JPH01118115A - Electrochromic display element - Google Patents

Electrochromic display element

Info

Publication number
JPH01118115A
JPH01118115A JP23209088A JP23209088A JPH01118115A JP H01118115 A JPH01118115 A JP H01118115A JP 23209088 A JP23209088 A JP 23209088A JP 23209088 A JP23209088 A JP 23209088A JP H01118115 A JPH01118115 A JP H01118115A
Authority
JP
Japan
Prior art keywords
electrochromic
electron
materials
substance
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23209088A
Other languages
Japanese (ja)
Inventor
Tetsuzo Yoshimura
徹三 吉村
Masanori Watanabe
渡辺 正紀
Kohei Kiyota
航平 清田
Masao Tanaka
正男 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23209088A priority Critical patent/JPH01118115A/en
Publication of JPH01118115A publication Critical patent/JPH01118115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To decrease the driving current at the time of coloring and decoloring and to enable high-speed address control by alternately forming the boundary faces of 1st regions consisting of electrochromic materials and 2nd regions consisting of electron blocking type materials in multiple stages between electrodes. CONSTITUTION:This display element has the layer dispersed with many microparticles 7, in which the electrochromic materials 3' consisting of a transition metal oxide and the electron-donative materials 4' are paired and are incorporated, within the electron blocking type materials 5' consisting of an insulator between a transparent electrode 2 and a counter electrode 6. Since the directions of the boundary faces of both the materials 3', 4' in the respective microparticles 7 are randomly formed, the components parallel with the directions of both the electrodes exist at least at 50% in the boundary face directions thereof. Polarization is, therefore, generated in the electrochromic regions 3' of the microparticles 7 and the electron-donative regions 4' when a voltage is impressed to the electrodes. The need for ion conduction is thereby eliminated and the driving current is decreased in the coloring and decoloring operations. The high-speed display is thus enabled.

Description

【発明の詳細な説明】 本発明はエレクトロクロミック表示素子に係シ、とくに
着消色動作時イオン伝導を伴わず分極による電荷を用い
小電流で高速表示のできるエレクトロクロミック表示素
子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrochromic display element, and more particularly to an electrochromic display element that can perform high-speed display with a small current by using charges due to polarization without ion conduction during coloring/decoloring operation.

従来のエレクトロクロミンク素子では表示電極と対向1
に極の間にたとえばM極金属酸化物のエレクトロクロミ
ックj−とイオン導電層を設け、イオン伝導を行なわせ
、この電荷に相当する電子をエレクトロクロミック〜に
注入、放出して着消色表示が行なわれる。この部会、着
色辰示に約5mCβの電荷を要するため、駆動電流が過
大となるという欠点があった。この問題は高速アドレス
制御の際にはとくに著しくなる。また前述によシ着消色
動作時にイオン伝導が不可欠となるから、アドレス速度
がこれにより制約されるという欠点があった。
In conventional electrochromic elements, the display electrode and the
For example, an electrochromic j- of M-pole metal oxide and an ion conductive layer are provided between the electrodes to cause ion conduction, and electrons corresponding to this charge are injected and released into the electrochromic ~ to display color/decolorization. It is done. This group had a drawback in that the driving current was excessive because a charge of about 5 mCβ was required for coloring. This problem becomes particularly serious during high-speed address control. Furthermore, since ion conduction is essential during the coloring/decoloring operation as described above, there is a drawback that the addressing speed is limited by this.

本発明の目的は着消色時の駆動電流が小さくかつ高速ア
ドレス制御可能のエレクトロクロミック表示素子を提供
することである。
An object of the present invention is to provide an electrochromic display element that requires a small drive current during coloring/decoloring and can perform high-speed address control.

前記目的を達成するため、本発明のエレクトロクロミッ
ク表示素子は表示電極と対向電極の間にエレクトロクロ
ミック物質と電子供給物質とが対になって含まれ慝第1
の領域と電子ブロック性物質から成る第2の領域とを、
該第1の領域を多数の微小領域として第2の領域中に分
散させて成ることを特徴とするものである。
In order to achieve the above object, the electrochromic display element of the present invention includes an electrochromic substance and an electron supplying substance as a pair between a display electrode and a counter electrode.
and a second region made of an electron blocking substance,
It is characterized in that the first region is dispersed as a large number of minute regions in the second region.

以下実施例につき詳述する。Examples will be described in detail below.

講1図(α) 、 (6)は本発明の実施例の構成を示
す説明図である。
Figures (α) and (6) of Section 1 are explanatory diagrams showing the configuration of an embodiment of the present invention.

