JPH01116035A - Method for molding of reserve reducing ore into mass - Google Patents

Method for molding of reserve reducing ore into mass

Info

Publication number
JPH01116035A
JPH01116035A JP27187487A JP27187487A JPH01116035A JP H01116035 A JPH01116035 A JP H01116035A JP 27187487 A JP27187487 A JP 27187487A JP 27187487 A JP27187487 A JP 27187487A JP H01116035 A JPH01116035 A JP H01116035A
Authority
JP
Japan
Prior art keywords
coal
binder
molding
ore
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27187487A
Other languages
Japanese (ja)
Inventor
Takashi Nakamura
隆 中村
Satoru Suzuki
悟 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27187487A priority Critical patent/JPH01116035A/en
Publication of JPH01116035A publication Critical patent/JPH01116035A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To reduce the using amt. of a binder and to permit the molding of the above ores into a mass at relatively low temp. in a good yield by kneading the charcoal material of powdery reserve reducing ores having specific metallizing ratio thereto and subjecting the same to pressure molding. CONSTITUTION:The charcoal material such as coal and coke breeze is kneaded to the reserve reducing ore powder having 30-80% metallizing ratio at a high temp. About 3-15% binder such as soft pitch and asphalt is added thereto, is subjected to pressure molding at <=300 deg.C and is molded into mass. In this way, the molded material having high strength can be manufactured in high yield by using reduced amounts of binder.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高炉プロセスに依らない鉄鉱石の溶融還元方法
において粉鉱石を予備還元し、該予備還元鉱に石炭、コ
ークス等の炭材をおよび石灰石等の造滓材を混合した後
で成型機で塊成化し溶融還元炉に装入するための塊成化
技術で、予備還元鉱の塊成化方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a method for melting and reducing iron ore that does not rely on a blast furnace process, in which fine ore is pre-reduced, and carbonaceous materials such as coal and coke are added to the pre-reduced ore. This is an agglomeration technology for mixing slag material such as limestone, agglomerating it in a molding machine, and charging it into a smelting reduction furnace, and relates to a method for agglomerating pre-reduced ore.

(従来の技術) 鉄鉱石の溶融還元法は還元の機能効率、装置特性の面か
ら一般に予備還元工程と溶融還元工程に分れるのが通常
である。しかし予備還元工程は粉、粒鉱石ならば流動層
が用いられる。また溶融還元としては電気炉あるいは特
殊な溶融還元炉が開発されているが、予備還元工程で得
られる予備還元鉱は還元温度600−900℃で得られ
る予備還元率30−98 %金属化率5−95%のもの
であるために、これを溶融還元炉に経済的、安定して装
入するプロセスが非常に大切な技術になっている。
(Prior Art) Iron ore smelting reduction methods are generally divided into a preliminary reduction step and a smelting reduction step in terms of reduction functional efficiency and equipment characteristics. However, in the preliminary reduction process, a fluidized bed is used for powder or granular ore. In addition, electric furnaces or special smelting reduction furnaces have been developed for smelting reduction, but the pre-reduced ore obtained in the pre-reduction process has a pre-reduction rate of 30-98% metallization rate obtained at a reduction temperature of 600-900°C. -95%, the process of economically and stably charging this into a melting reduction furnace has become a very important technology.

つまり予備還元鉱は高温であり、再酸化性が高いので特
に粉状のままにした場合は再酸化し易く溶融還元炉への
装入も難しいため塊成化することが考えられる。
In other words, pre-reduced ore has a high temperature and is highly reoxidizable, so if it is left in powder form, it is likely to be easily reoxidized and difficult to charge into a smelting reduction furnace, resulting in agglomeration.

予備還元鉱中には一部酸化鉄が残っており、これを溶融
還元かつ溶解を行わしめるには石炭、コークス等の還元
材を添加する必要があるので、予め予備還元鉱と石炭、
コークス等の炭材または更に石灰造滓剤を合わせ混合し
、溶融還元原料に用いるようにすれば工程上有利となる
Some iron oxide remains in the pre-reduced ore, and it is necessary to add a reducing agent such as coal or coke to melt and reduce it.
It would be advantageous in terms of the process if a carbonaceous material such as coke or a lime-forming slag agent were combined and used as a raw material for melt reduction.

一般にこの様な原料を塊成化する場合は、100℃以下
の温度まで成型材料を冷却後、バインダーを加え成型ロ
ールで塊成化する方法が通常である。
Generally, when such raw materials are agglomerated, the usual method is to cool the molding material to a temperature of 100° C. or lower, add a binder, and then agglomerate it with a molding roll.

