JPH01120533A - Liquid crystal element and its production - Google Patents

Liquid crystal element and its production

Info

Publication number
JPH01120533A
JPH01120533A JP27877187A JP27877187A JPH01120533A JP H01120533 A JPH01120533 A JP H01120533A JP 27877187 A JP27877187 A JP 27877187A JP 27877187 A JP27877187 A JP 27877187A JP H01120533 A JPH01120533 A JP H01120533A
Authority
JP
Japan
Prior art keywords
glass
liquid crystal
crystal element
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27877187A
Other languages
Japanese (ja)
Inventor
Masahiko Yamaguchi
雅彦 山口
Mitsuru Kano
満 鹿野
Kenji Miyagawa
堅次 宮川
Eiji Imaizumi
今泉 英次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP27877187A priority Critical patent/JPH01120533A/en
Publication of JPH01120533A publication Critical patent/JPH01120533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To decrease the coloration of a display part arising from a relation between refractive index anisotropy and gap and to decrease the dependency on visual sensation by forming a glass coated film formed with fine ruggedness between a substrate and oriented film. CONSTITUTION:A transparent electrode 2 is formed on the substrate 4 and a glass coating compd. obtd. by compounding glass frit into a glass paste is screen-printed on the electrode 2 to provide the glass coated film 9 which is then subjected to a calculation treatment to form the fine ruggedness 8 on the surface of the coated film 9. After a polyimide resin is offset-printed on the glass coated film 9, the resin is cured by a heat treatment to obtain the oriented film 3. The ruggedness 8 is transferred onto the surface of the oriented film 3 if the film 3 is subjected to a rubbing treatment in such a manner that the orientation direction is perpendicular to the upper and lower substrates 4, 4. The electrode 2 and the film 3 are then successively formed on the substrate 4 and a thermosetting resin is printed as a sealant 5 on the peripheral part of the substrate 4; thereafter, spacers 6 consisting of glass power are disposed on the substrates 4 and the substrates 4 are superposed on each other. The resin is then cured and an Np liquid crystal is sealed between the substrates 4, by which the liquid crystal element is obtd.

Description

【発明の詳細な説明】 E産業上の利用分野] この発明は、表示の着色を防止でき、かつ視角依存性の
少ない液晶素子とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application] The present invention relates to a liquid crystal element that can prevent display coloring and has little viewing angle dependence, and a method for manufacturing the same.

[従来の技術] 第4図は、従来の液晶素子を示すものである。[Conventional technology] FIG. 4 shows a conventional liquid crystal element.

この液晶素子は、液晶層lが透明電極2と配向膜3を備
える2枚の透明基板4でサンドイッチされ、その外周部
がシールI/15て封着されたもので、透明基板4.4
のギャップがスペーサ6によって規制されて゛いる。
In this liquid crystal element, a liquid crystal layer 1 is sandwiched between two transparent substrates 4 having a transparent electrode 2 and an alignment film 3, and the outer periphery of the two is sealed with a seal I/15.
The gap is regulated by the spacer 6.

この液晶素子にあっては、表示の着色を防止するととも
に、視野角を拡大するために、一方の透明基板4の内面
に微細な凹凸7が形成されている。
In this liquid crystal element, fine irregularities 7 are formed on the inner surface of one transparent substrate 4 in order to prevent coloring of the display and to expand the viewing angle.

この液晶素子の凹凸7は、フッ酸などにより透明基板4
を化学的にエツチングしたり、機械的に研削したりする
ことによって製造していた。
The unevenness 7 of the liquid crystal element is removed from the transparent substrate 4 by using hydrofluoric acid or the like.
It was manufactured by chemically etching or mechanically grinding.

[発明が解決しようとする問題点] 上記従来の液晶素子にあっては、透明基板4面に設けら
れた凹凸7が、幅や高さが不均一である上に、凹から凸
への又は凸から凹への変化が滑らかでなく角(!りが多
いなど、その形状が極めて不規則的で乱れたものであっ
たので、表示部の着色効果を十分緩和できず、また視野
角を十分法げることかできない不都合があった。
[Problems to be Solved by the Invention] In the conventional liquid crystal element described above, the unevenness 7 provided on the surface of the transparent substrate 4 is uneven in width and height, and also has irregularities from concave to convex. The change from convex to concave was not smooth and the shape was extremely irregular and disordered, with many corners (!), so the coloring effect on the display could not be sufficiently alleviated, and the viewing angle could not be sufficiently reduced. There was an inconvenience that nothing could be done about it.

また、このような液晶素子を製造する際には、上記のよ
うなフッ酸エツチング、研摩処理等の基板表面処理の工
程を要していたため、作業の複雑化および作業管理の煩
雑化などという問題もあった。
In addition, when manufacturing such liquid crystal elements, substrate surface treatment processes such as hydrofluoric acid etching and polishing treatment as described above are required, resulting in problems such as complicated work and complicated work management. There was also.

