JPS58163921A - All solid-state type electrochromic display device - Google Patents

All solid-state type electrochromic display device

Info

Publication number
JPS58163921A
JPS58163921A JP57046254A JP4625482A JPS58163921A JP S58163921 A JPS58163921 A JP S58163921A JP 57046254 A JP57046254 A JP 57046254A JP 4625482 A JP4625482 A JP 4625482A JP S58163921 A JPS58163921 A JP S58163921A
Authority
JP
Japan
Prior art keywords
layer
solid
short
electrochromic display
circuit prevention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57046254A
Other languages
Japanese (ja)
Inventor
Masanori Sakamoto
正典 坂本
Yuko Fujiwara
藤原 祐子
Masataka Miyamura
雅隆 宮村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57046254A priority Critical patent/JPS58163921A/en
Publication of JPS58163921A publication Critical patent/JPS58163921A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds

Abstract

PURPOSE:To prevent short-circuit between electrodes, and fabrication of off- grade products, by providing a short-circuit preventive dense and uniform thin film layer. CONSTITUTION:A transparent electrode 2 is formed on a glass base 1, an electrochromic layer 3 made of WO3 or the like is formed on the base 1 by vapor deposition or the like, and a short-circuit preventive layer 6 having <=2,000Angstrom thickness is formed on the layer 3. Then, a solid-state electrolyte layer 4 made of MgF2 or the like is formed on the layer 6 by sputtering or the like, and finally, an opposite electrode 5 is formed to obtain an objective all solid-state type electrochromic display device. As materials for forming the layer 6, a material capable of easily forming a dense film, and having about >=5 a dielectric constant is desirable, such as aluminum oxide, titanium dioxide, zirconium oxide, niobium oxide, or tantalum pentoxide.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、全固体型電気発色表示素子に関し、更に詳し
くは、電極間の短絡が極めて低減された全固体型電気発
色表示素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an all-solid-state electrochromic display device, and more particularly to an all-solid-state electrochromic display device in which short circuits between electrodes are extremely reduced.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

全固体型電気発色表示素子は、電解質として固体電解質
を使用しているために、溶液電解質を使用する電気発色
表示素子に比較して、素子の構造が簡単なものであシ、
漏液の問題が生じない等の利点を有している。中でも、
酸化タングステン(WOs )に代表される遷移金属酸
化物を用いた電気発色表示素子は、広視角における識別
性が優れていることから、最も注目されている。
Since all-solid-state electrochromic display elements use a solid electrolyte as an electrolyte, their structure is simpler than that of electrochromic display elements that use a solution electrolyte.
It has advantages such as no leakage problem. Among them,
Electrochromic display elements using transition metal oxides, typified by tungsten oxide (WOs), are attracting the most attention because of their excellent identifiability in wide viewing angles.

このような全固体型電気発色表示素子は、一般に、第1
図に示したような構造を有している。
Such an all-solid-state electrochromic display element generally has a first
It has a structure as shown in the figure.

図において、ガラス基板1上に形成された透明電極2に
、遷移金属酸化物から成る電気発色層3が積層されてい
る。そして、更に、例えば、フッ化リチウム(LiF)
、フッ化カルシウム(caFt)、フッ化マグネシウム
(MgFg)、−酸化ケイ素(Sin)、二酸化ケイ素
(Sin、)又は酸化ニッケル(NiO)等から成る固
体電解質層4が積層され、対向電極5が設けられて電気
発色表示素子が形成されてらる。
In the figure, an electrochromic layer 3 made of a transition metal oxide is laminated on a transparent electrode 2 formed on a glass substrate 1. Furthermore, for example, lithium fluoride (LiF)
, a solid electrolyte layer 4 made of calcium fluoride (caFt), magnesium fluoride (MgFg), -silicon oxide (Sin), silicon dioxide (Sin), nickel oxide (NiO), etc. is laminated, and a counter electrode 5 is provided. Then, an electrochromic display element is formed.

