JPS63202890A - Transparent conductive thin film - Google Patents

Transparent conductive thin film

Info

Publication number
JPS63202890A
JPS63202890A JP62036078A JP3607887A JPS63202890A JP S63202890 A JPS63202890 A JP S63202890A JP 62036078 A JP62036078 A JP 62036078A JP 3607887 A JP3607887 A JP 3607887A JP S63202890 A JPS63202890 A JP S63202890A
Authority
JP
Japan
Prior art keywords
thin film
etching
orientation
pattern
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62036078A
Other languages
Japanese (ja)
Other versions
JPH084038B2 (en
Inventor
富造 松岡
米沢 光之
洋介 藤田
阿部 惇
任田 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62036078A priority Critical patent/JPH084038B2/en
Publication of JPS63202890A publication Critical patent/JPS63202890A/en
Publication of JPH084038B2 publication Critical patent/JPH084038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はインジウム、スズ混晶酸化物よりなる透明導電
性薄膜(以下ITO薄膜と略記する)に関し、平板状デ
ィスプレイ、たとえばエレクトロルミネッセントディス
プレイ、液晶ディスプレイ、プラズマディスプレイおよ
びエレクトロクコミックディスプレイ等の電極として広
く利用されるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a transparent conductive thin film (hereinafter abbreviated as ITO thin film) made of indium and tin mixed crystal oxide, and relates to a transparent conductive thin film made of indium and tin mixed crystal oxide (hereinafter abbreviated as ITO thin film). It is widely used as an electrode for displays, plasma displays, electrocomic displays, etc.

従来の技術 ITO薄膜は通常、インジウムとスズの合金(スズ約1
0重欧%)をターゲットにし、直流マグネトロン活性ス
パッター法により製造される。
Conventional technology ITO thin films are typically made from an alloy of indium and tin (approximately 1% tin
It is manufactured by direct current magnetron active sputtering method, targeting 0%).

これにより、1o Ω・1台の電気抵抗率と光波長50
0 nm付近において、90%以上の光透過率のITO
薄膜が得られる。かかる特性を持つITOfi膜をデバ
イスに組込む場合、フォトリングラフィ技術を用いてエ
ツチングして微細加工を行う。この時たとえば直線的な
レジストパターンのエツジに沿ったITOパターンエツ
ジがなめらかな直線状のものとはならず、凸凹の多い乱
れたギザギザのエツジになることが往々にしてあった。
As a result, the electrical resistivity of 10 Ω/1 unit and the optical wavelength of 50
ITO with a light transmittance of 90% or more near 0 nm
A thin film is obtained. When an ITOfi film having such characteristics is incorporated into a device, microfabrication is performed by etching using photolithography technology. At this time, for example, the ITO pattern edge along the edge of a straight resist pattern is not a smooth straight line, but often becomes a jagged edge with many irregularities.

発明が解決しようとする問題点 本発明はフォトリングラフィ技術でITOの微細加工を
行う場合、往々にして生ずるエツチング後のITOのパ
ターンエツジの乱れ(エツチングむら)を無くそうとす
るものである。
Problems to be Solved by the Invention The present invention attempts to eliminate the disorder of pattern edges (uneven etching) of ITO after etching that often occurs when ITO is microfabricated using photolithography technology.

問題点を解決するための手段 基板面に平行に(222)または(400)面のみが6
o多以上の割合で結晶配向し、かつ粒子の大きさが25
0〜400人の範囲であることを特徴とするインジウム
、スズ混晶酸化物により透明導電性薄膜を構成する。
Means for solving the problem Only the (222) or (400) plane parallel to the substrate surface is 6
The crystals are oriented at a ratio of 0 or more, and the particle size is 25
A transparent conductive thin film is made of an indium and tin mixed crystal oxide characterized by a range of 0 to 400%.

作  用 ■TO薄膜のエツチング後のパターンエツジの乱れは、
詳細な検討の結果、薄膜のマイクロスドラクチャ−に大
きく帰因することが判った。すなわち、薄膜の粒子の結
晶学的な配向性と粒子の大きさに左右される。本発明は
この両者を特定することにより、ITO−<ターンエツ
ジの乱れを解決した。
Effect■ Disturbance of pattern edge after etching of TO thin film is
As a result of detailed examination, it was found that the problem was largely due to the microstructure of the thin film. That is, it depends on the crystallographic orientation and particle size of the particles in the thin film. The present invention solves the problem of ITO-<turn edge by specifying both of these factors.