同図において、透明電極2と対向電極6の間に、Won
のような遷移金属酸化物よ構成るエレクトロクロミック
物質3′とInzOsのような電子供給物質4′とが対
になって含まれる微小粒子7を多数たとえば酸化シリコ
ンのような絶縁体よ構成る電子ブロック性物質5′内に
分散させた層を有する。
In the figure, between the transparent electrode 2 and the counter electrode 6, Won
A large number of microparticles 7 containing a pair of an electrochromic material 3' made of a transition metal oxide such as a transition metal oxide and an electron supplying substance 4' such as InzOs are combined with an electron supplying material made of an insulator such as silicon oxide. It has a layer dispersed within the block material 5'.

各微小粒子7における両物質5’、 4’の界面の方向
はランダムに形成されるから、これらの界面方向は少な
くとも画電極の方向と平向な成分が5oqlIは存在す
る。
Since the directions of the interfaces between the two substances 5' and 4' in each microparticle 7 are formed randomly, there exists a component of at least 5 oqlI of these interfaces that is parallel to the direction of the picture electrode.

従って電極にたとえばDClooVの電圧を印加すると
、微小粒子7のエレクトロクロミック領域3’、!:。
Therefore, when a voltage of, for example, DClooV is applied to the electrode, the electrochromic region 3' of the microparticle 7, ! :.

電子供給領域4′において同図(6) K示すように分
極が生じる。
Polarization occurs in the electron supply region 4' as shown in FIG. 6 (6) K.

この場合、エレクトロクロミック領域3′と電子供給層
イの位置関係に応じて着色する部分と着色しない部分が
生じる。すなわち、エレクトロクロきツク領域3′が電
子供給領域4′よシ■電極側にある場合には発色し、逆
の場合には発色しない。しかし、このような発色する領
域が多数存在すると素子は全体として着色する。各粒子
の寸法は5^程度から100A程度が望ましい。
In this case, some parts are colored and some parts are not colored depending on the positional relationship between the electrochromic region 3' and the electron supply layer A. That is, when the electroclockwise clock region 3' is closer to the electrode than the electron supply region 4', color is produced, and in the opposite case, no color is produced. However, if a large number of such colored regions exist, the device as a whole becomes colored. The size of each particle is preferably about 5A to about 100A.

素子の製造方法としては、蒸着、スパッタ、イオン・グ
レーティング等による多元の同時膜生成の方法を用いる
。″また同層(α) 、 (b)のようなエレクト、ロ
クロミンク物質3′と電子供給物質4′が対になってい
る粒子7を形成するためには次の2方法が用いられる。
As a method of manufacturing the device, a method of simultaneously producing multiple films by vapor deposition, sputtering, ion grating, etc. is used. ``Furthermore, the following two methods are used to form particles 7 in which the electron supplying substance 3' and the electron supplying substance 4' form a pair, such as the same layers (α) and (b).

#11の方法は電子ブロック性物質をデポジット(被着
)した、後エレクトロクロミック物質と電子供給物質と
の同時デポジットを行なう。そしてこれを多数回繰り返
す。
Method #11 involves depositing an electron-blocking material and then simultaneously depositing an electrochromic material and an electron-supplying material. And repeat this many times.

第2の方法は電子ブロック性物質のデポジット後、エレ
クトロクロミック物質のデポジット、次いで電子供給物
質のデポジットを行なう。そしてこれを多数回繰9返す
In the second method, after depositing an electron blocking material, depositing an electrochromic material and then depositing an electron supplying material. Then repeat this 9 times.

上記第1.第2の方法のうち、とくに第2の方法はエレ
クトロクロミック物質と電子供給物質の位置関係に方向
性をもたせることができ、着色を有効に行なうことがで
きる。
Above 1st. Among the second methods, the second method in particular can impart directionality to the positional relationship between the electrochromic substance and the electron supplying substance, and can effectively perform coloring.

これらの方法を実施する場合、エレクトロクロミック物
質、電子供給物質の厚さをL1≦50にとし、電子ブロ
ック物質の厚さをL2≧2L、とすることが望ましい。
When implementing these methods, it is desirable that the thickness of the electrochromic material or electron supply material be L1≦50, and the thickness of the electron blocking material be L2≧2L.

この場合、エレクトロクロミック物質・電子供給物質を
粒子状にするための条件は、作成時の真空度、基板温度
、およびデポジット速度等である。
In this case, the conditions for forming the electrochromic substance/electron supply substance into particles include the degree of vacuum at the time of preparation, substrate temperature, and deposition rate.