上記した構成の全固体型電気発色表示素子は、極めて簡
便K11i造することができるが、不良品の発生率が高
いという問題点を有している。即ち、透明電極と対向電
極が、高々1μの厚さの電気発色層及び固体電解質層を
隔てて積層されているために、電極間に短絡が発生し易
く、電気発色層及び固体電解質層のそれぞれに電圧が印
加されない。そのため、電気発色層へのイオンの注入が
起こらず、従って、電気発色が生じない不良品を発生す
ることになる。
Although the all-solid-state electrochromic display element having the above-mentioned structure can be manufactured in a very simple manner, it has the problem of a high incidence of defective products. That is, since the transparent electrode and the counter electrode are laminated with the electrochromic layer and solid electrolyte layer having a thickness of at most 1μ in between, short circuits easily occur between the electrodes, and each of the electrochromic layer and the solid electrolyte layer No voltage is applied to. Therefore, ion implantation into the electrochromic layer does not occur, resulting in the production of defective products in which electrochromic formation does not occur.

このような電極間の短絡の原因は、電気発色層又は固体
電解質層に存在する塵埃、ピ/ホール或いは割れ等に帰
すると考えられる。従って、短絡による不良品の発生を
防止するためには、ピンホールを生じ或いは直接短絡の
原因となる塵埃の力い環境下で電気発色表示素子を製造
すること、具体的には、クリーンルーム中で作業するこ
とが必要である。又、割れを防ぐには、電気発色層及び
固体電解質層を緻密に形成することが必要である。
The cause of such a short circuit between the electrodes is thought to be due to dust, pimples, cracks, etc. existing in the electrochromic layer or solid electrolyte layer. Therefore, in order to prevent the occurrence of defective products due to short circuits, it is necessary to manufacture electrochromic display elements in a dusty environment that can cause pinholes or direct short circuits. Specifically, it is necessary to manufacture electrochromic display elements in a clean room. It is necessary to work. Furthermore, in order to prevent cracking, it is necessary to form the electrochromic layer and the solid electrolyte layer densely.

しかしながら、上記した対策を実際に行なうには、次の
ような問題点を有している。先ず、クリーンルーム中で
作業を行なうためKは、設備に多大な投資が必要であり
、且つ、その機能を充分発揮させ、維持管理するために
も多くの労力と経費を要し、それにも拘らず、作業性は
着く低下してしまう。又、各層を緻密に形成することは
、電気発色表示素子の発色原理が、電気発色層と固体電
解質層との間のイオンの拡散に基づいているために、こ
れらの薄膜中でのイオンの拡散を阻害することになる。
However, there are the following problems in actually implementing the above countermeasures. First, K requires a large amount of investment in equipment because the work is carried out in a clean room, and it also requires a lot of effort and expense to fully utilize its functions and maintain it. , workability will deteriorate. Furthermore, forming each layer densely is important because the coloring principle of electrochromic display elements is based on the diffusion of ions between the electrochromic layer and the solid electrolyte layer. This will hinder the

そのため、1□8.、□。よ工21.あ、ヵオ:ry)
:yx)   ’及び応答速度の低下を惹起することに
なる。従つて、電極間の短絡の問題は、全固体型電気発
色表示素子において、極めて大きな昧題となっている。
Therefore, 1□8. , □. Yoko 21. Ah, Kao :ry)
:yx)' and a decrease in response speed. Therefore, the problem of short circuit between electrodes has become a very serious problem in all-solid-state electrochromic display devices.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した問題点を解消し、電極間の短
絡が殆んど起こらない構造を有する全固体型電気発色表
示素子を提供することにある。
An object of the present invention is to solve the above-mentioned problems and provide an all-solid-state electrochromic display element having a structure in which short circuits between electrodes hardly occur.

〔発明の概要〕[Summary of the invention]

本発明の全固体型電気発色表示素子は、透明電極と対向
電極の間に電気発色層並びに固体電に短絡防止層を少な
くとも1層設けて成ることを特徴とするものである。
The all-solid-state electrochromic display element of the present invention is characterized in that it comprises an electrochromic layer between a transparent electrode and a counter electrode, and at least one short-circuit prevention layer on the solid-state electrode.

以下において、本発明を更に詳しく説明する。In the following, the invention will be explained in more detail.