そこで、この発明は、上述の問題点を解消し、表示の着
色が緩和され、かつ視野角の広い液晶素子を効率良く提
供することを目的としている。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to solve the above-mentioned problems and to efficiently provide a liquid crystal element in which coloring of the display is alleviated and the viewing angle is wide.

r問題点を解決するための手段]、 第1発°明の液晶素子は、基板と配向膜の間に、ガラス
ペースト中にガラスフリットを分散させてなる塗料から
なり、かつ微細な凹凸が設けられたガラス塗膜を形成し
たものである。
[Means for Solving Problems]] The liquid crystal element of the first invention is made of a paint made of a glass paste with glass frit dispersed between the substrate and the alignment film, and is provided with fine irregularities. A glass coating film is formed.

また第2発明の製造方法は、第1発明の液晶素子を製造
する方法であって、基板上に、ガラスペースト中にガラ
スフリットを分散させてなる塗料を塗布した後、萌記ガ
ラスフリットの軟化温度より低温にて焼成処理を施し、
次いでこの上に配向膜を形成するものである。
Further, the manufacturing method of the second invention is a method of manufacturing the liquid crystal element of the first invention, which comprises applying a paint made of glass frit dispersed in glass paste onto the substrate, and then softening the glass frit. Baking treatment is performed at a lower temperature than the
Next, an alignment film is formed thereon.

そしてこのような第1発明の液晶素子にあっては、基板
に直接微細な凹凸が設けられていた従来の液晶素子に比
較して、幅や高さがより均一でかつ滑らかに変化する凹
凸が一様に分散した形状の乙のとなるので、表示部の着
色が少なく、視角依存性の少ない液晶素子となる。また
第2発明の製造方法にあっては、この表示部の着色が少
なく視角依存性の少ない第1発明の液晶素子を効率良く
かつ再現良く製造することができる利点がある。
The liquid crystal element of the first invention has unevenness that changes width and height more uniformly and smoothly, compared to conventional liquid crystal elements in which minute unevenness is provided directly on the substrate. Since the shape is uniformly dispersed, the display portion is less colored, resulting in a liquid crystal element with less viewing angle dependence. Further, the manufacturing method of the second invention has the advantage that the liquid crystal element of the first invention, which has less coloring in the display portion and less viewing angle dependence, can be manufactured efficiently and with good reproducibility.

以下、この発明を図面に基いて詳細に説明する。Hereinafter, this invention will be explained in detail based on the drawings.

第1図は、この発明の液晶素子の一例を示すものである
FIG. 1 shows an example of a liquid crystal element of the present invention.

第1図中符号1が液晶層で、この液晶層Iが、透明電極
2と配向膜3を備える2枚の透明基板4゜4でサンドイ
ッチされ、その外周部がシール材5で封着されたもので
、透明基板4.4のギャップがスペーサ6によって規制
されて、この液晶素子となっている。ここで、この液晶
素子が従来の液晶素子と異なる点は、一方の透明基板°
4と配向膜3との間に、ガラスペースト中にガラスフリ
ットを分散させてなる塗料からなり、かつ微細な凹凸8
が設けられたガラス塗膜9が形成されたことである。
Reference numeral 1 in FIG. 1 is a liquid crystal layer, and this liquid crystal layer I is sandwiched between two transparent substrates 4° 4 each having a transparent electrode 2 and an alignment film 3, and its outer periphery is sealed with a sealing material 5. The gap between the transparent substrates 4.4 is regulated by the spacers 6 to form this liquid crystal element. The difference between this liquid crystal element and conventional liquid crystal elements is that one transparent substrate is
4 and the alignment film 3, there is a paint made of a glass paste with glass frit dispersed therebetween, and a fine unevenness 8.
This means that a glass coating film 9 is formed.

上記ガラスペーストおよびガラスフリットには、石英ガ
ラス(S+Ot)等任意のものが選ばれて使用されてよ
いが、このガラスフリットはガラスペーストよりも高い
軟化温度を有していることが必須である。また、このガ
ラスフリットは、粒径が20μm以下程以下法状のもの
が好適に使用される。
For the glass paste and glass frit, any material such as quartz glass (S+Ot) may be selected and used, but it is essential that the glass frit has a higher softening temperature than the glass paste. Further, this glass frit having a particle size of about 20 μm or less and a regular shape is preferably used.

そして、このガラスフリットは、上記ガラスペースト中
に30重量%程度の1度で配合され、さらに例えば2−
エチルヘキシルアルコール:エチルセルロース−9二1
などのビヒクル中に分散されて塗料とされた後に、使用
に供される。
Then, this glass frit is blended into the glass paste at a concentration of about 30% by weight, and further, for example, 2-
Ethylhexyl alcohol: Ethylcellulose-921
It is used after being dispersed in a vehicle such as paint to make a paint.