ITO薄膜の粒子配向性と粒子の大きさを特定すること
により、薄膜の適度なエツチングスピードと場所による
エツチングスピードの均一化を図ることができ、むらの
ない均一な形状のITOパターンエツジを形成できた。
By specifying the particle orientation and particle size of the ITO thin film, it is possible to achieve an appropriate etching speed for the thin film and to make the etching speed uniform depending on the location, making it possible to form an ITO pattern edge with an even and uniform shape. Ta.

実施例 まず3種類のIT○薄膜サンプルについて、本発明の基
本となる粒子の配向性と粒子の大きさについて説明する
。3サンプルとも10重量%のスズを含むインジウム、
スズ、合金ターゲットを用い、基板温度(200°C)
、基板−ターゲソト距離(607rrm )は共通であ
るが、ガス圧、酸素混合比およびパワーの条件を各サン
プルで変え、直流マグネトロン活性スパッター法で作成
した。膜厚徊〒叫は各々異るサンプルについての結果を
示す。
EXAMPLE First, the particle orientation and particle size, which are the basis of the present invention, will be explained for three types of IT◯ thin film samples. Indium containing 10% by weight of tin in all three samples,
Using tin and alloy targets, substrate temperature (200°C)
Although the substrate-to-target separation distance (607 rrm) was the same, the conditions of gas pressure, oxygen mixing ratio, and power were changed for each sample, and the samples were prepared by direct current magnetron activated sputtering. The results for each film thickness are shown for different samples.

これらのX線回折パターンの(222)ピークからその
半値幅を測定し、まず粒径を求めた。
The half-value width was measured from the (222) peak of these X-ray diffraction patterns, and the particle size was first determined.

半値幅βは(222)ピークを変形ローレンツ近似して
得た直β′に、同時に測定したシリコン粉末の半値幅0
.1°の補正を加え(1)式(ウオーレンの補正式)に
より求めた。
The half-width β is the straight line β′ obtained by the modified Lorentz approximation of the (222) peak, and the half-width 0 of the silicon powder measured at the same time.
.. It was calculated using equation (1) (Warren's correction equation) with a correction of 1°.

β(0)=、/”’コア ・・・・・・(1)粒径dは
(1)式のβを用い、(2)式(シェーラーの式)より
計算した。
β(0)=,/”'core (1) Particle size d was calculated from equation (2) (Scherer's equation) using β in equation (1).

0.9 λ d(A)=  □   ・・・・・・(2)βcosθ λ:X線波長1.64人 θ:(222)ピーク回折角2θの% 計算結果を第1表に示した。0.9 λ d(A)= □  ・・・・・・(2) βcosθ λ: X-ray wavelength 1.64 people θ: (222) % of peak diffraction angle 2θ The calculation results are shown in Table 1.

第1表 サンプル屋は図のX線回折パターンの颯と対応している
。次に第4図の回折パターンのピーク強度から(222
)、(400)および(440)面の配向度を求めた。
The samples in Table 1 correspond to the lines in the X-ray diffraction pattern in the figure. Next, from the peak intensity of the diffraction pattern in Figure 4 (222
), (400) and (440) plane orientation degrees were determined.

ITO薄膜はほとんどこれらの面の単独あるいは混った
状態で基板面に対し平行に配向している。とりわけ(2
22)と(400)面の配向性が強い。配向度Q(lは
(3)式に示したロットゲーリングの式を用いて計算し
た。
In most of the ITO thin films, these planes are oriented either singly or in a mixed state parallel to the substrate plane. Especially (2
22) and (400) plane orientation are strong. The degree of orientation Q(l) was calculated using the Lotgering equation shown in equation (3).

ここでΣ工”、Σ工0は今着目している面の意味でΣは
その面と同等な面を加算することを意味する。
Here, ΣWork'' and ΣWork0 mean the surface of interest, and Σ means adding a surface equivalent to that surface.

hkJは面指数である。hkJ is a surface index.

