JPH01119051A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH01119051A
JPH01119051A JP62276610A JP27661087A JPH01119051A JP H01119051 A JPH01119051 A JP H01119051A JP 62276610 A JP62276610 A JP 62276610A JP 27661087 A JP27661087 A JP 27661087A JP H01119051 A JPH01119051 A JP H01119051A
Authority
JP
Japan
Prior art keywords
circuit
output
simultaneous
circuits
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62276610A
Other languages
Japanese (ja)
Other versions
JPH0744259B2 (en
Inventor
Tsutomu Hatano
波田野 勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62276610A priority Critical patent/JPH0744259B2/en
Publication of JPH01119051A publication Critical patent/JPH01119051A/en
Publication of JPH0744259B2 publication Critical patent/JPH0744259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To reduce noise attributable to simultaneous operation of a plurality of circuits and to prevent erroneous operation of the circuits by relatively chang ing circuit constants of the output circuits which operate simultaneously, and finely adjusting the timing for their simultaneous operation. CONSTITUTION:By inserting a resistance, R6=0-100OMEGA, while changing its resis tance value to each of a plurality of output circuits which operate simultaneous ly, a delay in time constants DELTAt by R6 occurs in both outputs relative to the timing of the simultaneous operation, relatively reducing a component ndI/dt in equation (1). It is required in a diagram showing changes in output voltage and current that the sum of an ordinary delay DELTAt and R6 induced delay DELTAt be less than a delay required by circuit tpd, but DELTAt required for reducing dI/dt may be at levels of tr, tf, such being acceptable in terms of tpd required in ordinary simultaneous operations. Provided, L: self or mutual inductance compo nent of power or ground voltage: DELTAV: change in voltage by L; dI/dt: change in current by time per output circuit; n: number of simultaneous output operations.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体集積回路に関し、特に出力回路の同時
動作によるノイズ対策に間するものであ[従来の技術お
よびその問題点コ 半導体集積回路において主なノイズ発生源は外部とのイ
ンタフェースをとる出力回路部であり、出力回路部で発
生したノイズが論理振幅の小さい内部回路に影響し誤動
作の原因になる。このため従来から電源に関して出力系
と内部系を分離して布線し、内部系へのノイズが極力抑
えられるような工夫がなされてきた。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to semiconductor integrated circuits, and particularly to measures against noise caused by simultaneous operation of output circuits. The main source of noise is the output circuit that interfaces with the outside, and the noise generated in the output circuit affects internal circuits with small logic amplitudes, causing malfunctions. For this reason, conventional efforts have been made to separate the power supply system from the output system and wire the internal system in order to suppress noise to the internal system as much as possible.

一方出力系のノイズは特に同時動作する複数の出力回路
が存在する場合に大きく、同時動作によって発生したノ
イズは他の出力回路の誤動作を招くため例えばゲートア
レイ方式集積回路においては、ユーザの回路仕様に対し
て出力回路の同時動作制限を設けざるを得なくなってい
る。出力回路の同時動作によるノイズについて第6図に
測定例を示す。第2図は測定に用いた集積回路の出力回
路図であり、R1−R5は抵抗、Q1〜Q4はショット
キ・クランプ付NPN)ランジスタ、Q5はNPN)ラ
ンジスタを表し、これらによってTTL (Trans
istor−Transistor−Logic)回路
を構成している。CLは外部負荷である。第6図は第2
図TTL回路を複数個同時に動作とさせたときの出力電
位の時間変化である。第6図には電源電流と接地電流の
時間変化もあわせて示している。出力がLowからHl
ghへ変化するとき第2図a回路において電流は、主に
電源からR4〜Q5のパスを通って外部負荷C2を充電
する。この時半導体内及びパッケージの寄生したインダ
クタンス成分り等によって電源電流は揺動され、これに
よる電源電位の変動は共通の電源に連なる出力回路の高
レベルノイズマージンを低下させることになる。電源電
流の揺動は相互インダクタンス等によって接地電位の変
動をも生ぜしめ同時動作とは無間係の出力回路あるいは
近接の内部回路の低レベルノイズマージンを低下させる
。出力が高レベルから低レベルへ変化するときは負荷C
LからQ4へ電流が流れるが、上述と同様の現象によっ
て回路の誤動作の原因となる。
On the other hand, noise in the output system is particularly large when there are multiple output circuits that operate simultaneously, and the noise generated by simultaneous operations causes malfunctions in other output circuits. Therefore, it is necessary to impose restrictions on the simultaneous operation of output circuits. FIG. 6 shows an example of measurement of noise caused by simultaneous operation of the output circuits. Figure 2 is an output circuit diagram of the integrated circuit used in the measurement.
istor-Transistor-Logic) circuit. CL is an external load. Figure 6 is the second
The figure shows the change in output potential over time when a plurality of TTL circuits are operated simultaneously. FIG. 6 also shows temporal changes in the power supply current and ground current. Output from Low to Hl
When changing to gh, the current in the circuit of FIG. 2a mainly passes through the path R4 to Q5 from the power supply to charge the external load C2. At this time, the power supply current fluctuates due to parasitic inductance components within the semiconductor and the package, and the resulting fluctuations in the power supply potential reduce the high-level noise margin of the output circuit connected to the common power supply. Fluctuations in the power supply current also cause fluctuations in the ground potential due to mutual inductance and the like, reducing the low-level noise margin of the output circuit or nearby internal circuits, which are unrelated to simultaneous operation. When the output changes from high level to low level, load C
Although current flows from L to Q4, the same phenomenon as described above causes circuit malfunction.