たとえば、エレクトロクロミック物質・電子供給物質作
成時は10 Torr以下の低い真空度でデポジットす
るととくよ多粒子状になシ易く、これに対し電子ブロッ
ク物質は10 Torr以上の高い真空度でデポジット
することにょシ微細な粒子となり層状とすることができ
る。
For example, when creating an electrochromic material or an electron supplying material, if deposited at a low vacuum of 10 Torr or less, it tends to become multi-particulate, whereas electron blocking materials are deposited at a high vacuum of 10 Torr or more. It becomes fine particles and can be layered.

また、基板温度を電子ブロック物質の作成時は100℃
以下としエレクトロクロミック物質・電子供給物質の作
成時は100℃以上とすることにょ多粒子状になシ易い
In addition, the substrate temperature was set to 100°C when creating the electronic block material.
When preparing the electrochromic substance/electron supply substance, the temperature is set at 100° C. or higher, so that it becomes easily formed into a multi-particulate form.

さらに、デポジット速度は速い方が初期状態において粒
子状Kfkシ易い。
Furthermore, the faster the depositing speed, the easier the formation of particulate Kfk in the initial state.

上記実施例における電子ブロック性物質としては、たと
えば窒化シリコン、酸化シリコン、酸化タンタル、アル
ミナ等の通常の絶縁体または10”01以上の高抵抗の
半導体が用いられる。また電子供給物質としては、たと
えば金属またはI 320s eSnow 、遷移金属
酸化物等が用いられる。
As the electron blocking substance in the above embodiments, for example, an ordinary insulator such as silicon nitride, silicon oxide, tantalum oxide, or alumina, or a high resistance semiconductor of 10"01 or more is used. As the electron supplying substance, for example, Metals or I 320s eSnow, transition metal oxides, etc. are used.

この場合、エレクトロクロミック物質もWO3等の遷移
金属酸化物が用いられるが、との両層の遷移金属酸化物
は酸化数を異ならせることが望ましい。すなわち、一方
が酸化数の高い金属酸化物を用いた時は他方は酸化数め
低い金属酸化物を用いる。
In this case, a transition metal oxide such as WO3 is used as the electrochromic material, but it is desirable that the transition metal oxides in both layers have different oxidation numbers. That is, when one uses a metal oxide with a high oxidation number, the other uses a metal oxide with a low oxidation number.

ここで、酸化数の低い金属酸化物とは酸化(電子放出)
により高次の酸化物になるもの、酸化数の高い金属酸化
物とは還元(電子注入)により低次の酸化物になるもの
をいう。
Here, metal oxides with low oxidation numbers are oxidized (electron emission)
A metal oxide with a high oxidation number is one that becomes a lower order oxide through reduction (electron injection).

また、電子の引抜きにより宛色する物質、たとえばV2
O3、Won 、 C旬Os NiOs S30. P
bO* OsO* Ti(L Gazes * cal
o、 TbzOs + SiOs Ta0r FgOe
 MOO2。
In addition, substances that color by electron extraction, such as V2
O3, Won, CshunOs NiOs S30. P
bO* OsO* Ti(L Gazes * cal
o, TbzOs + SiOs Ta0r FgOe
MOO2.

CrOt MiOr UOz e Co Or Crz
 Os等を電子供給層として用いると、エレクトロクロ
ミック層と関連して着色に増強または変化を与え極めて
有効である。
CrOt MiOr UOz e Co Or Crz
When Os or the like is used as the electron supply layer, it is extremely effective in enhancing or changing the coloring in conjunction with the electrochromic layer.

以上説明したように、本発明によれば、電極間にエレク
トロクロミック物質から成る第1の領域と電子ブロック
性物質から成る第2の領域との界面を交互に多段に形成
するものである。すなわち、エレクトロクロミック物質
と電子供給物質が対となる第1の領域と第2の領域を、
第1の領域を微小粒子として第2の領域に分散する方法
で実現できる。
As described above, according to the present invention, the interface between the first region made of an electrochromic material and the second region made of an electron blocking material is alternately formed in multiple stages between the electrodes. That is, the first region and the second region in which the electrochromic material and the electron supply material are paired,
This can be achieved by dispersing the first region as microparticles in the second region.