本発明の全固体型電気発色表示素子において、透明電極
と対向電極の間に設けられる短絡防止層は、どの位置に
設けられていてもよく、例えば、透明電極又は対向電極
と電気発色層の間〜電気発色層と固体電解質層又は誘電
体層の間、或いは透明電極又は対向電極と固体電解質層
又は誘電体層の間等のいずれであってもよい。
In the all-solid-state electrochromic display element of the present invention, the short-circuit prevention layer provided between the transparent electrode and the counter electrode may be provided at any position, for example, between the transparent electrode or the counter electrode and the electrochromic layer. - It may be between an electrochromic layer and a solid electrolyte layer or a dielectric layer, or between a transparent electrode or a counter electrode and a solid electrolyte layer or a dielectric layer.

かかる短絡防止層を形成する材料としては、緻密な膜を
得やすいもので、且つ、誘電率が5以上の値を有するも
のが好ましく、例えば、酸化アルミニウム(A Jv 
Os )、二酸化ケイ素(sio2)、−酸化チタン(
TiO) 、二酸化チタン(TIOり、酸化ジルコニウ
ム(ZrO2)、酸化ニオブ(Nb、0.)及び五酸化
タンタル(Ta*Os )等が挙げられ、これらから成
る群より選ばれた1種もしくは2種以上のものが使用さ
れる。
The material for forming such a short-circuit prevention layer is preferably one that is easy to obtain a dense film and has a dielectric constant of 5 or more, such as aluminum oxide (A Jv
Os), silicon dioxide (sio2), -titanium oxide (
TiO), titanium dioxide (TIO), zirconium oxide (ZrO2), niobium oxide (Nb, 0.), tantalum pentoxide (Ta*Os), etc., and one or two selected from the group consisting of these. The above are used.

上記の材料から成る短絡防止層は、誘電率が50〜20
0の値を有するものが更に好ましく、上記範囲において
、最も好ましいコントラスト及び速やかな応答が得られ
る全固体型電気発色表示素子を得ることができる。
The short circuit prevention layer made of the above material has a dielectric constant of 50 to 20.
It is more preferable to have a value of 0, and within the above range, an all-solid-state electrochromic display element that provides the most preferable contrast and quick response can be obtained.

これらの中でも、膜成長速度が約10OA/分と遅いた
め、緻密な層を形成することができること、及び誘電率
が大きいことから、とシわけ、T 101 、Z r 
Ot、NbtOi及び’razo*を使用するζとが好
ましい。
Among these, T 101 , Z r
Preference is given to ζ using Ot, NbtOi and 'razo*.

短絡防止層の膜厚は、2000A以下であることが好ま
しく、更に好ましくは、50〜500Aである。200
0 Xを超えると、イオンの拡散が妨げられる場合があ
るために、好ましく々い。
The thickness of the short-circuit prevention layer is preferably 2000A or less, more preferably 50 to 500A. 200
Exceeding 0X is preferable because ion diffusion may be hindered.

全固体型電気発色表示素子において、上記した短絡防止
層を設けることは、電気発色層と固体電解質層又は銹電
体層との間のイオンの交換を阻害することが考えられる
。しかし、膜厚を薄くすることにより、或いは高誘電率
を有する材料を使用することにより、短絡防止層の電気
容量が大きくなるため、実用上、電気発色特性に関して
は殆んど影響がないものとなる。
In an all-solid-state electrochromic display element, providing the above-mentioned short-circuit prevention layer is considered to inhibit ion exchange between the electrochromic layer and the solid electrolyte layer or the electrochromic layer. However, by reducing the film thickness or by using a material with a high dielectric constant, the capacitance of the short-circuit prevention layer increases, so in practical terms this has almost no effect on the electrochromic properties. Become.

上記した短絡防止層は、例えば、スパッタリング法、真
空蒸着法等により簡便に形成することができる。
The short-circuit prevention layer described above can be easily formed by, for example, a sputtering method, a vacuum evaporation method, or the like.

本発明の全固体型電気発色表示素子を形成する他の材料
は、通常、全固体型電気発色表示素子の製造に使用され
ているものであれば、特に制限はなく、電気発色層には
、例えば、WO2等が、固体電解質層には、例えば、L
iF、 CaF。
Other materials forming the all-solid-state electrochromic display element of the present invention are not particularly limited as long as they are normally used in manufacturing all-solid-state electrochromic display elements. For example, WO2 or the like is added to the solid electrolyte layer, for example, L
iF, CaF.