電源あるいは接地電位の自己ないしは相互インダクタン
ス成分りによる電位変動△Vは、1出力回路あたりの電
流の時間変化d I/d tと出力同時動作数nによっ
て ΔvcCLnd■/dt・・φ・・・・(1)で表され
る。集積回路の高速化は時間成分dtの縮小を意味し、
バイポーラトランジスタの高JT化MO5)ランジスタ
のゲート長縮小によるgm化等の高性能化はdl成分の
増大を意味するものであるから(1)式のdI/dt成
分は、ますます大きくなる傾向にあり一方において電源
配線のレイアウトの工夫、パッケージの改良によるイン
ダクタンス成分りの縮小を計りつつあるが現状において
は同時動作出力数nにかなりきびしい制限を加えなけれ
ばならない状況にある。
The potential fluctuation △V due to the self or mutual inductance component of the power supply or ground potential is determined by the time change in current per output circuit d I/d t and the number of simultaneous output operations n. It is expressed as (1). Increasing the speed of integrated circuits means reducing the time component dt,
High JT of bipolar transistors MO5) Improvements in performance such as gm by reducing the gate length of transistors mean an increase in the dl component, so the dI/dt component in equation (1) tends to become larger and larger. On the other hand, attempts are being made to reduce the inductance component by devising the layout of the power supply wiring and improving the package, but the current situation is that it is necessary to impose quite severe restrictions on the number of simultaneous operating outputs n.

このため電源あるいは接地の端子を増やして電位の安定
化を計ることが多いが、このために信号用の端子が不足
するという不都合が生じる場合も少なくない。
For this reason, the number of power supply or ground terminals is often increased to stabilize the potential, but this often results in the inconvenience of a shortage of signal terminals.

[発明の従来技術に対する相違点コ 上述した従来の出力回路の同時動作によるノイズ対策に
対して本発明は回路の面からこれを解決しようとするも
のである。
[Differences between the Invention and the Prior Art] In contrast to the above-mentioned conventional noise countermeasures due to the simultaneous operation of output circuits, the present invention attempts to solve this problem from a circuit perspective.

[問題点を解決するための手段] 本発明の半導体集積回路は、同時動作する出力回路のタ
イミングを微調整するべく各々の出力回路の回路定数を
変えることを特徴としている。
[Means for Solving the Problems] The semiconductor integrated circuit of the present invention is characterized in that the circuit constants of each output circuit are changed in order to finely adjust the timing of output circuits that operate simultaneously.