また、上記塗料か塗布されて形成される凹凸8は、周期
200μn以下程度に形成されることか望ましい。また
、この凹凸8の高低差は、上記ガラスフリットの粒径に
よって決まるものであるので、通常5μmとなる。
Further, it is desirable that the unevenness 8 formed by applying the above-mentioned paint be formed with a period of about 200 μn or less. Further, the difference in height of the unevenness 8 is determined by the particle size of the glass frit, so it is usually 5 μm.

またこのような凹凸8を育する塗膜9の上に設けられる
上記配向膜3は、流動性を有する状態で基板に塗布され
その後、硬化せしめられて配向膜となるような物質によ
って形成されるもので、熱硬化性の物質、特にポリイミ
ドなどの熱硬化性樹脂等が好適に使用されるが、これに
限られず、熱可塑性の物質が使用されてもよい。
Further, the alignment film 3 provided on the coating film 9 that grows such unevenness 8 is formed of a material that is applied to the substrate in a fluid state and then hardened to become an alignment film. Thermosetting substances, particularly thermosetting resins such as polyimide, etc. are preferably used, but the material is not limited thereto, and thermoplastic substances may also be used.

このような液晶素子にあっては、ガラスペースト中にガ
ラスフリットが分散された塗料からなるガラス塗膜9が
形成されて、その表面に微細な凹凸8が設けられている
ので、基板4に直接凹凸7が設けられていた従来の液晶
素子に比較して、幅や高さがより均一でかつ滑らかに変
化する凹凸8が一様に分布した形状のものとなる。
In such a liquid crystal element, a glass coating film 9 made of a paint in which glass frit is dispersed in glass paste is formed, and its surface is provided with fine irregularities 8, so that it can be directly applied to the substrate 4. Compared to the conventional liquid crystal element in which the unevenness 7 is provided, the liquid crystal element has a shape in which the unevenness 8 is uniformly distributed and the width and height are more uniform and change smoothly.

次に、第2発明の製造方法は、第1発明の液晶素子を製
造する方法であって、基板上に、ガラスペースト中にガ
ラスフリットを分散させてなる塗料を塗布した後、前記
ガラスフリットの軟化温度より低温にて焼成処理を施し
、次いでこの上に配向膜を形成するものである。
Next, the manufacturing method of the second invention is a method of manufacturing the liquid crystal element of the first invention, in which a paint comprising a glass frit dispersed in a glass paste is applied onto the substrate, and then the glass frit is dispersed in the glass paste. A firing process is performed at a temperature lower than the softening temperature, and then an alignment film is formed thereon.

以下、この製造方法の一例を工程順に詳細に説明する。Hereinafter, an example of this manufacturing method will be explained in detail in the order of steps.

〔工程1〕 ガラスペースト中にガラスフリットを分散させた塗料を
作成する。ここで使用されるガラスフリットは、上述の
ように、ガラスペースト′よりも軟化温度が高く、また
粒径20μm以下程以下法状のものである。この粒径の
ガラスフリットは、例えばふるいなどを用いて分級され
るが、このふるいのメツシュ数を変えることにより所望
の大きさの6のが得られ、これによって、後工程で形成
される凹凸8の幅や高さなどの大きさを適宜変えること
ができる。そして、ガラスペースト中に上記ガラスフリ
ットを所定濃度配合し、さらに、2−ヘキシルアルコー
ル/エチルセルロース系などのビヒクル中に分散させて
、塗料を作成する。
[Step 1] Create a paint with glass frit dispersed in glass paste. As mentioned above, the glass frit used here has a higher softening temperature than the glass paste' and has a grain size of about 20 μm or less. Glass frit of this particle size is classified using, for example, a sieve, and by changing the number of meshes on this sieve, the desired size of glass frit can be obtained. The width, height, etc. of the image can be changed as appropriate. Then, the glass frit is blended at a predetermined concentration into a glass paste, and further dispersed in a vehicle such as 2-hexyl alcohol/ethyl cellulose to prepare a paint.

〔工程2〕 透明基板4上に透明電極2を形成する。この透明電極2
には、インジウム・スズ酸化物(ITO)等が好適に使
用され、スパッタリング法や真空蒸着法などによって、
厚さ0.Iμm程度に被着されて、透明電極2となる。
[Step 2] A transparent electrode 2 is formed on a transparent substrate 4. This transparent electrode 2
Indium tin oxide (ITO) is suitably used for this purpose, and can be formed by sputtering or vacuum evaporation.
Thickness 0. The transparent electrode 2 is deposited to a thickness of about I μm.

〔工程3〕 nη記〔工程1〕で得た塗料を、上記透明電極2上に塗
布して、厚さ1.0μm程度のガラス塗膜9を形成する
。ここでこの塗布の方法には、スクリーン印刷法が好適
に採用されるが、この他にも、スピンコード法やはけ塗
り法などの方法が採られてもよい。
[Step 3] The paint obtained in Step 1 is applied onto the transparent electrode 2 to form a glass coating film 9 with a thickness of about 1.0 μm. Here, a screen printing method is suitably employed as the coating method, but other methods such as a spin cord method and a brush coating method may also be employed.