しかしこの方法では、冷却するために冷却プロセスが必
要となり、また熱的ロスが生じ経済的でない。また高温
での塊成化を行う場合、公知の還元鉄単独のプロセスの
様に80−90 %、あるいはそれ以上の還元鉄を含み
、かつ温度650℃以上の場合は特にバインダーを必要
とせず容品に塊成化できることは公知のことであるが、
この場合は前記の還元鉄車のプロセスの様に高金属化率
の場合、還元鉄が全量または単材等の添加が数チと低い
場合には鉄の熱可塑性を利用して塊成化はできる。
However, this method requires a cooling process for cooling, and also causes heat loss, which is not economical. In addition, when agglomeration is carried out at high temperatures, if the process contains 80-90% or more reduced iron and the temperature is 650°C or higher, no binder is required, as in the known process using only reduced iron. It is well known that it can be agglomerated into products,
In this case, when the metallization rate is high as in the above-mentioned process for reduced iron cars, and when the total amount of reduced iron or the addition of single materials is as low as a few inches, agglomeration is carried out using the thermoplasticity of iron. can.

しかし溶融還元プロセスに使用する予備還元率の低い原
料を石炭、コークス等の炭材等の大量混合により塊成化
することは、炭材等自身が剥離材として機能するため、
塊成化は困難であシ、従来の還元鉄成型技術では予備還
元鉱を冷却しない限り成型することは出来なかった。(
参考技術特開昭お一12712号公報) (発明が解決しようとする問題点) 本発明は顕熱を保持した状態のままの高温の金属化率3
0−80%の粉予備還元鉱に石炭、粉コークス等の炭材
あるいは石灰造滓剤等の異種粉剤群を混合して塊成化す
ることにあシ、金属率をさげることなく特に高価な冷却
設備設債や多量のバインダーを使うことなしに、強度の
高い成型物を塊歩留り80ts以上で塊成化することが
できる。特に成型過程で製品の品質である金属化率を下
げないためには、石炭を予備乾燥して水分含有量を減ら
すことで対処できる。
However, agglomeration of raw materials with a low preliminary reduction rate used in the melt reduction process by mixing a large amount of carbonaceous materials such as coal and coke is difficult because the carbonaceous materials themselves function as exfoliating materials.
Agglomeration is difficult, and with conventional reduced iron forming technology, it was not possible to form the reduced iron unless the pre-reduced ore was cooled. (
Reference technology JP-A No. 12712) (Problems to be solved by the invention) The present invention solves the problem of metallization at a high temperature of 3 while retaining sensible heat.
It is possible to agglomerate by mixing 0-80% powder pre-reduced ore with carbonaceous materials such as coal, coke powder, or different types of powders such as lime slag, without reducing the metal content. High-strength molded products can be agglomerated with a lump yield of 80 ts or more without installing cooling equipment or using a large amount of binder. Particularly in order to avoid reducing the metallization rate, which is the quality of the product during the molding process, it is possible to reduce the water content by pre-drying the coal.

(問題点を解決するためめ手段) 本発明は高温の金属化率30−80%の範囲の予備還元
鉱と石炭とを混合後、3−15%の軟ピツチまたはアス
ファルト等の炭化水素系のバインダーを添加、加圧成型
する。
(Means for Solving the Problems) The present invention involves mixing pre-reduced ore with a high temperature metallization ratio of 30-80% and coal, and then adding a hydrocarbon-based material such as 3-15% soft pitch or asphalt. Add binder and press mold.

(作用) 高温の予備還元鉱に石炭を加えると予備還元鉱の顕熱で
石炭が乾留され石炭表面に結合剤と馴染みやすい物質を
生成させると同時に、温度が下がり、バインダー添加量
が少なくすむ。このように被成型物質を起こさせ事前処
理することにより強度の高い成型物質が高収率で製造出
来る。一般に石炭を加熱すると100℃で水分が蒸発、
100−200℃でCH+、、Co□ などの吸蔵ガス
を放出し、2o。
(Function) When coal is added to the high-temperature pre-reduced ore, the coal is carbonized by the sensible heat of the pre-reduced ore, producing a substance that is compatible with the binder on the surface of the coal, and at the same time, the temperature decreases and the amount of binder added can be reduced. By raising and pre-treating the material to be molded in this way, a molded material with high strength can be produced at a high yield. Generally, when coal is heated, water evaporates at 100℃.
Releases storage gases such as CH+, Co□ at 100-200°C, 2o.