[実施例コ X立皿ユ 第1図(a)は本発明の第1実施例を示す回路図である
。第2図の例と同様のTTL回路であるが、位相分割段
トランジスタQ2のベース部に直列に抵抗R6を挿入し
ているのが特徴である。同時動作する出力回路各々にR
6=O〜100Ωの抵抗を抵抗値を変えて用いることに
よって、同時動作のタイミングに関してR6による時定
数の遅れΔtが出力相互に生じ、相対的に(1)式のn
dI/dt成分の減少を計っている。出力電位及び電流
の時間変化を第1図(b)に示す。第1図(b)におい
て通常の遅延tとR6による遅れΔtの和が回路の要求
遅延tpd以下であることが必要であるがd I/d 
tの緩和に対して必要なΔtはtr、tf程度でよく、
通常同時動作とて要求されるtpdに対しては間−のな
い遅れである。
Embodiment 1 FIG. 1(a) is a circuit diagram showing a first embodiment of the present invention. This is a TTL circuit similar to the example shown in FIG. 2, but it is characterized in that a resistor R6 is inserted in series with the base of the phase division stage transistor Q2. R for each output circuit that operates simultaneously
By using a resistor of 6=O to 100Ω with different resistance values, a time constant delay Δt due to R6 occurs between the outputs with respect to the timing of simultaneous operation, and n in equation (1) is relatively
The reduction in dI/dt component is measured. Figure 1(b) shows the temporal changes in the output potential and current. In Fig. 1(b), it is necessary that the sum of the normal delay t and the delay Δt due to R6 is less than the required delay tpd of the circuit, but dI/d
Δt required for relaxation of t may be about tr, tf,
There is a constant delay with respect to the tpd normally required for simultaneous operation.

夾立皿ス 本発明の第2の実施例は、第2図に示した回路において
抵抗R1,R2を同時動作する出力相互で変えることに
よってdI/dt成分を減少させたものである。第3図
に出力電位の時間変化を示す。第3図においてAは内部
からの入力電位、Bは第2図の回路の出力電位、CはB
においてR1゜R2を大きくした場合を示している。R
1,R2は出力回路の遅延のみならず立ち上がり、たち
下がり時間にも影響するためdl/dtに対してより一
層の減少効果をもたらす。このため動作周波数に制限を
もたらすという逆効果が生じるが、比較的低い周波数で
、多数の出力を同時に動作させる回路を実現するのに効
果が大きい。
In a second embodiment of the present invention, the dI/dt component is reduced by changing the resistors R1 and R2 between the simultaneously operated outputs in the circuit shown in FIG. Figure 3 shows the change in output potential over time. In Figure 3, A is the input potential from inside, B is the output potential of the circuit in Figure 2, and C is B
This shows the case where R1°R2 is increased. R
1 and R2 affect not only the delay of the output circuit but also the rise and fall times, and therefore have a further effect of reducing dl/dt. Although this has the opposite effect of limiting the operating frequency, it is highly effective in realizing a circuit that operates a large number of outputs simultaneously at a relatively low frequency.

なお、第1.第2実施例における抵抗値の変更は、P形
拡散抵抗ないしはポリシリコン抵抗のコンタクト位置の
変更によって容易に実現される。
In addition, 1. The resistance value in the second embodiment can be easily changed by changing the contact position of the P-type diffused resistor or polysilicon resistor.

本発明をCMO5回路に適用した第3実施例を第4図に
示す。第3実施例はインバータ2段を直列につないだC
MOSの出力回路である。MP 1゜MP2はP形、M
Nl、MN2はN形(7)MOS)ランジスタである。
A third embodiment in which the present invention is applied to a CMO5 circuit is shown in FIG. In the third embodiment, two stages of inverters are connected in series.
This is a MOS output circuit. MP1゜MP2 is P type, M
Nl and MN2 are N-type (7) MOS) transistors.

MP2.MN2は外部負荷CLを駆動するためゲート幅
を非常に大きく設計する必要がある。このためMP2.
MN2のゲート容量は非常に大きく、内部のCMO5回
路から直接駆動することができず、内部回路に用いるM
OSトランジスタとMP2.MN2の中間的なゲート幅
をもつMPI、MNIで構成されるプリバッファが設置
されるのが一般的で°ある。本実施例においては、プリ
バッファに用いられるMOS)ランジスタのgm(相互
コンダクタンス)を同時動作出力相互に変化させ、出力
のタイミングを変えることによって同時動作許容数の緩
和を計った。
MP2. Since MN2 drives the external load CL, it is necessary to design the gate width to be very large. For this reason, MP2.
The gate capacitance of MN2 is very large, and it cannot be driven directly from the internal CMO5 circuit.
OS transistor and MP2. It is common to install a pre-buffer consisting of MPI and MNI having a gate width intermediate to that of MN2. In this embodiment, the gm (mutual conductance) of a MOS transistor used for the pre-buffer is varied between simultaneous operation outputs, and the output timing is changed to ease the number of simultaneous operations allowed.