〔工程4〕 次いで、焼成処理を施す。この焼成処理は、上記塗料中
のガラスペーストの軟化温度よりも高く、かつ上記ガラ
スフリットの軟化温度よりも低い温度において行われる
ことが必須である。すなわち、480〜500℃程度の
温度に加熱された通常のエナメル塗布焼付炉などを利用
して行なう。この温度における焼成によれば、上記塗料
中の溶剤が揮散するとともに、塗料中のガラスペースト
分だけが溶融して、ガラスフリット分が溶融せずに元の
形状を保持したまま残る。そして、これが冷却されると
、ガラスフリットの周面が転写されてなる凹凸8が一様
に分散された表面を有するガラス塗膜9が得られる。こ
の凹凸8は、使用したガラスフリットの粒径を反映した
幅や高さを有し、例えば幅100μm、高さ5μm程度
の大きさのものである。
[Step 4] Next, a firing treatment is performed. It is essential that this firing treatment be performed at a temperature higher than the softening temperature of the glass paste in the paint and lower than the softening temperature of the glass frit. That is, the process is carried out using a normal enamel coating and baking furnace heated to a temperature of about 480 to 500°C. By firing at this temperature, the solvent in the paint evaporates, and only the glass paste in the paint melts, while the glass frit remains unmelted and retains its original shape. When this is cooled, a glass coating film 9 having a surface in which irregularities 8 formed by transferring the peripheral surface of the glass frit are uniformly distributed is obtained. The unevenness 8 has a width and height that reflect the particle size of the glass frit used, and is, for example, about 100 μm wide and 5 μm high.

ここで、上記の焼成処理温度を、特に上記ガラスフリッ
トの軟化温度よりも10〜20℃程度低い温度とするこ
とが、より好ましい。この温度は、上記ガラスフリット
が球状を保ったまま表面だけがわずかに溶融し始める程
度の温度であるため、この温度の焼成処理によればこの
ガラスフリットの表面がだれて、この表面上の角ぼりゃ
でこぼこがとれた滑らかな凹凸8が得られる。
Here, it is more preferable to set the above-mentioned firing treatment temperature to a temperature that is approximately 10 to 20°C lower than the softening temperature of the glass frit. This temperature is such that only the surface of the glass frit starts to melt slightly while maintaining its spherical shape, so if the firing process is performed at this temperature, the surface of the glass frit will sag and the corners on this surface will be slightly melted. Smooth unevenness 8 with no unevenness can be obtained.

C工程5〕 次に、上記凹凸8を有する塗膜9の表面上に、配向膜3
を形成する。この配向膜3には、ポリイミドやポリアミ
ド等の熱硬化性樹脂が好適に使用され、流動性を有する
状態で塗布されて、その後硬化仕しめられて配向膜3と
される。塗布にはスクリーン印刷法、オフセット印刷法
、スピンコード法、はけ塗り法などが採られ、厚さ0.
1μm程度の配向膜3とする。また、この配向膜3には
、上記のような熱硬化性樹脂以外にも、熱可塑性の物質
などが使用されてもよい。
Step C5] Next, on the surface of the coating film 9 having the unevenness 8, an alignment film 3 is applied.
form. A thermosetting resin such as polyimide or polyamide is suitably used for this alignment film 3, and is applied in a fluid state and then hardened to form the alignment film 3. Screen printing method, offset printing method, spin code method, brush coating method, etc. are used for coating, and the thickness is 0.
The alignment film 3 is about 1 μm thick. Further, in addition to the above-mentioned thermosetting resin, a thermoplastic substance or the like may be used for the alignment film 3.

〔工程6〕 〔工程!〕〜〔工程5〕により得られた基板と、上記各
工程の内、ガラス塗膜9を形成する工程〔工程1〕〔工
程3〕、およびその焼成処理工程〔工程4〕を除く他は
同様に作成して得た基板とを、その配向膜3,3間士が
対向するように配置するとともに、この2枚の基板4.
4間のギャップをスペーサ6によって規制し、その外周
部をシール材5で封着する。そして、この内部を液晶層
lとした液晶素子を作成する。さらに、このような液晶
素子にあっては、上記基板4.4の外面上に適宜偏向板
や反射板等が貼着されてもよい。
[Process 6] [Process! ] to [Step 5] and the same except for the step of forming the glass coating film 9 [Step 1], [Step 3], and the firing treatment step [Step 4] among the above steps. The two substrates 4 and 4 are placed so that the alignment films 3 and 3 are facing each other, and the two substrates 4 and 4 are placed so that the alignment films 3 and 3 are facing each other.
4 is regulated by a spacer 6, and its outer periphery is sealed with a sealing material 5. Then, a liquid crystal element with a liquid crystal layer l inside this is created. Further, in such a liquid crystal element, a polarizing plate, a reflecting plate, etc. may be appropriately attached on the outer surface of the substrate 4.4.