これにより、着消色動作においてイオン伝導を伴わない
から駆動電流が小さくかつ高速表示機能が得られるもの
である。
As a result, since ion conduction is not involved in the coloring/decoloring operation, a drive current is small and a high-speed display function can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(α) 、 (b)は本発明の他の実施例の構成
を示す説明図であり、図中1はカラス基板、2は透明電
極、3′はエレクトロクロミック物質、4′は電子供給
物質、5′は電子ブロック物質、6は対向117は微小
粒子を示す。
FIGS. 1(α) and 1(b) are explanatory diagrams showing the structure of another embodiment of the present invention, in which 1 is a glass substrate, 2 is a transparent electrode, 3' is an electrochromic material, and 4' is an electron The supply material, 5' is an electron blocking material, and 6 and 117 are fine particles.

Claims (3)

【特許請求の範囲】[Claims] (1)表示電極と対向電極の間にエレクトロクロミック
物質と電子供給物質とが対になつて含まれる第1の領域
と電子ブロック性物質から成る第2の領域とを、該第1
の領域を多数の微小領域として第2の領域中に分散させ
て成ることを特徴とするエレクトロクロミック表示素子
(1) A first region containing a pair of an electrochromic substance and an electron supplying substance between a display electrode and a counter electrode, and a second region consisting of an electron blocking substance;
An electrochromic display element comprising a plurality of micro-regions dispersed in a second region.
(2)前記電子供給物質が電子の引抜きにより発色する
物質を用いたことを特徴とする特許請求の範囲第1項記
載のエレクトロクロミック表示素子。
(2) The electrochromic display element according to claim 1, wherein the electron supplying substance is a substance that develops color by abstracting electrons.
(3)前記エレクトロクロミック物質と電子供給物質が
その一方が酸化数の低い金属酸化物であり他方が酸化数
の高い金属酸化物であることを特徴とする特許請求の範
囲第1項記載のエレクトロクロミック表示素子。
(3) The electrochromic material according to claim 1, wherein one of the electrochromic substance and the electron supply substance is a metal oxide with a low oxidation number and the other is a metal oxide with a high oxidation number. Chromic display element.
JP23209088A 1988-09-16 1988-09-16 Electrochromic display element Pending JPH01118115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23209088A JPH01118115A (en) 1988-09-16 1988-09-16 Electrochromic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23209088A JPH01118115A (en) 1988-09-16 1988-09-16 Electrochromic display element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56151567A Division JPS5854320A (en) 1981-09-25 1981-09-25 Electrochromic display element

Publications (1)

Publication Number Publication Date
JPH01118115A true JPH01118115A (en) 1989-05-10

Family

ID=16933844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23209088A Pending JPH01118115A (en) 1988-09-16 1988-09-16 Electrochromic display element

Country Status (1)

Country Link
JP (1) JPH01118115A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100261203B1 (en) * 1991-09-04 2000-07-01 존 이.반 다인 Electrochromic devices having refractive index matched structure and electrochromic device
JP2011100151A (en) * 1996-07-19 2011-05-19 E Ink Corp Electronically addressable microencapsulated ink and display thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100261203B1 (en) * 1991-09-04 2000-07-01 존 이.반 다인 Electrochromic devices having refractive index matched structure and electrochromic device
JP2011100151A (en) * 1996-07-19 2011-05-19 E Ink Corp Electronically addressable microencapsulated ink and display thereof

Similar Documents

Publication Publication Date Title
US4135790A (en) Electrochromic element
JPS58163921A (en) All solid-state type electrochromic display device
JPH01118115A (en) Electrochromic display element
US5286517A (en) A process for making an electroluminescent cell using a ZnS host including molecules of a ternary europium tetrafluoride compound
US4447133A (en) Electrochromic device
US4390246A (en) Electrochromic device by oblique evaporation to improve the response of coloration and bleaching
CN114764205A (en) Display panel, preparation method thereof and electronic equipment
JPH0121484B2 (en)
JP3057891B2 (en) Plasma display panel and method of manufacturing the same
JPS5917580A (en) Electrochromic display element
JPS6011884A (en) Electrochromic display element
JPS607466A (en) Electrochromic display unit
JPS61277927A (en) Structural body of electrochromic element
JPS5831318A (en) Liquid crystal display device and its manufacture
JP2896278B2 (en) Transparent conductive film and target for sputtering the transparent conductive film
JPS62115694A (en) Thin film el device
KR100230441B1 (en) Gas discharge display panel
JPS61145536A (en) Electrochromic display element
JPS62156621A (en) Preparation of ferroelectric liquid crystal element
JPS6011577A (en) All-solid electrochromic display element
JPH02287438A (en) Nonlinear resistance element
JPS62193209A (en) Voltage nonlinear device
JPS606981A (en) Solid electrochromic display element
JPS60202419A (en) Light shielding element and its preparation
JPH04269427A (en) Gas discharging panel