−300℃では石炭が分解し始める。300−400℃
では分解が激しくなりH2O,CO2□ 、 Co 、
 CmHnなどのガス成分および粘度の低いタールが発
生し始める。400−500℃ではタールの発生は最も
盛んである。500−800℃ではCrnHnは分解し
てCH,+などを生じ、タールは分解してガスとなる。
At -300°C, coal begins to decompose. 300-400℃
Then the decomposition becomes intense and H2O, CO2□, Co,
Gaseous components such as CmHn and tar with low viscosity begin to be generated. Tar generation is most active at 400-500°C. At 500-800°C, CrnHn decomposes to produce CH, +, etc., and tar decomposes to become gas.

700−900℃の予備還元鉱と常温の石炭を混合する
と上に述べた分解反応が生じる。石炭の乾留反応は吸熱
であシ550−600 kcal/’pの吸熱反応をし
めす。従って高温の予備還元鉱が排出する所で石炭を混
ぜると石炭は上に述べた反応を伴って予備還元鉱および
石炭混合物の温度が降下する。−例として900℃、l
KPの予備還元鉱に常温の石炭を0.3を混ぜた場合は
最終的には300℃近辺の温度まで降温する。石炭は予
備還元鉱の中で乾留をうけタールを発生する。この状態
でバインダーを添加するとバインダーと粒子表面にター
ルが付いた石炭は結合し易い状態になっているので加圧
成型すると予備還元鉱はこの結合手群に全体が包まれ、
強度の高い混合成型物が得られる。
When prereduced ore at 700-900°C and coal at room temperature are mixed, the above-mentioned decomposition reaction occurs. The carbonization reaction of coal is endothermic and shows an endothermic reaction of 550-600 kcal/'p. Therefore, when coal is mixed at the point where the hot pre-reduced ore is discharged, the coal undergoes the above-mentioned reaction and the temperature of the pre-reduced ore and the coal mixture decreases. - e.g. 900°C, l
When KP's pre-reduced ore is mixed with 0.3 of room temperature coal, the temperature will eventually drop to around 300°C. Coal undergoes carbonization in the preliminary reduction ore to generate tar. When a binder is added in this state, the binder and the coal with tar on the particle surface are in a state where they are likely to bond, so when pressurized, the pre-reduced ore is completely wrapped in this group of bonds,
A mixed molded product with high strength can be obtained.

(実施例) 予備還元鉱の中に一度に多量の石炭を加えると乾留反応
に伴う温度低下が大きく石炭の分解が少なく、タール生
成が十分でないので強度は低い。
(Example) When a large amount of coal is added to the pre-reduced ore at once, the temperature decreases greatly due to the carbonization reaction, resulting in little decomposition of the coal and insufficient tar formation, resulting in low strength.

強度の高い成型物を高収率で造ろうとする場合は予備還
元鉱と石炭を均一に混合する必要があり、どこで、どの
石炭を、どれ位の量を加えるか、どれ位長く混練するか
など混合の仕方が極めて重要である。実施例として50
0−900℃の予備還元鉱70%に常温の瀝青炭、褐炭
、無煙炭0−30%、バインダーとして150℃の軟ピ
ツチ、アスファルトを0−12%加えダブルロール成型
機を用い5−10ton /−で成型し、製造した製品
を篩分して、篩分結果を+108塊指数で表示した例を
示す。
If you want to make a high-strength molded product with a high yield, you need to mix the pre-reduced ore and coal uniformly, and you need to know where, which coal to add, how much to add, and how long to knead it. The method of mixing is extremely important. 50 as an example
70% pre-reduced ore at 0-900℃, 0-30% bituminous coal, lignite, anthracite at room temperature, 0-12% soft pitch at 150℃ and asphalt as a binder, and 5-10 tons/- using a double roll molding machine. An example is shown in which a molded and manufactured product is sieved and the sieved results are displayed as +108 lump index.

(1)  混線時間の影響を第1図に示す。(1) Figure 1 shows the influence of crosstalk time.

混線時間の影響をみた結果を第1図に示したが製品歩留
シを上げるには、混合物とバインダー充分に混ぜること
が大切であシ適切な混練時間を確保する必要がある。
The results of looking at the effect of mixing time are shown in Figure 1. In order to increase the product yield, it is important to thoroughly mix the mixture and binder, and it is necessary to ensure an appropriate mixing time.

(2)石炭比、バインダー配合量の影響を第2図に示す
(2) Figure 2 shows the effects of coal ratio and binder content.

この試験では瀝青炭を用いたが石炭配合量が少なくなる
と製品歩留りは低下する傾向がある。
Although bituminous coal was used in this test, the product yield tends to decrease as the coal content decreases.