MgF、、sto、 sto、、NiO等が使用される
MgF, sto, sto, , NiO, etc. are used.

〔発明の効果〕〔Effect of the invention〕

本発明の全固体型電気発色表示素子は、緻密で均一な薄
膜から成る短絡防止層を設けることにより、透明電極と
対向電極間の短絡を大幅に低減させることができ、素子
製造の歩止りを著しく改善することができる。又、この
短絡防止層の形成工程は、極めて簡便であり、膜厚も薄
いためにその処理が短時間で終了し、作業性も良好なも
のである。
By providing the all-solid-state electrochromic display element of the present invention with a short-circuit prevention layer made of a dense and uniform thin film, short-circuits between the transparent electrode and the counter electrode can be significantly reduced, and the yield rate of element manufacturing can be reduced. can be significantly improved. Further, the process of forming this short-circuit prevention layer is extremely simple, and since the film thickness is thin, the process can be completed in a short time, and the workability is also good.

〔発明の実施例〕[Embodiments of the invention]

実施例1 第2図に示した全固体型電気発色表示素子を製造するた
めに、先ず、ガラス基板1上に透明電極2を形成した。
Example 1 In order to manufacture the all-solid-state electrochromic display element shown in FIG. 2, first, a transparent electrode 2 was formed on a glass substrate 1.

次いで1.電気発色層としてWO2層を300OAの膜
厚で蒸着形成した後、第1表に示した材料を使用して、
それぞれ100〜)・ 500Aの膜厚で短絡防止層6をスパッタリング法によ
多形成し、6種類の表示素子用素材を得た。それぞれの
素材について、第1表に示した側斜を用いて約3000
λの膜厚を有する固体電解質層4をスパッタリング法に
より形成し、最後に対向電極5を同様にスパッタリング
法によ多形成して、6種類の全固体型電気発色表示素子
を得た。
Then 1. After forming a WO2 layer with a thickness of 300 OA as an electrochromic layer, using the materials shown in Table 1,
Short-circuit prevention layers 6 were formed by sputtering to have a film thickness of 100 to 500 A, respectively, to obtain six types of materials for display elements. For each material, approximately 3000
A solid electrolyte layer 4 having a thickness of λ was formed by sputtering, and finally, a counter electrode 5 was formed by sputtering in the same manner to obtain six types of all-solid-state electrochromic display elements.

比較例として、短絡防止層を設けなかった他は実施例と
すべて同様の構成で、3種類の全固体型電気発色表示素
子を得た。
As comparative examples, three types of all-solid-state electrochromic display elements were obtained with the same configuration as in the example except that no short-circuit prevention layer was provided.

それぞれの全固体型電気発色表示素子について、100
個宛作製し、それらの短絡個数、2.5V。
For each all-solid-state electrochromic display element, 100
The number of short circuits is 2.5V.

1秒でのコントラスト並びに70%のコントラストを得
るに要する応答速度を調べた。又、繰シ返し寿命につい
ても同時に調べた。それらの結果を第1表に同時に示す
The contrast in 1 second and the response speed required to obtain 70% contrast were investigated. In addition, the repeated cycle life was also investigated at the same time. The results are also shown in Table 1.

表から明らかなように、本発明の短絡防止層を設けて成
る全固体型電気発色表示素子は、短絡防止層の膜厚が厚
くなると、若干電気発色特性が劣るものの、短絡件数は
0であり、従来のものに比べて、短絡防止効果が極めて
優れていることが確認された。
As is clear from the table, the all-solid-state electrochromic display element provided with the short-circuit prevention layer of the present invention has 0 short-circuits, although the electrochromic properties are slightly inferior when the short-circuit prevention layer becomes thicker. It was confirmed that the short circuit prevention effect is extremely superior to that of conventional products.