■■はす77’ /L/の、■・は粉末(ランダム状態
)のX線反射強度である。ランダム状態の反射強度ばA
STMカードより求めた。
■■ Lotus 77' /L/, ■• is the X-ray reflection intensity of the powder (random state). Reflection intensity in random state A
Obtained from STM card.

() I =Σ1”k7Σ工苦   ・・・・・・(4
)bkl で定義されるQlを導入すると、QlがΣI°/Σ”b
klよυ大きいかどうかが配向度目安になる。大きいと
配向度はプラスになり着目している面は配向しているが
、小さいとマイナスになってむしろランダム状態よりも
配向していない。第2表に配向度の計算結果を示した。
() I = Σ1”k7ΣWork ・・・・・・(4
)bkl, Ql becomes ΣI°/Σ”b
The degree of orientation is determined by whether kl υ is large. If it is large, the degree of orientation is positive and the plane of interest is oriented, but if it is small, it is negative and it is not oriented rather than in a random state. Table 2 shows the calculation results of the degree of orientation.

第2表 ΣI’ =270 kl 同様にサンプル扁は図のX線回折ノ(ターンの黒と対応
している。表中空欄はQ がΣI0/Σ工0hMより小
さいところである。
Table 2 ΣI' = 270 kl Similarly, the sample plane corresponds to the black part of the X-ray diffraction turn in the figure.The blank column in the table is where Q is smaller than ΣI0/ΣWork0hM.

最後に薄膜のデポジション後の表面平坦性と、エツチン
グパターンのエツジの性状について走査型電子顕微鏡(
SEM)で観察し、上記マイクロスドラクチャ−の結果
と対比した。
Finally, we examined the surface flatness of the thin film after deposition and the edge properties of the etched pattern using a scanning electron microscope.
SEM) and compared with the results of the microstructure described above.

エツチングはレジストパターンを形成後、H工+H3P
o2エツチング液を用いて行った。
For etching, after forming the resist pattern, H process + H3P
This was done using O2 etching solution.

3種のサンプルについて、以上説明した方法で求めた前
記粒径と配向度と共に、薄膜表面の平坦性およびエツチ
ングパターンのエツジの性状を第3表にまとめた。
Table 3 summarizes the flatness of the thin film surface and the edge properties of the etching pattern for the three types of samples, as well as the grain size and degree of orientation determined by the method described above.

第3表 表中○印は優れている場合、×印劣る場合、Δ印はその
中間を示すが、本発明が望む実用的レベルは○印である
In Table 3, ◯ indicates excellent results, × indicates poor performance, and ∆ indicates intermediate values, and ◯ indicates the practical level desired by the present invention.

表においてサンプル扁1は(222)ピークがブロード
で、その結果粒径か細い。すなわちX線パターンを見て
も判るように、全体の反射強度が弱く結晶性が良くない
。配向度も(222)面が相対的に大きいが(440)
面も基板に平行に配向している。このITO薄膜は表面
にあらかじめ小さなくぼみが多く見られ、表面平坦性に
難があった。エツチング後のパターンエツジもエツチン
グスピードが速すぎるため、オーバーエッチになり易く
、かつエツジの乱れも部分的に見られた。
In the table, Sample Flat 1 has a broad (222) peak, and as a result, the particle size is small. That is, as can be seen from the X-ray pattern, the overall reflection intensity is weak and the crystallinity is poor. The degree of orientation is also relatively large for the (222) plane, but for the (440) plane.
The planes are also oriented parallel to the substrate. This ITO thin film had many small depressions on the surface, and had difficulty in surface flatness. Because the etching speed was too fast, the pattern edges after etching tended to be over-etched, and some edge disturbances were also observed.

A2のサンプルは結晶性は良いが、(222)面と(4
00)面の2種類の面が基板表面に同じような割合で中
程度に配向している。この様な薄膜は表面の平坦性は良
かったが、エツチング後のパターンのエツジは場所によ
りエツチングスピードのむらがあって凸凹のある乱れた
エツジになった。
The A2 sample has good crystallinity, but the (222) plane and (4
00) planes are moderately oriented in similar proportions on the substrate surface. Although such a thin film had good surface flatness, the edges of the pattern after etching had irregular etching speeds depending on the location, resulting in uneven and disordered edges.