このときはバインダー配合量を増すことで製品歩留シを
確保することが出来る。石炭比が少なくなると歩留りが
下がるのは結合手が少なくなったためと推定される。
In this case, the product yield can be ensured by increasing the amount of binder blended. The reason why the yield decreases as the coal ratio decreases is presumed to be because the number of bonds decreases.

(3)石炭銘柄の影響を第3図に示す。(3) Figure 3 shows the influence of coal brands.

次に石炭銘柄を変えた試験を行ったが石炭銘柄が瀝青炭
、褐炭、無煙炭と変わると製品歩留りは徐々に低下する
傾向にある。これは石炭が加熱されたとき発生するター
ル量との関係が出てきたものとみられろが、タール発生
量が少ない場合は製品歩留りが低いのでバインダー添加
量を増すことで歩留りを確保することが出来る。
Next, tests were conducted with different brands of coal, but as the brands of coal changed to bituminous coal, lignite, and anthracite, the product yield tended to gradually decrease. This seems to be related to the amount of tar generated when coal is heated, but if the amount of tar generated is small, the product yield is low, so it is possible to secure the yield by increasing the amount of binder added. I can do it.

(4)バインダ一種類の影響 結合剤として軟ピツチ、アスファルトの2種類を用いて
襲品歩留シがどれ位差があるか試験した結果、軟ピツチ
の方が僅かに歩留シが高いだけで、特に大きな差は認め
られ無かった。
(4) Effects of one type of binder We tested two types of binders, soft pitch and asphalt, to determine the difference in product yield, and found that soft pitch had a slightly higher yield. However, no particularly large difference was observed.

(5)石炭水分量と製品再酸化率との関係予備還元鉱を
石炭と混合する場合、混合初期に於ては石炭含有水分が
熱予備還元鉱と接触して水蒸気が発生、これが予備還元
鉱の金属鉄と反応して混合物の温度が高いほど金属化率
が低下する。金属化率の低下は温度、水分含有量等の要
因により変わるが200℃以上では予備還元鉱石は比表
面積が大きく、再酸化し易いので、プロセスに余裕があ
れば、石炭の事前乾燥で水分持込量を減らすことが望ま
しい。
(5) Relationship between coal moisture content and product reoxidation rate When pre-reduced ore is mixed with coal, in the early stage of mixing, the moisture contained in the coal comes into contact with the thermal pre-reduced ore and steam is generated, which is absorbed by the pre-reduced ore. The higher the temperature of the mixture, the lower the metallization rate. The decrease in metallization rate varies depending on factors such as temperature and moisture content, but at temperatures above 200°C, pre-reduced ore has a large specific surface area and is easily reoxidized, so if there is room in the process, pre-drying the coal can help retain moisture. It is desirable to reduce the amount of

第4図につき説明すると、予備還元炉(図示せず)から
排出された粉状の予備還元鉱をコンテナ1貯蔵ビン3を
介し成型袋f12に送り、混合部Mに供給する。一方粉
石炭は炭材供給装置10のホッパ−11、コンスタント
フィダー12、スクリューコンベア13、シュート14
を介して混合部Mに供給され、ここで予備還元鉱に混合
し、スクリューフィダー4によって余圧をかけ、平滑ロ
ールよりなる成型ロール5に圧送する。成型ロール5で
圧延された板状成型物は成型ロール5と同期している分
離機6で剪断力が作用するようになっているので所定の
大きさに切断し、冷却槽8へ落下させ冷却した後撮動コ
ンベア7を経て搬出コンベア9で所定場所に搬出する。
To explain with reference to FIG. 4, the powdered pre-reduced ore discharged from the pre-reduction furnace (not shown) is sent to the forming bag f12 via the container 1 storage bin 3 and supplied to the mixing section M. On the other hand, powdered coal is supplied to the hopper 11 of the coal supply device 10, the constant feeder 12, the screw conveyor 13, and the chute 14.
is supplied to the mixing section M, where it is mixed with the pre-reduced ore, applied with extra pressure by the screw feeder 4, and force-fed to the forming roll 5 made of a smooth roll. The plate-shaped molded product rolled by the molding roll 5 is cut into a predetermined size by a separator 6 that is synchronized with the molding roll 5 and subjected to shearing force, and is cooled by dropping it into a cooling tank 8. After that, it is carried out via a photographing conveyor 7 and then carried out to a predetermined location by a carry-out conveyor 9.