MOS)ランジスタのgmの変更はゲート幅を変化させ
ることによって容易に実現される。
Changing the gm of a MOS transistor is easily realized by changing the gate width.

次に本発明をゲートアレイ方式集積回路に適用する側を
示す。ゲートアレイ方式集積回路は予め下地行程をつく
りこんだ半導体基板を用意しておき、上地行程によって
種々の回路を実現するものであるが、第1.第2実施例
はコンタクト行程吹降を上地行程にすることによってそ
のままゲートアレイ方式に適用できる。
Next, the application of the present invention to a gate array type integrated circuit will be described. In gate array type integrated circuits, a semiconductor substrate is prepared in advance with an underlayer process, and various circuits are realized through the overlay process. The second embodiment can be directly applied to the gate array method by changing the contact stroke blowdown to the top stroke.

実施例3を適用する場合ゲート幅の変更はMOS領域を
規定する選択酸化行程以降を上地行程とする必要があり
短納期を特徴とするゲートアレイ方式にとって上地行程
が長すぎて現実性がない。
When applying Embodiment 3, changing the gate width requires performing the selective oxidation process that defines the MOS region as the overlay process, and the overlay process is too long for the gate array method, which is characterized by short delivery times, making it impractical. do not have.

しかしながら、MOS)ランジスタのgmがソース・ド
レイン領域のコンタクトの開は方に大きく依存する性質
を利用し、同時動作する出力回路相互で、第5図(a)
(b)(c)に示すコンタクト開孔法を使い分けること
によってゲートアレイ方式集積回路においても適用可能
となる。
However, by taking advantage of the property that the gm of a MOS (MOS) transistor largely depends on the opening of the contacts in the source and drain regions, the output circuits operating simultaneously can be
By selectively using the contact opening methods shown in (b) and (c), the present invention can also be applied to gate array type integrated circuits.

[発明の効果コ 以上説明したように、本発明は同時動作する複数の出力
回路の回路定数を相互に変え、同時動作のタイミングを
微調整することによって、同時動作によって発生するノ
イズを低減し、回路誤動作を防ぐ効果がある。
[Effects of the Invention] As explained above, the present invention reduces the noise generated by simultaneous operations by mutually changing the circuit constants of a plurality of output circuits operating simultaneously and finely adjusting the timing of simultaneous operations. This has the effect of preventing circuit malfunction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の第1の実施例を示すTTL出力
回路の回路図、第1図(b)はその動作を説明するタイ
ムチャート、第2図は従来のTTL回路の回路図、第3
図は第2図の回路に本発明を適用した場合の第2の実施
例の動作を示すタイムチャート図、第4図は本発明の第
3の適用対象であるCMO3出力回路の回路図、第5図
(a)(b)(c)は本発明をCMOSゲートアレイに
適用した場合に具体的に本発明を実現する方法を説明す
るためのMOS)ランジスタの平面図、第6図は出力同
時動作の際のノイズの測定例を示すグラフである。 R1〜R6Φ・φ・Φ・抵抗、 Q1〜Q4・・・・・・ショットキクランプ付NPN)
ランジスタ、 Q5・・・・・・◆・・NPN)ランジスタ、CL・・
・・・・・・・外部負荷、 MPI、MP2・・・・P形MO9)ランジスタ、MN
I、MN2争・・・N形MO5)ランジスタ。 特許出願人  日本電気株式会社 代理人 弁理士  桑 井 清 − 累1図(a) 第2図 第4図 第5図 コロ図
FIG. 1(a) is a circuit diagram of a TTL output circuit showing the first embodiment of the present invention, FIG. 1(b) is a time chart explaining its operation, and FIG. 2 is a circuit diagram of a conventional TTL circuit. , 3rd
The figure is a time chart diagram showing the operation of the second embodiment when the present invention is applied to the circuit of Figure 2. Figure 4 is a circuit diagram of the CMO3 output circuit which is the third application target of the present invention. Figures 5 (a), (b), and (c) are plan views of MOS transistors for explaining the method of concretely realizing the present invention when the present invention is applied to a CMOS gate array, and Figure 6 is a plan view of a MOS transistor when the present invention is applied to a CMOS gate array. It is a graph showing an example of measuring noise during operation. R1~R6Φ・φ・Φ・Resistance, Q1~Q4...NPN with Schottky clamp)
Ransistor, Q5...◆...NPN) Ransistor, CL...
......External load, MPI, MP2...P type MO9) transistor, MN
I, MN2 competition...N type MO5) transistor. Patent Applicant: NEC Corporation Agent, Patent Attorney Kiyoshi Kuwai - Figure 1 (a) Figure 2 Figure 4 Figure 5 Colo Diagram

