熱を、冷却水によって低温に維
持されているプラズマ生成室端面へ効果的に導出する役
目を有しているから、良好な熱伝導性を備えているもの
を用いるほどより大きい効果をもたらす。そして、実施
例のように、真空窓とプラズマ生成室端面との間に介装
してプラズマ生成室と外気および導波管内側との間の気
密を1個所で行なうようにすれば、従来のOリング (第
2図,16)と導波管側パッキン (第2図,15)とを同時に省
略することができる。もちろん、熱伝導シートを従来の
ように真空窓と導波管との間に介装しても、フランジ21
a とプラズマ生成室端面とは金属接触の状態で結合され
ているから、真空窓2Bの発熱はフランジ21a を介してプ
ラズマ生成室の端面へ効果的に導出され、真空窓2Aと同
様に温度上昇が抑えられる。
By the way, the elastic sheet 21b interposed between the vacuum window 2A and the end surface 3b has a role of effectively guiding the heat generation of the vacuum window to the end surface of the plasma generation chamber kept at a low temperature by the cooling water. Therefore, the one having a good thermal conductivity has a greater effect. Then, as in the embodiment, by interposing between the vacuum window and the end face of the plasma generation chamber so as to perform airtightness between the plasma generation chamber and the outside air and the inside of the waveguide at one location, The O-ring (Fig. 2, 16) and the waveguide side packing (Fig. 2, 15) can be omitted at the same time. Of course, even if a heat conductive sheet is conventionally interposed between the vacuum window and the waveguide, the flange 21
Since a and the plasma generation chamber end face are connected in a metal contact state, the heat generation of the vacuum window 2B is effectively led to the end face of the plasma generation chamber via the flange 21a, and the temperature rises like the vacuum window 2A. Can be suppressed.

このため、弾性シートは、材質として、たとえば、熱伝
導性の良い,ボロンニトライドと称する粉末状のもの
を、耐熱性の良好な弾性材たとえばシリコンゴムに混入
してシート状としたものを用いる。このようにすれば弾
性シート自体も比較的低温に保持され、その耐熱性とあ
いまって余裕をもって気密弾性を維持した運転が可能と
なる。なお、本実施例のように、真空窓を二重窓構造と
するときは、真空窓2A,2B の間に介装される耐熱性リン
グ21C を、熱伝導シート21b と同一材として装置の簡易
化をはかることも可能である。
For this reason, as the elastic sheet, for example, a powdery material called boron nitride having good heat conductivity is mixed with an elastic material having good heat resistance, for example, silicon rubber to form a sheet. . In this way, the elastic sheet itself is also kept at a relatively low temperature, and in combination with its heat resistance, it is possible to operate with a margin to maintain airtight elasticity. When the vacuum window has a double window structure as in this embodiment, the heat-resistant ring 21C interposed between the vacuum windows 2A and 2B is made of the same material as the heat conductive sheet 21b to simplify the apparatus. It is also possible to change.