以上ここでは、上記凹凸8を有するガラス塗膜9を透明
電極2の上に形成した例について述べたが、このガラス
塗膜9は基板4上に直接形成され、その上に透明電極2
が設けられてもよい。また、上記配向膜3の下のいずれ
かの層の間には、必要に応じ適宜下地層などが設けられ
てもよい。
Here, an example has been described in which the glass coating film 9 having the unevenness 8 is formed on the transparent electrode 2. However, this glass coating film 9 is directly formed on the substrate 4, and the transparent electrode 2 is placed on it.
may be provided. Furthermore, an appropriate base layer or the like may be provided between any of the layers below the alignment film 3, if necessary.

このような液晶素子の製造方法によれば、ガラスペース
ト中にガラスフリットを分散させてなる塗料からなり、
かつ凹凸8を設けた塗膜9を形成した後、このガラスフ
リットの軟化温度より低温にて焼成処理を施したので、
幅や高さがより均一な凹凸8が一様に分散した塗膜9面
が容易に得られる。またここで得られた凹凸8は、ガラ
スフリットの球面が転写されるとともに、焼、酸処理に
よってガラスフリット表面の角ぼりゃでこぼこが除かれ
るので、滑らかに変化する均一な凹凸8となるものであ
る。
According to the manufacturing method of such a liquid crystal element, the paint is made of a glass paste with glass frit dispersed therein.
After forming the coating film 9 with the unevenness 8, a firing treatment was performed at a temperature lower than the softening temperature of the glass frit.
A surface of the coating film 9 in which the irregularities 8 having more uniform width and height are uniformly dispersed can be easily obtained. In addition, the unevenness 8 obtained here is a uniform unevenness 8 that changes smoothly because the spherical surface of the glass frit is transferred and the rough edges and irregularities on the surface of the glass frit are removed by baking and acid treatment. be.

[実施例] 第1発明の液晶素子の一実施例を作成した。この液晶素
子は、第1図に示したものと同等の構造を有してなるT
N型のものである。図中符号4゜4はそれぞれガラス製
の基板である。これら基板4.4には、それぞれITO
製の透明電極2.2が設けられている。そして一方の透
明電極2の上には、厚さ0.1μmのポリイミド製の配
向膜3が設けられている。また、他方の透明電極2の上
には微細な凹凸8が設けられたガラス塗膜9が形成され
ている。この微細な凹凸8は、高低差が平均4.0μ、
周期が平均100μのらのである。そしてさらにこのガ
ラス塗膜9の上にはポリイミド製の配向膜3が設けられ
ている。さらに、これら基板4.4間のギャップは、直
径lOμmのスペーサ6によって規制されており、また
2枚の基板4゜4間の間隙はシール材5によって密閉さ
れている。
[Example] An example of the liquid crystal element of the first invention was created. This liquid crystal element has a structure similar to that shown in FIG.
It is of type N. Reference numerals 4 and 4 in the figure each indicate a glass substrate. Each of these substrates 4.4 is made of ITO.
A transparent electrode 2.2 made of On one transparent electrode 2, an alignment film 3 made of polyimide and having a thickness of 0.1 μm is provided. Moreover, a glass coating film 9 having fine irregularities 8 is formed on the other transparent electrode 2 . This fine unevenness 8 has an average height difference of 4.0μ,
The average period is 100μ. Further, on this glass coating film 9, an alignment film 3 made of polyimide is provided. Further, the gap between these substrates 4.4 is regulated by a spacer 6 having a diameter of 10 μm, and the gap between the two substrates 4.4 is sealed by a sealing material 5.

次に、この液晶素子の製造方法を説明する。Next, a method for manufacturing this liquid crystal element will be explained.

まず通常の方法で基板4上にITOをスパッタリング法
により蒸着して厚さ0.1μmの透明電極2とした。
First, ITO was deposited on the substrate 4 by sputtering in a conventional manner to form a transparent electrode 2 having a thickness of 0.1 μm.

次に、ガラスペースト(奥野製薬工業(味)製)の中に
粒径20μmのガラスフリットを3重量%配合した後、
均一に分散させてガラス塗料を作成した。ここで、使用
したガラスペーストおよびガラスフリットの軟化温度は
、それぞれ415℃、450℃のものとした。
Next, after blending 3% by weight of glass frit with a particle size of 20 μm into glass paste (manufactured by Okuno Pharmaceutical Industries (Aji)),
A glass paint was created by uniformly dispersing it. Here, the softening temperatures of the glass paste and glass frit used were 415°C and 450°C, respectively.