サンプル&3は結晶性が良く、粒子が比較的大きい。更
に(222)面のみが基板表面に平行に配かつ一面のみ
配向しているため場所によるエツチングスピードのむら
がなく均一にエツチングされるためパターンエツジがき
れいで直線的であった。
Sample &3 has good crystallinity and relatively large particles. Further, since only the (222) plane was arranged parallel to the substrate surface and oriented on only one plane, etching was uniformly performed without unevenness in etching speed depending on the location, resulting in clean and straight pattern edges.

以上3種のIT○薄膜サンプルについて詳しく説明した
が、他に更に製膜条件を変えて作製したITO薄膜につ
いて同様に測定し、統計的に調べて以下の結果を得た。
Although the above three types of IT○ thin film samples have been described in detail, other ITO thin films prepared under different film forming conditions were similarly measured and statistically investigated, and the following results were obtained.

もちろん抵抗率と光透過率に関しては最初に記した使用
可能な範囲の特性を持つものであるが、−面のみの配向
はエツチングスピードの場所によるむらを無くし、パタ
ーンエツジの凸凹を生じないために不可欠であることが
判った。それも60チ以上の配向度の時完全であった。
Of course, the resistivity and light transmittance are within the usable range described above, but the orientation of only the − plane eliminates unevenness in etching speed depending on location and prevents uneven pattern edges. It turned out to be essential. It was also perfect when the degree of orientation was 60 inches or more.

この時(222)面のみの配向でもよいし、(4OO)
面のみの配向でもよい。一般に高速の形成速度の時は(
400)配向が強まる。しかし−面のみの配向膜の作成
は粒子が大きくなると困難で、400Å以下におさえな
くてはならない。
At this time, only the (222) plane may be oriented, or the (4OO)
It may be oriented only in planes. Generally, when the formation rate is high (
400) Increased orientation. However, it is difficult to create an alignment film with only - planes when the particles become large, and the size must be kept below 400 Å.

すなわち400人より犬きくなると2つ以上の面が基板
表面に平行に配向する1頃向が強い。粒子がえ−面の配
向度が相当大きいものでも、エツチングスピードが大き
く、オーバーエッチし易く、コントロールが難しい。ま
た局所的にパターンエツジの乱れも見られ、かつ表面の
平坦性も一般に悪い。
In other words, when the thickness is higher than 400, the orientation of two or more planes parallel to the substrate surface is strong. Even if the degree of orientation of the grain plane is considerably high, the etching speed is high, over-etching is likely to occur, and control is difficult. In addition, local pattern edge disturbances are observed, and the surface flatness is generally poor.

以上の結果をまとめて、ITO薄膜の特にディスプレイ
デバイスに適するマイクロスドラクチャ−として、(2
22)または(400)面のみが基板表面に平行に5o
%以上の配向度で配向し、かつ粒径が260以上400
A以下のものが最適であることが明らかになった。この
特定されたマイクロスドラクチャ−を持つIT○薄膜は
微細加工性に優れている。
Combining the above results, the microstructure (2
22) Or only the (400) plane is 5o parallel to the substrate surface.
% or more, and the grain size is 260 or more and 400
It has become clear that A or lower is optimal. The IT◯ thin film having this specified microstructure has excellent microprocessability.

発明の効果 本発明で特定されたマイクロスドラクチャ−を持つIr
O2膜を用いると、フォトリングラフィ技術でエツチン
グし微細加工を施す時に、優れたパタニング性を有し、
高い歩留りで、レジストパターンに忠実な、乱れのない
きれいな形状のITOパターンを得ることができる。
Effects of the Invention Ir having the microstructure specified in the present invention
When using an O2 film, it has excellent patterning properties when performing etching and microfabrication using photolithography technology.
It is possible to obtain an ITO pattern with a clean, undisturbed shape that is faithful to the resist pattern and has a high yield.