塊成化後冷却せず熱間で溶融還元炉等次工程に供給する
After agglomeration, it is not cooled and is supplied hot to the next process such as a melting reduction furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は混練時間の影響図、第2図は石炭比、パイン、
ダー配合量の影響図、第3図は石炭銘柄の影響図、第4
図は本発明実施の1例を示す予濃還元炉の概略説明図で
ある。 1はコンテナー、2は圧縮成型装置、3は貯蔵ビン、4
はスクリューフィーダー、5は成型ロール、6は分離機
、7は振動コンベヤー、8は冷却槽、9は搬出コンベア
、10は炭材供給装置、11はホッパー、12ハコンス
タントフイーター、13ハスクリユーコンベヤー、14
ハシユー)、MH混合!特許 出 願人 新日本製鉄株
式会社 代理人 弁理士 熊 谷 福 −″。 ヤ/屈堪陳時騰4オ智 ジv2ルaメ5人1ヒ、バインダー〜Mの櫃3」rノザ
インダゝづう1泊i(%) パイ〉72ヤ合愛(%)
Figure 1 is a diagram of the influence of kneading time, Figure 2 is a diagram of the influence of mixing time, coal ratio, pine,
Figure 3 shows the influence of coal brand, Figure 4 shows the influence of coal blending amount.
The figure is a schematic explanatory diagram of a preconcentration reduction furnace showing one example of implementing the present invention. 1 is a container, 2 is a compression molding device, 3 is a storage bin, 4
1 is a screw feeder, 5 is a forming roll, 6 is a separator, 7 is a vibrating conveyor, 8 is a cooling tank, 9 is an unloading conveyor, 10 is a carbon material supply device, 11 is a hopper, 12 is a constant feeder, 13 is a huskscrew conveyor , 14
Hashiyu), MH mixed! Patent Applicant Nippon Steel Co., Ltd. Agent Patent Attorney Fuku Kumagai i(%) pie〉72yaaiai(%)

Claims (1)

【特許請求の範囲】[Claims]  金属化率30−80%の予備還元鉱石に炭材を添加混
練後、300℃以下の温度で結合剤を加え加圧成型する
予備還元鉱の塊成化方法。
A method for agglomerating pre-reduced ore, which involves adding carbonaceous material to pre-reduced ore with a metallization rate of 30-80%, kneading it, adding a binder at a temperature of 300°C or less, and press-molding it.
JP27187487A 1987-10-29 1987-10-29 Method for molding of reserve reducing ore into mass Pending JPH01116035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27187487A JPH01116035A (en) 1987-10-29 1987-10-29 Method for molding of reserve reducing ore into mass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27187487A JPH01116035A (en) 1987-10-29 1987-10-29 Method for molding of reserve reducing ore into mass

Publications (1)

Publication Number Publication Date
JPH01116035A true JPH01116035A (en) 1989-05-09

Family

ID=17506103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27187487A Pending JPH01116035A (en) 1987-10-29 1987-10-29 Method for molding of reserve reducing ore into mass

Country Status (1)

Country Link
JP (1) JPH01116035A (en)

Similar Documents

Publication Publication Date Title
JPH02228411A (en) Manufacture of iron
EP2418292A1 (en) Method for producing metallic iron
CN100441701C (en) Method for producing reduced iron compact in rotary hearth reducing furnace, reduced iron compact, and method for producing pig iron using the same
JP2004217914A (en) Method for producing and using ferrocoke and method for utilizing by-product gas in producing the ferrocoke
US3960543A (en) Process of producing self-supporting briquettes for use in metallurgical processes
KR100276344B1 (en) Smelting reduction process
JP3502011B2 (en) Manufacturing method of carbonized interior agglomerates
JP4267390B2 (en) Method for producing ferro-coke for blast furnace
JP3502008B2 (en) Manufacturing method of carbonized interior agglomerates
JPH01116035A (en) Method for molding of reserve reducing ore into mass
JP3718604B2 (en) Blast furnace raw material charging method
JP3863104B2 (en) Blast furnace operation method
JP4996103B2 (en) Manufacturing method of carbonized material agglomerates
JP7488449B2 (en) Binder for manufacturing agglomerates, manufacturing method of agglomerates using the same, manufacturing method of reduced iron, agglomerates
JP3379360B2 (en) Hot metal production method
JPS63137989A (en) Production of ferrocoke
JPS6040192A (en) Production of metallurgical coke
JP2011032532A (en) Method for producing agglomerate for blast furnace raw material
WO2023171468A1 (en) Method for manufacturing carbonaceous material-containing agglomerate ore, and method for manufacturing molten pig iron
JPH1129807A (en) Production of molten iron
JPH09118883A (en) Production of coke for blast furnace
JP3350158B2 (en) Manufacturing method of molded coke
KR101538845B1 (en) Method for prodution for part reduced iron with caronaceous material incorporated
KR970010798B1 (en) Agglomeration method of fine powder using non-coking coal
JPH1129808A (en) Production of molten iron