このガラス塗料を上記ITO製の透明電極2上にスクリ
ーン印刷して、厚さ1.0μのガラス塗膜9を設け、次
いで、500℃の温度で焼成処理を施した。この焼成処
理後のガラス塗膜9の表面には、微細な凹凸8が形成さ
れていた。
This glass paint was screen printed on the transparent electrode 2 made of ITO to form a glass coating film 9 with a thickness of 1.0 μm, and then fired at a temperature of 500°C. Fine irregularities 8 were formed on the surface of the glass coating film 9 after this baking treatment.

次に、上記ガラス塗膜8上にポリイミド樹脂を1000
人の膜厚になるようにオフセット印刷した後、このポリ
イミド樹脂を200℃で1時間熱処理して硬化させ、配
向膜3とした。
Next, 1000% of polyimide resin was applied on the glass coating film 8.
After offset printing to a human film thickness, this polyimide resin was heat-treated at 200° C. for 1 hour to harden it, and an alignment film 3 was obtained.

さらに、配向膜3をラビング処理した。このラビング処
理は、上下基板4.4を合わせた際に、この基板4.4
に対して鉛直方向になるように行った。
Furthermore, the alignment film 3 was subjected to a rubbing treatment. This rubbing process is performed when the upper and lower substrates 4.4 are combined.
The direction was perpendicular to .

このようにして作成した配向膜3の表面上には、先のガ
ラス塗膜9面上の凹凸8が転写されていた。
The unevenness 8 on the surface of the glass coating film 9 was transferred onto the surface of the alignment film 3 thus created.

この微細な凹凸8を表面粗度計によって測定した。The fine irregularities 8 were measured using a surface roughness meter.

この結果を、従来の液晶素子に使用されていた基板4面
の微細な凹凸7の表面粗度と比較して、第2図に示す。
The results are shown in FIG. 2 in comparison with the surface roughness of fine irregularities 7 on the surface of the substrate 4 used in a conventional liquid crystal element.

第2図より明らかなように、この実施例におけ−る凹凸
8は従来のものに比べ、その周期や幅、高低差などが均
一で、かつ滑らかに変化する乙のであった。
As is clear from FIG. 2, the unevenness 8 in this embodiment was more uniform in period, width, height difference, etc. and changed smoothly compared to the conventional one.

次いで、他方、通常の方法で基板4上に、透明電極2、
配向膜3を順次形成した。
Next, on the other hand, a transparent electrode 2,
Alignment films 3 were sequentially formed.

これら透明基板4.4の周辺部に、シール材5として熱
硬化型樹脂をスクリーン印刷した後、基板4にスペーサ
6となるガラス粉末を散布し、その後基板4.4を張り
合わせて、170℃に加熱してこの熱硬化型樹脂を硬化
させた。次いで、基板4.4間に形成された間隙に、N
p液晶を封入し、液晶セルとし、このセルの上面側基板
4の外側には偏向板、下面側基板4の外側には反射板を
貼着して、液晶素子とした。
After screen-printing a thermosetting resin as a sealing material 5 on the periphery of these transparent substrates 4.4, glass powder that will become a spacer 6 is sprinkled on the substrate 4, and then the substrates 4.4 are pasted together and heated to 170°C. This thermosetting resin was cured by heating. Next, N is applied to the gap formed between the substrates 4.4.
A p-liquid crystal was sealed to form a liquid crystal cell, and a polarizing plate was attached to the outside of the upper substrate 4 of this cell, and a reflecting plate was attached to the outside of the lower substrate 4 to form a liquid crystal element.

このようにして得られた実施例の液晶素子と従来の液晶
素子について、それぞれの視角依存性と表示部の着色を
調べた。
The viewing angle dependence and coloring of the display portion of the liquid crystal element of the example thus obtained and the conventional liquid crystal element were investigated.

(視角依存性) 液晶素子を水平にセットし、法線方向から順次視角を変
えて表示の色、コントラストなど表示品位を観察した。
(Viewing angle dependence) The liquid crystal element was set horizontally, and the viewing angle was sequentially changed from the normal direction to observe display quality such as display color and contrast.

結果を第1表に示す。The results are shown in Table 1.

注)O:表示品位が視角0°と同じ △:表示品位が視角0°より低下 ×:表示が全く視認できない 第1表の結果から、この発明の液晶素子は、従来のらの
に比較して視角依存性がさらに改善されていることが判
明した。
Note) O: The display quality is the same as the viewing angle of 0°. △: The display quality is lower than the viewing angle of 0°. It was found that the viewing angle dependence was further improved.

(表示色) 国際照明委員会(CI E)によって規定された標準光
源Cを液晶素子に照射した時の液晶素子の表示色を測定
し、(xy)−色度図にプロットした。
(Display Color) The display color of the liquid crystal element when the liquid crystal element was irradiated with standard light source C specified by the International Commission on Illumination (CIE) was measured and plotted on an (xy)-chromaticity diagram.

結果を第3図に示す。The results are shown in Figure 3.