Claims (2)

【特許請求の範囲】[Claims] (1)同一基板状の複数の出力回路を同時に動作させて
用いる半導体集積回路において、各出力回路の回路定数
を変えて同時動作のタイミングを微調整することを特徴
とする半導体集積回路。
(1) A semiconductor integrated circuit in which a plurality of output circuits on the same substrate are operated simultaneously, and the timing of simultaneous operation is finely adjusted by changing the circuit constant of each output circuit.
(2)上記半導体集積回路はゲートアレイ方式であって
あらかじめ下地行程において同時動作タイミング調整用
の回路素子を用意し、回路に応じて前記回路素子を上地
行程によって使い分ける特許請求の範囲第1項記載の半
導体集積回路。
(2) The semiconductor integrated circuit is of a gate array type, in which circuit elements for simultaneous operation timing adjustment are prepared in advance in the underlay process, and the circuit elements are selectively used in the overlay process depending on the circuit. The semiconductor integrated circuit described.
JP62276610A 1987-10-30 1987-10-30 Semiconductor integrated circuit Expired - Lifetime JPH0744259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62276610A JPH0744259B2 (en) 1987-10-30 1987-10-30 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62276610A JPH0744259B2 (en) 1987-10-30 1987-10-30 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH01119051A true JPH01119051A (en) 1989-05-11
JPH0744259B2 JPH0744259B2 (en) 1995-05-15

Family

ID=17571840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62276610A Expired - Lifetime JPH0744259B2 (en) 1987-10-30 1987-10-30 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0744259B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784150A (en) * 1980-11-14 1982-05-26 Mitsubishi Electric Corp Large-scale integrated circuit device
JPS60136238A (en) * 1983-12-23 1985-07-19 Fujitsu Ltd Gate array lsi device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784150A (en) * 1980-11-14 1982-05-26 Mitsubishi Electric Corp Large-scale integrated circuit device
JPS60136238A (en) * 1983-12-23 1985-07-19 Fujitsu Ltd Gate array lsi device

Also Published As

Publication number Publication date
JPH0744259B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
US6744291B2 (en) Power-on reset circuit
US6172545B1 (en) Delay circuit on a semiconductor device
US5239211A (en) Output buffer circuit
US5151602A (en) Semiconductor relay circuit using photovoltaic diodes
KR930006943Y1 (en) Protective circuit for semiconductor chip
JPH01119051A (en) Semiconductor integrated circuit
JPH0595273A (en) Semiconductor device and integrated circuit using the device
US5021685A (en) Input buffer circuit having a resistor for reducing through-current and a capacitor for preventing delay
KR0142001B1 (en) Mosfet interface circuit having an increased or a reduced mutual conductance
US20040165451A1 (en) Semiconductor memory device
JPH01240013A (en) Semiconductor integrated circuit device
JP2957181B2 (en) Semiconductor integrated circuit
JP3190191B2 (en) Output buffer circuit
KR950008449B1 (en) Output unit incorporated in semiconductor integrated circuit for preventing semiconductor substrate from fluctuating in voltage level
JPH06101679B2 (en) Semiconductor integrated circuit device
JP2845340B2 (en) Input buffer circuit for semiconductor integrated circuit
KR100587027B1 (en) Error prevention circuit for dram merged logic circuit
KR19980082531A (en) Power line device of semiconductor device
KR100220235B1 (en) Buffer circuit of memory device
JPH04287415A (en) Ringing prevention circuit
JP2002299467A (en) Output circuit
JPH04126410A (en) Semiconductor device
JPH11191729A (en) Output buffer circuit
JPH02174316A (en) Semiconductor integrated circuit
JPH05206805A (en) Delay circuit