実施例2 第3図に示した全固体型電気発色表示素子を製造するた
めに、ガラス基板1上に透明電極2を形成したものに、
第2表に示した材料を用いて、それぞれ100〜500
Aの膜厚で短絡防止層6をスパッタリング法により形成
し、6種類の表示素子用素材を得た。それぞれの素材に
ついて、次いで、電気発色層3としてWOIを300O
Aの膜厚で、そして、固体電解質層4として、LiF、
 Cart、MgF、等を300OAの膜厚でそれぞれ
蒸着形成した後、対向電極5をスパッタリング法により
形成して、6種類の全固体型電気発色表示素子を得た。
Example 2 In order to manufacture the all-solid-state electrochromic display device shown in FIG. 3, a transparent electrode 2 was formed on a glass substrate 1.
100 to 500 each using the materials shown in Table 2.
A short-circuit prevention layer 6 with a thickness of A was formed by sputtering to obtain six types of materials for display elements. For each material, 300O of WOI was then used as the electrochromic layer 3.
With a film thickness of A, and as the solid electrolyte layer 4, LiF,
After evaporating Cart, MgF, etc. to a film thickness of 300 OA, a counter electrode 5 was formed by sputtering to obtain six types of all-solid-state electrochromic display elements.

同時に、比較例として、短絡防止層の膜厚又は材料を変
えた他は実施例とすべて同様の操作にて4種類の全固体
型電気発色表示素子を得た。
At the same time, as comparative examples, four types of all-solid-state electrochromic display elements were obtained in the same manner as in the examples except that the thickness or material of the short-circuit prevention layer was changed.

上記10種類の全固体型電気発色表示素子について、そ
れぞれ100個宛作製し、それらの短絡個数、コントラ
スト、応答速度並びに繰シ返し寿命を実施例1と同様の
方法で調べた。それらの結果を第2表に示す。
100 pieces of each of the above 10 types of all-solid-state electrochromic display elements were manufactured, and their number of short circuits, contrast, response speed, and repeat life were examined in the same manner as in Example 1. The results are shown in Table 2.

尚、短絡防止層の誘電率は、スパッタ形成した際の膜厚
5000^の薄膜について、周波数IMHzでの測定値
である。
The dielectric constant of the short-circuit prevention layer is a value measured at a frequency of IMHz for a thin film having a thickness of 5000^ when formed by sputtering.

表から明らかなように、本発明の全固体型電気発色表示
素子は、比較例のものに比べて、電気発色特性が優れた
ものであり、又、電極間の短絡を生ずる不良品が殆んど
生じないことが確認された。
As is clear from the table, the all-solid-state electrochromic display element of the present invention has superior electrochromic properties compared to the comparative example, and there are almost no defective products that cause short circuits between electrodes. It has been confirmed that this will not occur.

尚、上記実施例において、Aノ、0.及びsio。In addition, in the above-mentioned example, A, 0. and sio.

の電気発色特性が若干力るのは、これらから成る短絡防
止層が緻密でないためと考えられる。
It is thought that the reason why the electrochromic properties of these materials are slightly weaker is that the short-circuit prevention layer made of these materials is not dense.

Aノ、Os(β−アルミナ)はイオン導電体であり、又
、S’iotは膜形成速度が’ra、o、等に比べて1
0〜100倍速く、従って、充填率が低い膜になってい
るために、短絡防止効果が小さいと思われる。
Ano, Os (β-alumina) is an ionic conductor, and S'iot has a film formation rate of 1 compared to 'ra, o, etc.
Since the film is 0 to 100 times faster and therefore has a lower filling rate, it seems that the short-circuit prevention effect is small.