Claims (1)

【特許請求の範囲】  基板面に平行に(222)または(400)面のみが
50%以上の割合で結晶配向し、かつ粒子の大きさが2
50〜400Åの範囲である インジウム、スズ混晶飲化物よりなる 透明導電性薄膜。
[Scope of Claims] Only (222) or (400) planes are oriented parallel to the substrate surface at a ratio of 50% or more, and the grain size is 2.
A transparent conductive thin film made of an indium and tin mixed crystal drinkide having a thickness in the range of 50 to 400 Å.
JP62036078A 1987-02-19 1987-02-19 Transparent conductive thin film Expired - Lifetime JPH084038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62036078A JPH084038B2 (en) 1987-02-19 1987-02-19 Transparent conductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62036078A JPH084038B2 (en) 1987-02-19 1987-02-19 Transparent conductive thin film

Publications (2)

Publication Number Publication Date
JPS63202890A true JPS63202890A (en) 1988-08-22
JPH084038B2 JPH084038B2 (en) 1996-01-17

Family

ID=12459706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62036078A Expired - Lifetime JPH084038B2 (en) 1987-02-19 1987-02-19 Transparent conductive thin film

Country Status (1)

Country Link
JP (1) JPH084038B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188176B1 (en) 1997-07-15 2001-02-13 Tdk Corporation Organic electroluminescent device and preparation method with ITO electrode (111) orientation
JP2005512122A (en) * 2001-12-05 2005-04-28 サン−ゴバン グラス フランス Electrodes for electrochemical / electrically controllable devices
JP2006216344A (en) * 2005-02-03 2006-08-17 Dainippon Printing Co Ltd Flexible clear electrode substrate and organic electroluminescent display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000238178A (en) * 1999-02-24 2000-09-05 Teijin Ltd Transparent conductive laminate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124102A (en) * 1984-07-12 1986-02-01 旭硝子株式会社 Conductor
JPS61183809A (en) * 1985-02-08 1986-08-16 帝人株式会社 Transparent conductive laminate body and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124102A (en) * 1984-07-12 1986-02-01 旭硝子株式会社 Conductor
JPS61183809A (en) * 1985-02-08 1986-08-16 帝人株式会社 Transparent conductive laminate body and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188176B1 (en) 1997-07-15 2001-02-13 Tdk Corporation Organic electroluminescent device and preparation method with ITO electrode (111) orientation
JP2005512122A (en) * 2001-12-05 2005-04-28 サン−ゴバン グラス フランス Electrodes for electrochemical / electrically controllable devices
JP2006216344A (en) * 2005-02-03 2006-08-17 Dainippon Printing Co Ltd Flexible clear electrode substrate and organic electroluminescent display device

Also Published As

Publication number Publication date
JPH084038B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
JP6457443B2 (en) Transparent conductive film and method for producing the same
JP2839829B2 (en) Transparent conductive film, method for forming the same, and method for processing transparent conductive film
JP6261987B2 (en) Transparent conductive film and method for producing the same
US20070241364A1 (en) Substrate with transparent conductive film and patterning method therefor
WO2014112535A1 (en) Transparent conductive film and production method therefor
WO2014112536A1 (en) Production method for transparent conductive film
US6908574B2 (en) Tin-containing indium oxides, a process for producing them, a coating solution using them and electrically conductive coatings formed of them
JP3366046B2 (en) Amorphous transparent conductive film
JP3766453B2 (en) Transparent conductive film and method for producing the same
JP3257913B2 (en) Transparent electrode
JPS63202890A (en) Transparent conductive thin film
JP2003533890A (en) Etching method for producing electrodes
TWI375099B (en)
JP3780100B2 (en) Transparent conductive film with excellent processability
JPH06160876A (en) Transparent electrode plate and its production
JP3634394B2 (en) High resistance indium oxide film
JP4586263B2 (en) Substrate with conductive film and method for producing the same
JPH09236811A (en) Transparent conductive substrate for liquid crystal display and forming method for transparent electrode
JPH0874033A (en) Electrode for liquid crystal display
JPH0950711A (en) Transparent conductive film
JPS6241311B2 (en)
JPH0774085B2 (en) Conductive glass plate
JPH09174749A (en) Transparent conductive film
JP2964964B2 (en) Manufacturing method of liquid crystal display device
JPH05171437A (en) Formation of transparent electrically conductive film