第3図の結果から、この発明の液晶素子は、従来のもの
に比較して表示色がより光源色に近く、着色が少ないこ
とが判明した。
From the results shown in FIG. 3, it was found that the liquid crystal element of the present invention had a display color closer to the light source color and was less colored than the conventional liquid crystal element.

[発明の効果コ 以上説明したように、第1発明の液晶素子では、基板と
配向膜の間に、ガラスペースト中にガラスフリットを分
散させてなる塗料からなり、かつ微細な凹凸が設けられ
たガラス塗膜が形成されたものであるので、幅や高さが
より均一で滑らかに変化する凹凸が一様に分散されたガ
ラス塗膜面が得られる。したがって、第1発明によれば
、屈折率異方性とギャップの関係から生じる表示部の着
色が少なく、視角依存性の少ない液晶素子を提供するこ
とができる。
[Effects of the Invention] As explained above, in the liquid crystal element of the first invention, a paint made of a glass paste with glass frit dispersed therein is formed between the substrate and the alignment film, and fine irregularities are provided. Since a glass coating film is formed, it is possible to obtain a glass coating surface with uniformly dispersed irregularities whose width and height change more uniformly and smoothly. Therefore, according to the first aspect of the invention, it is possible to provide a liquid crystal element in which the display portion is less colored due to the relationship between the refractive index anisotropy and the gap and has less viewing angle dependence.

また第2発明の製造方法は、基板上に、ガラスペースト
中にガラスフリットを分散させてなる塗料を塗布した後
、このガラスフリットの融点より低温にて焼成処理を施
し、次いでこの上に配向膜を形成する方法であるので、
表示部の着色が少なく、視角依存性の少ない第1発明の
液晶素子を効率良くかつ再現良く製造することができる
Further, in the manufacturing method of the second invention, after coating a paint made of a glass frit dispersed in a glass paste on a substrate, a baking treatment is performed at a temperature lower than the melting point of the glass frit, and then an alignment film is applied on the substrate. Since it is a method of forming
The liquid crystal element of the first invention, in which the display portion is less colored and has less viewing angle dependence, can be manufactured efficiently and with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の液晶素子の一例を示す断面図、第
2図は、一実施例と従来例の液晶素子におけるそれぞれ
の凹凸の設けられた表面の粗度を測定した結果を示すグ
ラフ、第3図はそれぞれの表示色を調べた結果を示す(
icy)−色度図、第4図は従来の液晶素子を示す断面
である。 3・・・・・・配向膜、  4・・・・・・基板、8・
・・・・・凹凸、    9・・・・・・ガラス塗膜。
FIG. 1 is a cross-sectional view showing an example of the liquid crystal element of the present invention, and FIG. 2 is a graph showing the results of measuring the roughness of the uneven surface of the liquid crystal elements of one embodiment and a conventional example. , Figure 3 shows the results of examining each display color (
icy)-chromaticity diagram, FIG. 4 is a cross section showing a conventional liquid crystal element. 3...Alignment film, 4...Substrate, 8.
...Irregularities, 9...Glass coating.

Claims (4)

【特許請求の範囲】[Claims] (1)基板と配向膜の間に、ガラスペースト中にガラス
フリットを分散させてなる塗料からなり、かつ微細な凹
凸が設けられたガラス塗膜が形成されたことを特徴とす
る液晶素子。
(1) A liquid crystal element characterized in that a glass coating film made of a paint made by dispersing glass frit in a glass paste and provided with fine irregularities is formed between a substrate and an alignment film.
(2)前記ガラスフリットの軟化温度がガラスペースト
の軟化温度より高温であることを特徴とする特許請求の
範囲第1項記載の液晶素子。
(2) The liquid crystal element according to claim 1, wherein the softening temperature of the glass frit is higher than the softening temperature of the glass paste.
(3)基板上に、ガラスペースト中にガラスフリットを
分散させてなる塗料を塗布した後、前記ガラスフリット
の軟化温度より低温にて焼成処理を施し、次いでこの上
に配向膜を形成することを特徴とする液晶素子の製造方
法。
(3) After applying a paint consisting of a glass frit dispersed in a glass paste onto the substrate, a baking treatment is performed at a temperature lower than the softening temperature of the glass frit, and then an alignment film is formed on the coating. Characteristic method for manufacturing liquid crystal elements.
(4)前記焼成処理温度が、前記ガラスフリットの軟化
温度より10〜20℃低い温度であることを特徴とする
特許請求の範囲第3項記載の液晶素子の製造方法。
(4) The method for manufacturing a liquid crystal element according to claim 3, wherein the firing temperature is 10 to 20° C. lower than the softening temperature of the glass frit.
JP27877187A 1987-11-04 1987-11-04 Liquid crystal element and its production Pending JPH01120533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27877187A JPH01120533A (en) 1987-11-04 1987-11-04 Liquid crystal element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27877187A JPH01120533A (en) 1987-11-04 1987-11-04 Liquid crystal element and its production

Publications (1)

Publication Number Publication Date
JPH01120533A true JPH01120533A (en) 1989-05-12

Family

ID=17601956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27877187A Pending JPH01120533A (en) 1987-11-04 1987-11-04 Liquid crystal element and its production

Country Status (1)

Country Link
JP (1) JPH01120533A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613037A2 (en) * 1993-01-29 1994-08-31 Sharp Kabushiki Kaisha A liquid crystal display apparatus,a method for producing the same,and a substrate
US5579141A (en) * 1993-07-23 1996-11-26 Sharp Kabushiki Kaisha Liquid crystal display apparatus having regions with different pretilt angles
US5594570A (en) * 1993-07-30 1997-01-14 Sharp Kabushiki Kaisha Liquid crystal display device and method for producing the same
US5627667A (en) * 1993-01-29 1997-05-06 Sharp Kabushiki Kaisha Liquid crystal display apparatus, a method for producing the same, and a substrate
US5666178A (en) * 1993-07-30 1997-09-09 Sharp Kabushiki Kaisha Liquid crystal display apparatus having plural regions of different aligning conditions and method for producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613037A2 (en) * 1993-01-29 1994-08-31 Sharp Kabushiki Kaisha A liquid crystal display apparatus,a method for producing the same,and a substrate
EP0613037A3 (en) * 1993-01-29 1994-11-02 Sharp Kk A liquid crystal display apparatus,a method for producing the same,and a substrate.
US5627667A (en) * 1993-01-29 1997-05-06 Sharp Kabushiki Kaisha Liquid crystal display apparatus, a method for producing the same, and a substrate
US5657102A (en) * 1993-01-29 1997-08-12 Sharp Kabushiki Kaisha Liquid crystal display apparatus, a method for producing the same, and a substrate having an alignment layer with different degrees of roughness
US5691792A (en) * 1993-01-29 1997-11-25 Sharp Kabushiki Kaisha Method for producing a liquid crystal display apparatus by irradiating an aligning film with light to reduce pretilt angles of liquid crystal molecules thereof
US5579141A (en) * 1993-07-23 1996-11-26 Sharp Kabushiki Kaisha Liquid crystal display apparatus having regions with different pretilt angles
US5594570A (en) * 1993-07-30 1997-01-14 Sharp Kabushiki Kaisha Liquid crystal display device and method for producing the same
US5652634A (en) * 1993-07-30 1997-07-29 Sharp Kabushiki Kaisha Multiple domain liquid crystal display device with particular reference orientation directions and method for producing the same
US5666178A (en) * 1993-07-30 1997-09-09 Sharp Kabushiki Kaisha Liquid crystal display apparatus having plural regions of different aligning conditions and method for producing the same
US5689322A (en) * 1993-07-30 1997-11-18 Sharp Kabushiki Kaisha Liquid crystal display device having regions with different twist angles
US5855968A (en) * 1993-07-30 1999-01-05 Sharp Kabushiki Kaisha Liquid crystal display device and method for producing the same
US6013335A (en) * 1993-07-30 2000-01-11 Sharp Kabushiki Kaisha Liquid crystal display apparatus and method for processing the same

Similar Documents

Publication Publication Date Title
KR920010016B1 (en) Liquid crystal display device and color filter for use with the liquid crystal display device and method of making the color filter
JP2654940B2 (en) Manufacturing method of electro-optical element
JPH075479A (en) Production of ferromagnetic liquid crystal element
JP2000047200A (en) Diffusive reflector, liquid crystal display device using that, and its production
JPH01120533A (en) Liquid crystal element and its production
JPH01120532A (en) Liquid crystal element and its production
JPS61173221A (en) Formation of liquid crystal display device
JPH01120531A (en) Liquid crystal element and its production
JPH04136916A (en) Liquid crystal panel and production of liquid crystal panel
JPH0146852B2 (en)
JPH02217823A (en) Production of liquid crystal display device
JPH04308816A (en) Reflection type liquid crystal display device and production thereof
JPS6263918A (en) Liquid crystal element
JPH02201424A (en) Production of liquid crystal display device
JPH01120530A (en) Liquid crystal element and its production
JPS63123015A (en) Manufacture of curved surface liquid crystal cell
KR100488585B1 (en) The method for making modulator using in electro-optical apparatus
JPS63129321A (en) Ferroelectric liquid crystal element and its production
JPH02311802A (en) Formation of color filter of color liquid crystal display element
JP2720780B2 (en) Method for manufacturing reflective electrode plate
JPH01241520A (en) Liquid crystal display device
JPS61173222A (en) Liquid crystal display device
JPH04296721A (en) Color filter and its manufacture, and liquid crystal display device using the same
JPH07230090A (en) Liquid crystal display device and its production
JPH02123329A (en) Color filter