尚、記載実施例においては、短絡防止層の形成にスパッ
タリング法を用いているが、本発明においては他の成膜
法、例えば、真空蒸着法を使用しても同様の効果が得ら
れるものである。
In the described examples, a sputtering method is used to form the short-circuit prevention layer, but in the present invention, the same effect can be obtained even if other film-forming methods, such as vacuum evaporation method, are used. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の全固体型電気発色表示素子の一例の断面
図、第2図及び第3図はそれぞれ本発明に係る全固体型
電気発色表示素子の断面図である。 1・・・ガラス基板、   2・・・透明電極、3・・
・電気発色層、   4・・・固体電解質層、5・・・
対向電極、    6・・・短絡防止層。 a!9 第1図 第2図 第3図
FIG. 1 is a sectional view of an example of a conventional all-solid-state electrochromic display element, and FIGS. 2 and 3 are sectional views of an all-solid-state electrochromic display element according to the present invention, respectively. 1...Glass substrate, 2...Transparent electrode, 3...
・Electrochromic layer, 4... solid electrolyte layer, 5...
Counter electrode, 6... Short circuit prevention layer. a! 9 Figure 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)透明電極と対向電極の間に電気発色層並びに固体
電解質層又は誘電体層を介在させて成る全固体型電気発
色表示素子において、前記透明電極と対向電極の間に短
絡防止層を少なくとも1層設けて成ることを特徴とする
全固体型電気発色表示素子。
(1) In an all-solid-state electrochromic display element in which an electrochromic layer and a solid electrolyte layer or a dielectric layer are interposed between a transparent electrode and a counter electrode, at least a short-circuit prevention layer is provided between the transparent electrode and the counter electrode. An all-solid-state electrochromic display element characterized by having one layer.
(2)  短絡防止層の膜厚が2000λ以下である特
許請求の範囲第1項記載の全固体型電気発色表示素子。
(2) The all-solid-state electrochromic display element according to claim 1, wherein the short-circuit prevention layer has a thickness of 2000λ or less.
(3)短絡防止層が、酸化アルミニウム(A)、03)
、二酸化ケイ素(sio2)、−酸化チタン(TiO)
、二酸化チタン(’riot)、酸化ジルコニウム(Z
rOt)、酸化ニオブ(Nb20.)及び五酸化タンタ
ル(Ta、O,)から成る群よシ選ばれた1種もしくは
2種以上のものから成る特許請求の範囲第1項又は第2
項記載の全固体型電気発色表示素子。
(3) The short circuit prevention layer is aluminum oxide (A), 03)
, silicon dioxide (sio2), -titanium oxide (TiO)
, titanium dioxide ('riot), zirconium oxide (Z
Claim 1 or 2 consists of one or more selected from the group consisting of niobium oxide (Nb20.), niobium oxide (Nb20.), and tantalum pentoxide (Ta, O,).
The all-solid-state electrochromic display element described in .
JP57046254A 1982-03-25 1982-03-25 All solid-state type electrochromic display device Pending JPS58163921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57046254A JPS58163921A (en) 1982-03-25 1982-03-25 All solid-state type electrochromic display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57046254A JPS58163921A (en) 1982-03-25 1982-03-25 All solid-state type electrochromic display device

Publications (1)

Publication Number Publication Date
JPS58163921A true JPS58163921A (en) 1983-09-28

Family

ID=12742038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57046254A Pending JPS58163921A (en) 1982-03-25 1982-03-25 All solid-state type electrochromic display device

Country Status (1)

Country Link
JP (1) JPS58163921A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012053446A (en) * 2010-08-03 2012-03-15 Ricoh Co Ltd Electrochromic display device, and manufacturing method and driving method thereof
JP2012137737A (en) * 2010-12-07 2012-07-19 Ricoh Co Ltd Electrochromic display device
WO2014124303A2 (en) 2013-02-08 2014-08-14 View, Inc. Defect-mitigation layers in electrochromic devices
US9759975B2 (en) 2010-04-30 2017-09-12 View, Inc. Electrochromic devices
US10054833B2 (en) 2009-03-31 2018-08-21 View, Inc. Fabrication of low defectivity electrochromic devices
US10088729B2 (en) 2010-04-30 2018-10-02 View, Inc. Electrochromic devices
US10156762B2 (en) 2009-03-31 2018-12-18 View, Inc. Counter electrode for electrochromic devices
US10185197B2 (en) 2010-04-30 2019-01-22 View, Inc. Electrochromic devices
US10228601B2 (en) 2014-11-26 2019-03-12 View, Inc. Counter electrode for electrochromic devices
US10345671B2 (en) 2014-09-05 2019-07-09 View, Inc. Counter electrode for electrochromic devices
US10591795B2 (en) 2009-03-31 2020-03-17 View, Inc. Counter electrode for electrochromic devices
US10663830B2 (en) 2009-03-31 2020-05-26 View, Inc. Fabrication of low defectivity electrochromic devices
US10852613B2 (en) 2009-03-31 2020-12-01 View, Inc. Counter electrode material for electrochromic devices
US10969645B2 (en) 2015-03-20 2021-04-06 View, Inc. Faster switching low-defect electrochromic windows
US11054711B2 (en) 2014-11-25 2021-07-06 View, Inc. Electromagnetic-shielding electrochromic windows
US11187954B2 (en) 2009-03-31 2021-11-30 View, Inc. Electrochromic cathode materials
US11559852B2 (en) 2011-12-12 2023-01-24 View, Inc. Thin-film devices and fabrication
US11599003B2 (en) 2011-09-30 2023-03-07 View, Inc. Fabrication of electrochromic devices
US11891327B2 (en) 2014-05-02 2024-02-06 View, Inc. Fabrication of low defectivity electrochromic devices

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054833B2 (en) 2009-03-31 2018-08-21 View, Inc. Fabrication of low defectivity electrochromic devices
US11966140B2 (en) 2009-03-31 2024-04-23 View, Inc. Counter electrode for electrochromic devices
US11525181B2 (en) 2009-03-31 2022-12-13 View, Inc. Electrochromic devices
US10591797B2 (en) 2009-03-31 2020-03-17 View, Inc. Electrochromic devices
US11898233B2 (en) 2009-03-31 2024-02-13 View, Inc. Electrochromic devices
US11635665B2 (en) 2009-03-31 2023-04-25 View, Inc. Counter electrode material for electrochromic devices
US10690987B2 (en) 2009-03-31 2020-06-23 View, Inc. Counter electrode for electrochromic devices
US10663830B2 (en) 2009-03-31 2020-05-26 View, Inc. Fabrication of low defectivity electrochromic devices
US11370699B2 (en) 2009-03-31 2022-06-28 View, Inc. Counter electrode for electrochromic devices
US10852613B2 (en) 2009-03-31 2020-12-01 View, Inc. Counter electrode material for electrochromic devices
US11947232B2 (en) 2009-03-31 2024-04-02 View, Inc. Fabrication of low defectivity electrochromic devices
US10156762B2 (en) 2009-03-31 2018-12-18 View, Inc. Counter electrode for electrochromic devices
US10591795B2 (en) 2009-03-31 2020-03-17 View, Inc. Counter electrode for electrochromic devices
US11079648B2 (en) 2009-03-31 2021-08-03 View, Inc. Fabrication of electrochromic devices
US11440838B2 (en) 2009-03-31 2022-09-13 View, Inc. Fabrication of low defectivity electrochromic devices
US10254615B2 (en) 2009-03-31 2019-04-09 View, Inc. Fabrication of low defectivity electrochromic devices
US11409177B2 (en) 2009-03-31 2022-08-09 View, Inc. Counter electrode for electrochromic devices
US11187954B2 (en) 2009-03-31 2021-11-30 View, Inc. Electrochromic cathode materials
US9759975B2 (en) 2010-04-30 2017-09-12 View, Inc. Electrochromic devices
US10185197B2 (en) 2010-04-30 2019-01-22 View, Inc. Electrochromic devices
US10996533B2 (en) 2010-04-30 2021-05-04 View, Inc. Electrochromic devices
US10088729B2 (en) 2010-04-30 2018-10-02 View, Inc. Electrochromic devices
US10599001B2 (en) 2010-04-30 2020-03-24 View, Inc. Electrochromic devices
US11592722B2 (en) 2010-04-30 2023-02-28 View, Inc. Electrochromic devices
JP2012053446A (en) * 2010-08-03 2012-03-15 Ricoh Co Ltd Electrochromic display device, and manufacturing method and driving method thereof
JP2012137737A (en) * 2010-12-07 2012-07-19 Ricoh Co Ltd Electrochromic display device
US10162240B2 (en) 2011-09-30 2018-12-25 View, Inc. Defect-mitigation layers in electrochromic devices
US10288969B2 (en) 2011-09-30 2019-05-14 View, Inc. Defect-mitigation layers in electrochromic devices
US11599003B2 (en) 2011-09-30 2023-03-07 View, Inc. Fabrication of electrochromic devices
US10831077B2 (en) 2011-09-30 2020-11-10 View, Inc. Fabrication of electrochromic devices
US11561446B2 (en) 2011-09-30 2023-01-24 View, Inc. Fabrication of electrochromic devices
US11559852B2 (en) 2011-12-12 2023-01-24 View, Inc. Thin-film devices and fabrication
AU2014214738B2 (en) * 2013-02-08 2017-09-14 View, Inc. Defect-mitigation layers in electrochromic devices
US10788723B2 (en) 2013-02-08 2020-09-29 View, Inc. Fabrication of electrochromic devices
EP3567423A1 (en) * 2013-02-08 2019-11-13 View, Inc. Defect-mitigation layers in electrochromic devices
US20190331977A1 (en) * 2013-02-08 2019-10-31 View, Inc. Fabrication of electrochromic devices
KR20220043227A (en) * 2013-02-08 2022-04-05 뷰, 인크. Defect-mitigation layers in electrochromic devices
WO2014124303A2 (en) 2013-02-08 2014-08-14 View, Inc. Defect-mitigation layers in electrochromic devices
KR20150115818A (en) * 2013-02-08 2015-10-14 뷰, 인크. Defect-mitigation layers in electrochromic devices
CN105074559A (en) * 2013-02-08 2015-11-18 唯景公司 Defect-mitigation layers in electrochromic devices
US11668990B2 (en) 2013-02-08 2023-06-06 View, Inc. Fabrication of electrochromic devices
AU2017204525B2 (en) * 2013-02-08 2018-08-23 View, Inc. Defect-mitigation layers in electrochromic devices
EP2954370A4 (en) * 2013-02-08 2016-09-14 View Inc Defect-mitigation layers in electrochromic devices
AU2018267645B2 (en) * 2013-02-08 2020-11-05 View, Inc. Defect-mitigation layers in electrochromic devices
US11891327B2 (en) 2014-05-02 2024-02-06 View, Inc. Fabrication of low defectivity electrochromic devices
US10345671B2 (en) 2014-09-05 2019-07-09 View, Inc. Counter electrode for electrochromic devices
US10684523B2 (en) 2014-09-05 2020-06-16 View, Inc. Counter electrode for electrochromic devices
US11422426B2 (en) 2014-09-05 2022-08-23 View, Inc. Counter electrode for electrochromic devices
US11054711B2 (en) 2014-11-25 2021-07-06 View, Inc. Electromagnetic-shielding electrochromic windows
US10228601B2 (en) 2014-11-26 2019-03-12 View, Inc. Counter electrode for electrochromic devices
US10585321B2 (en) 2014-11-26 2020-03-10 View, Inc. Counter electrode for electrochromic devices
US11960188B2 (en) 2014-11-26 2024-04-16 View, Inc. Counter electrode for electrochromic devices
US11327382B2 (en) 2014-11-26 2022-05-10 View, Inc. Counter electrode for electrochromic devices
US10969645B2 (en) 2015-03-20 2021-04-06 View, Inc. Faster switching low-defect electrochromic windows

Similar Documents

Publication Publication Date Title
JPS58163921A (en) All solid-state type electrochromic display device
US5070026A (en) Process of making a ferroelectric electronic component and product
JPH08181128A (en) Dry etching of multilayered thin oxide film
JP5045195B2 (en) Piezoelectric thin film laminate and piezoelectric thin film element
JPH0361286B2 (en)
Beppu et al. Fabrication of antiferroelectric NaNbO3-CaSnO3 film by pulsed laser deposition
US3421811A (en) Coated optical devices
JPH0624222B2 (en) Method of manufacturing thin film capacitor
KR100247474B1 (en) Method for forming pzt ferroelectric capacitor
JP2001189422A (en) Method of manufacturing thin-film capacitor
JPH0333680B2 (en)
JPS63274190A (en) Superconducting thin film
Vardhan et al. A low-loss thin film capacitor
JPS5840167B2 (en) liquid crystal display device
JPS63202890A (en) Transparent conductive thin film
JPS58172234A (en) Thin film of amorphous lithium tantalate-lithium niobate and its preparation
WO2018207652A1 (en) Dustproof lens and production method therefor
JPH08201790A (en) Liquid crystal substrat and its production
JPS5823019A (en) Optical element
JP2875561B2 (en) Substrate for tungsten thin film electrode
JPH03165078A (en) Contact structure and manufacture thereof
JPH01257920A (en) Electrochromic element
JPS63171870A (en) Formation of thin bismuth titanate film
Perinati Tantalum Thin Film Applications–A New Approach for Capacitors
JPH0215163A (en) Formation of thin alumina film