〔発明の効果〕〔The invention's effect〕

以上に述べたように、本発明によれば、導波管と真空窓
を介して結合される筒状のプラズマ生成室端面を冷媒を
用いて冷却可能に構成したので、プラズマ生成室端面は
従来に比して著しく低温に維持され、この結果、マイク
ロ波の通過に基づく真空窓の発熱は弾性シートを介して
効果的に前記プラズマ生成室端面へ導出され、真空窓の
温度上昇が抑えられて真空窓は比較的低温に保持され、
大電力マイクロ波を真空窓を破壊することなくプラズマ
生成室内へ導入することができるから、高能率な成膜加
工が可能になり、また、基板加熱用ヒータを用いた加工
時にも真空窓やOリングのような装置構成部材の損傷が
避けられ、装置の安定した運用が可能となる。
As described above, according to the present invention, since the cylindrical plasma generation chamber end face coupled to the waveguide through the vacuum window can be cooled by using the refrigerant, the plasma generation chamber end face is The temperature of the vacuum window is maintained at a significantly lower temperature as compared with the above, and as a result, the heat generated in the vacuum window due to the passage of microwaves is effectively guided to the end face of the plasma generation chamber through the elastic sheet, and the temperature rise of the vacuum window is suppressed. The vacuum window is kept relatively cool,
Since high-power microwaves can be introduced into the plasma generation chamber without destroying the vacuum window, highly efficient film forming processing is possible, and the vacuum window and O It is possible to avoid damage to the components of the device such as the ring and to operate the device stably.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例による装置構成図、第2図は従
来装置の例を示す装置構成図である。 1,21:導波管、2,2A,2B:真空窓、3:プラズマ生
成室、4:ガス供給手段、5:冷却筒、5a:送水管、5
b,5e:排水管、6:励磁ソレノイド、7:開口、9:
処理室、11:基板、21b :弾性シート。
FIG. 1 is a device configuration diagram according to an embodiment of the present invention, and FIG. 2 is an device configuration diagram showing an example of a conventional device. 1, 21: Waveguide, 2, 2A, 2B: Vacuum window, 3: Plasma generation chamber, 4: Gas supply means, 5: Cooling cylinder, 5a: Water pipe, 5
b, 5e: drain pipe, 6: exciting solenoid, 7: opening, 9:
Processing chamber, 11: substrate, 21b: elastic sheet.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】マイクロ波を発生する手段と、このマイク
ロ波を伝達する導波管と、筒状に形成され前記導波管と
板状の導電体からなる真空窓を介して該筒の一方の端面
で結合され該真空窓を介してマイクロ波が導入されると
ともにガス供給手段を介して送入されたガスを前記マイ
クロ波との共鳴効果によりプラズマ化して活性な原子,
分子またはイオンを生ずる磁力線を発生する励磁ソレノ
イドを備えかつ軸線が該ソレノイドが生ずる磁力線束の
中心軸と一致する開口を他方の端面に有するプラズマ生
成室と、前記開口を介して前記プラズマ生成室と結合さ
れ該開口から前記磁力線束に沿って流出する前記活性な
原子,分子またはイオンにより表面にエッチングが施さ
れまたは薄膜が形成される基板が配される処理室と、前
記プラズマ生成室と処理室との排気を行なう排気手段と
を備えた乾式薄膜加工装置において、前記真空窓を介し
て導波管と結合されたプラズマ生成室の一方の端面が冷
媒を用いて冷却可能に構成されるとともに前記マイクロ
波通過に基づく真空窓の発熱が、この真空窓と前記プラ
ズマ生成室端面との間およびまたは導波管との間に介装
され導波管とプラズマ生成室とを気密に結合せしめる弾
性シートを介して前記冷却されるプラズマ生成室端面へ
導出されるようにしたことを特徴とする乾式薄膜加工装
置。
1. A means for generating a microwave, a waveguide for transmitting the microwave, and one of the cylinders through a vacuum window formed in a cylinder and comprising the waveguide and a plate-shaped conductor. Of the active atoms, which are coupled at the end faces of the microwaves to introduce the microwaves through the vacuum window and the gas introduced through the gas supply means into plasma due to the resonance effect with the microwaves,
A plasma generating chamber having an exciting solenoid for generating magnetic force lines that generate molecules or ions, and having an opening at the other end face whose axis coincides with the central axis of the magnetic force flux generated by the solenoid; and the plasma generating chamber through the opening. A processing chamber in which a substrate, which is bonded and flows out from the opening along the magnetic flux, is subjected to surface etching or a thin film is formed by the active atoms, molecules or ions, the plasma generation chamber and the processing chamber In a dry thin film processing apparatus having an exhausting means for exhausting the exhaust gas, the one end surface of the plasma generation chamber coupled to the waveguide through the vacuum window is configured to be cooled by using a refrigerant, and The heat generated in the vacuum window due to the passage of microwaves is interposed between the vacuum window and the end face of the plasma generation chamber and / or between the waveguide and the waveguide and the plug. Dry film processing apparatus is characterized in that so as to be led to said cooled by the plasma generation chamber end surface and Ma generation chamber via an elastic sheet allowed to bind tightly.
【請求項2】特許請求の範囲第1項記載の装置におい
て、真空窓とプラズマ生成室端面との間およびまたは導
波管との間に介装される弾性シートは熱伝導性の良好な
熱伝導シートであることを特徴とする乾式薄膜加工装
置。
2. The apparatus according to claim 1, wherein the elastic sheet interposed between the vacuum window and the end face of the plasma generating chamber and / or the waveguide has a heat conductivity of good heat conductivity. A dry thin film processing device characterized by being a conductive sheet.
JP5503087A 1987-03-10 1987-03-10 Dry thin film processing equipment Expired - Fee Related JPH0620058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5503087A JPH0620058B2 (en) 1987-03-10 1987-03-10 Dry thin film processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5503087A JPH0620058B2 (en) 1987-03-10 1987-03-10 Dry thin film processing equipment

Publications (2)

Publication Number Publication Date
JPS63221622A JPS63221622A (en) 1988-09-14
JPH0620058B2 true JPH0620058B2 (en) 1994-03-16

Family

ID=12987266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5503087A Expired - Fee Related JPH0620058B2 (en) 1987-03-10 1987-03-10 Dry thin film processing equipment

Country Status (1)

Country Link
JP (1) JPH0620058B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2625756B2 (en) * 1987-09-08 1997-07-02 住友金属工業株式会社 Plasma process equipment
JP2551125B2 (en) * 1988-11-14 1996-11-06 富士通株式会社 Microwave processing equipment
US8986454B2 (en) * 2010-06-08 2015-03-24 Applied Materials, Inc. Window assembly for use in substrate processing systems

Also Published As

Publication number Publication date
JPS63221622A (en) 1988-09-14

Similar Documents

Publication Publication Date Title
JP4878782B2 (en) Plasma processing apparatus and plasma processing method
US5021114A (en) Apparatus for treating material by using plasma
KR20030004430A (en) Plasma processing device
JP2001196354A (en) Plasma treatment device
JP3585578B2 (en) Plasma processing equipment
CN110736345B (en) Process chamber and heat treatment furnace for SiC high-temperature oxidation process
JPH04279044A (en) Sample-retention device
WO2021190560A1 (en) Plasma generating device and large-volume plasma treatment system
JPH0620058B2 (en) Dry thin film processing equipment
JP3267771B2 (en) Plasma processing equipment
JPH1027784A (en) Apparatus for low-pressure processing
JP2002045683A (en) Substrate processing device
JP2000268995A (en) Plasma processing device
JPH0748487B2 (en) Dry thin film processing equipment
JPH07142414A (en) Plasma processing system
JPH10298786A (en) Surface treating device
JP2001127047A (en) Plasma treatment system
CN114360994B (en) Substrate processing apparatus
JP3337266B2 (en) Scientific deposition equipment for electron cyclotron resonance plasma
JPH11106929A (en) Plasma treatment system
US20150155141A1 (en) Plasma processing apparatus
JPS63244617A (en) Dry thin-film processing system
JP3401104B2 (en) Semiconductor film forming equipment
JPH056654Y2 (en)
JP2901331B2 (en) Microwave plasma processing equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees