JPH01115886A - Superconducting material - Google Patents

Superconducting material

Info

Publication number
JPH01115886A
JPH01115886A JP62274109A JP27410987A JPH01115886A JP H01115886 A JPH01115886 A JP H01115886A JP 62274109 A JP62274109 A JP 62274109A JP 27410987 A JP27410987 A JP 27410987A JP H01115886 A JPH01115886 A JP H01115886A
Authority
JP
Japan
Prior art keywords
fluorine
oxide ceramic
superconductor
superconducting material
containing layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62274109A
Other languages
Japanese (ja)
Other versions
JP2844194B2 (en
Inventor
Eiji Natori
栄治 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62274109A priority Critical patent/JP2844194B2/en
Publication of JPH01115886A publication Critical patent/JPH01115886A/en
Application granted granted Critical
Publication of JP2844194B2 publication Critical patent/JP2844194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain the titled material, useful as Josephson elements, superconducting magnets, magnetic shields, etc., and having excellent stability (environmental resistance), by forming a fluorine-containing layer on the surface of an oxide ceramic based superconductor. CONSTITUTION:The surface of an oxide ceramic based superconductor, such as R-M-Cu-O based superconductor (R is rare earth element including Sc and Y; M is Ca, Ba or Sr), is subjected to fluorine plasma treatment by exposure to fluorine converted into a plasma using a plasma reactor, etc., for a given time to form a fluorine-containing layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ジ望セフンン素子、超電導マグネット、磁気
シールド等に用いる、超電導材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting material used for a mechanical device, a superconducting magnet, a magnetic shield, etc.

〔従来の技術〕[Conventional technology]

酸化物セラミック系超電導材料の主なものにはDupo
ntのSleightらが発見1.りHa−Pb−Di
−0系(ペロブスカイト構造)、ll3MのBedno
rzらが発見したBa−La−Cu−0系(弓状ペロブ
スカイト構造) 、Ho us ton大学のChuら
が発見したBa−Y−Cu−0系(酸素欠損型層状ペロ
プスカイト構造)がある。
The main oxide ceramic superconducting materials include Dupo
Discovered by Sleight et al. of nt 1. riHa-Pb-Di
-0 series (perovskite structure), ll3M Bedno
There is a Ba-La-Cu-0 system (arcuate perovskite structure) discovered by RZ et al., and a Ba-Y-Cu-0 system (oxygen-deficient layered perovskite structure) discovered by Chu et al. of the University of Houston.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら従来の類1!導材料は水分により反応しや
すく臨界温度の悪化を招いていた。
However, the conventional type 1! Conductive materials tend to react with moisture, leading to deterioration of critical temperature.

例えば最も臨界温度が高く現在注目されているBas 
Y’+ Cus Ot −aはBe1l研究所の報告に
よると次の様に反応する。
For example, Bas, which has the highest critical temperature and is currently attracting attention.
According to a report from the Bell Institute, Y'+ Cus Ot -a reacts as follows.

Bat  YCus  Ot ↓  H,O Ym B aCu O,+ B a (O旧1 +Cu
O+Q本発明はこの様な問題を解決するものであり、そ
の目的は安定性(耐環境性)に優れた超fr1!!3材
料を得んとするものである。
Bat YCus Ot ↓ H, O Ym B aCu O, + B a (O old 1 + Cu
O+Q The present invention is intended to solve such problems, and its purpose is to provide a super-fr1 product with excellent stability (environmental resistance)! ! The purpose is to obtain three materials.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題を解決するため本発明の超電導材料は 1)
酸化物セラミック系超電導材料において表面にフッ素を
含む層を形成したこと 2)酸化物セラミック系超電導
体がR−M−Cu−0糸道W1s体(ここでRはSC%
Yを含む希土類元素から成る群より選ばれる1@lもし
くは複数種の組合せでありMはCFLs B ELs 
S r又はそれらの組合せ)であること 3)フッ素を
含む層の形成にフッ素プラズマ処理を用いたことを特徴
とする。
In order to solve the above problems, the superconducting material of the present invention has the following features: 1)
A layer containing fluorine is formed on the surface of the oxide ceramic superconducting material.2) The oxide ceramic superconductor is a R-M-Cu-0 thread W1s body (where R is SC%).
1@l or a combination of multiple elements selected from the group consisting of rare earth elements including Y, M is CFLs B ELs
3) A fluorine plasma treatment is used to form a layer containing fluorine.

〔実施例〕〔Example〕

以下実施例に従い本発明の詳細な説明する。 The present invention will be described in detail below with reference to Examples.

実施例−1 先ずイブトリュウム系安定化ジルコニヤ(YS2)基板
上に3光電子ビーム蒸着により厚さ6μのNHを形成す
る。第1表は薄膜の組成を示したものであり、この時用
いるターゲットはA〜E組成では所定の元素比に調合し
たR−Cu合金(ここでRは第1表に示されている希土
類元素)と5r−Cu合金とBa−Cu合金の3ターゲ
ツトでありEは、Ba−Pb合金とPb−13i合金の
2ターゲツトである。(A−EターゲットではR−I3
aも作成したが分離して良い合金は得られなかった。)
また蒸着雰囲気は酸素圧7本10−’TOrrq基板二
度は基板二階830 ’Cである。成膜後の薄膜は、酸
素が不足しているため次に550〜870℃酸素雰囲気
中に於て15時間アニールして超電導薄膜を得る。アニ
ール後の冷却は50℃/H程度の除冷である。
Example 1 First, NH with a thickness of 6 μm is formed on an butolium-based stabilized zirconia (YS2) substrate by triple photoelectron beam evaporation. Table 1 shows the composition of the thin film, and the target used at this time is an R-Cu alloy (here R is a rare earth element shown in Table 1) prepared in a predetermined element ratio for compositions A to E. ), 5r-Cu alloy, and Ba-Cu alloy, and E has two targets, Ba-Pb alloy and Pb-13i alloy. (R-I3 for A-E target
A was also prepared, but no good alloy could be obtained. )
The vapor deposition atmosphere was 7 oxygen pressures, 10-' TOrrq substrates, and 830'C. Since the formed thin film lacks oxygen, it is then annealed at 550 to 870° C. in an oxygen atmosphere for 15 hours to obtain a superconducting thin film. Cooling after annealing is gradual cooling at about 50° C./H.

次にプラズマリアクター(ヤマト科学株式会社製 PR
−501A)を用い、プラズマ化したフッ素に1時間(
30分を2回> IIIすフッ素プラズマ処理を行い超
電導薄膜の表面にフッ素を含んだ層を形成する。
Next, a plasma reactor (Yamato Scientific Co., Ltd. PR
-501A) for 1 hour (
Fluorine plasma treatment is performed twice for 30 minutes to form a fluorine-containing layer on the surface of the superconducting thin film.

フッ素プラズマ処理を行った試料をエツチングしながら
X線電子分光(XPS)によりどの深さまでフッ素が進
入しているかを分析した。XPSは検出範囲が広く且つ
エツチングは均一でないため深さの精度は正確ではない
が0.08μ前後と思われる。又フッ素の光電子には化
学シフトが見られたためフッ素の一部は他元素と結合し
ているものと思われる。
While etching a sample that had been subjected to fluorine plasma treatment, the depth to which fluorine had penetrated was analyzed using X-ray electron spectroscopy (XPS). Since XPS has a wide detection range and etching is not uniform, the depth accuracy is not accurate, but it is thought to be around 0.08μ. Also, since a chemical shift was observed in the photoelectrons of fluorine, it seems that some of the fluorine is bonded to other elements.

第    1    表 次に得られた試料の安定性(耐環境性)を調べた。評価
は試料を温度45°C1湿度85%の雰囲気に晒す耐久
試験を行い、試験前後の試料のインダクタンスの変化量
を測定して行った。測定温度はA−D試料では85に、
Eは32に1Fは10にであ、る。また測定には、イン
ピーダンス/ゲイ/・フェーズアナライザー(横河ヒユ
ーレットパブカード製4194A)を用いた6第2表は
その結果を示したものである。
Table 1 Next, the stability (environmental resistance) of the obtained sample was investigated. For evaluation, a durability test was conducted in which the sample was exposed to an atmosphere at a temperature of 45° C. and humidity of 85%, and the amount of change in inductance of the sample before and after the test was measured. The measurement temperature was 85 for the A-D sample;
E is 32 and 1F is 10. Further, an impedance/gay/phase analyzer (4194A manufactured by Yokogawa Heuret Pub Card) was used for the measurement, and Table 2 shows the results.

第    2    表 第2表に示されている様に酸化物セラミック系超電導体
の表面にフッ素を含む層を形成したものは比較例に示し
たフッ素を含むそうを形成しないものに比べ大幅に安定
性(耐環境性)が向上しているのが判る。特に現在高臨
界温度で注目されているR−M−Cu−0系(工業技術
院電子技術総合研究所の伊原やユーゴスラビャ、ザグレ
ブ大学のDjurekらが室温超電導の可能性があるこ
とを示唆している材料)は効果が大きい。室温超電導が
生まれたらより大気に晒される機会が増えるためより安
定性(耐環境性)が要求されるであろう。その時に於け
る本発明の効果は非常に大きいものとなる。
Table 2 As shown in Table 2, the oxide ceramic superconductor with a fluorine-containing layer formed on its surface is significantly more stable than the comparative example in which a fluorine-containing layer is not formed. It can be seen that (environmental resistance) is improved. In particular, the RM-Cu-0 system, which is currently attracting attention due to its high critical temperature (Ihara and Yugoslavia of the National Institute of Electronics Technology, Agency of Industrial Science and Technology, and Djurek of the University of Zagreb, have suggested the possibility of room-temperature superconductivity). materials) have a great effect. Once room-temperature superconductivity is created, there will be more opportunities for exposure to the atmosphere, so greater stability (environmental resistance) will be required. At that time, the effects of the present invention will be very large.

実施例−2 まずDy (NOs )s 、8H* 01I3a (
CH、Coo)* 、Cu (CHs C00)H,O
を純水に入れ撹拌分散させる。この時のDy5BasC
uの割合は1:2:3である。(Dyの他にScs Y
lLan than ido等I[[a族元素を用いて
も同構造の超ff14体を得られる。)次にこの液体を
ドライスプレー法により乾燥させると同時に燃焼させ微
粉末を得る。次にこの微粉末を900℃酸素雰囲気中に
於て8時間加熱、圧縮成形を経た後920℃酸素雰囲気
中において焼結し超電導体を得る。次にAr−空気ジェ
ット法によりArプラズマを空気中にジェット状に放出
させ超電導体に吹き付は超電導体表面を活性化させた後
連続して300℃フッ素雰囲気中に於て2時間加熱処理
を行い超電4体表面にフッ素を含んだ層を形成する。こ
こで表面層を活性化するのはフッ素中の加熱処理を低温
で行うためである。高温では表面活性化を行わなくとも
フッ素含育層の形成は可能であるが内部の超電導体を劣
化させる場合があり処理条件の適正化が困難であるため
好ましくは表面活性化を行う方がよい。
Example-2 First, Dy (NOs)s, 8H*01I3a (
CH,Coo)*,Cu(CHsC00)H,O
Add to pure water and stir to disperse. Dy5BasC at this time
The ratio of u is 1:2:3. (In addition to Dy, Scs Y
1Lan than ido, etc.I ) Next, this liquid is dried by a dry spray method and simultaneously combusted to obtain a fine powder. Next, this fine powder is heated in an oxygen atmosphere at 900° C. for 8 hours, compression molded, and then sintered in an oxygen atmosphere at 920° C. to obtain a superconductor. Next, using the Ar-air jet method, Ar plasma is emitted into the air in the form of a jet, sprayed onto the superconductor to activate the superconductor surface, and then heated continuously at 300°C in a fluorine atmosphere for 2 hours. A layer containing fluorine is formed on the surface of the four superconductors. The reason why the surface layer is activated here is because the heat treatment in fluorine is performed at a low temperature. Although it is possible to form a fluorine-containing layer without surface activation at high temperatures, it may deteriorate the internal superconductor and it is difficult to optimize the processing conditions, so it is preferable to perform surface activation. .

得られた試料の安定性(耐環境性)を実施例−1の方法
により調べた。結果を′M3表に示した。
The stability (environmental resistance) of the obtained sample was examined by the method of Example-1. The results are shown in Table 'M3.

第    3    表 表より判る様にフッ素雰囲気中で加熱処理をしたもので
も実施例−1と同様に大幅な安定性(耐環境性)の向上
がみられる。尚XPSの分析では実施例−1のフッ素プ
ラズマ処理を行った方が他元素との結合割合が多いため
より安定性の面では好ましいものと思われる。
As can be seen from Table 3, the stability (environmental resistance) was significantly improved as in Example-1 even when heat treated in a fluorine atmosphere. According to XPS analysis, the fluorine plasma treatment of Example 1 seems to be more preferable in terms of stability since the bonding ratio with other elements is higher.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば不安定な酸化物セラミ
ック系超電導体でも表面にフッ素含育層を形成すること
により安定性(耐環境性)を付与することが出来る。将
来この酸化物セラミック系超W14材料に於て室温超電
導が可能になった時の効果は計り知れない。尚、これら
超電導材料は、例えば、磁気シールドでは電子顕微鏡の
、磁気レンズ、スピーカー、ビデオ、テープレコーダー
、ハードディスク、フロッピーディスクの磁気ヘッド等
の磁束の制御や5QUID(高感度磁気センサー)、光
スィッチ、ジコセフンン素子、超電導モーター、超?を
導マグネット、送電線等に応用できる。
As described above, according to the present invention, even an unstable oxide ceramic superconductor can be given stability (environmental resistance) by forming a fluorine-containing layer on its surface. In the future, if room temperature superconductivity becomes possible in this oxide ceramic super W14 material, the effect will be immeasurable. These superconducting materials are used, for example, in magnetic shielding, magnetic flux control of electron microscopes, magnetic lenses, speakers, video cameras, tape recorders, hard disks, magnetic heads of floppy disks, etc., 5QUID (high sensitivity magnetic sensor), optical switches, Jicocefunn element, superconducting motor, super? can be applied to conductive magnets, power transmission lines, etc.

以  上 出願人 セイコーエプン/株式会社that's all Applicant: Seiko Epun/Co., Ltd.

Claims (1)

【特許請求の範囲】 1)酸化物セラミック系超電導体において表面にフッ素
を含む層を形成したことを特徴とする超電導材料。 2)酸化物セラミック系超電導体がR−M−Cu−O系
超電導体(ここでRはSc、Yを含む希土類元素から成
る群より選ばれる1種もしくは複数種の組合せでありM
はCa、Ba、Sr又はそれらの組合せ)であることを
特徴とする特許請求の範囲第1項記載の超電導材料。 3)フッ素を含む層の形成にフッ素プラズマ処理を用い
たことを特徴とする特許請求の範囲第1項記載の超電導
材料。
[Scope of Claims] 1) A superconducting material comprising an oxide ceramic superconductor having a layer containing fluorine formed on its surface. 2) The oxide ceramic superconductor is a R-M-Cu-O superconductor (where R is one or a combination of rare earth elements including Sc and Y, and M
The superconducting material according to claim 1, wherein is Ca, Ba, Sr, or a combination thereof. 3) The superconducting material according to claim 1, wherein fluorine plasma treatment is used to form the layer containing fluorine.
JP62274109A 1987-10-29 1987-10-29 Superconducting material and electronic device using the same Expired - Lifetime JP2844194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62274109A JP2844194B2 (en) 1987-10-29 1987-10-29 Superconducting material and electronic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62274109A JP2844194B2 (en) 1987-10-29 1987-10-29 Superconducting material and electronic device using the same

Publications (2)

Publication Number Publication Date
JPH01115886A true JPH01115886A (en) 1989-05-09
JP2844194B2 JP2844194B2 (en) 1999-01-06

Family

ID=17537131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62274109A Expired - Lifetime JP2844194B2 (en) 1987-10-29 1987-10-29 Superconducting material and electronic device using the same

Country Status (1)

Country Link
JP (1) JP2844194B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259467A (en) * 1988-04-01 1990-02-28 Rhone Poulenc Chim Stable superconductive substance and its production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445011A (en) * 1987-08-13 1989-02-17 Tdk Corp Superconductive oxide ceramic material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445011A (en) * 1987-08-13 1989-02-17 Tdk Corp Superconductive oxide ceramic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259467A (en) * 1988-04-01 1990-02-28 Rhone Poulenc Chim Stable superconductive substance and its production

Also Published As

Publication number Publication date
JP2844194B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
EP0301962B1 (en) A superconducting thin film and a method for preparing the same
JP2711253B2 (en) Superconducting film and method for forming the same
JPH02260674A (en) Tunnel type josephson element and manufacture thereof
Mankiewich et al. High Critical-Current Density Ba2YCu3O7 Thin Films Produced by Coevaporation of Y, Cu, and BaF2
JPH01115886A (en) Superconducting material
JP2664070B2 (en) Preparation method of composite oxide superconducting thin film
JP2844195B2 (en) Superconducting material and electronic device using the same
JPH05129671A (en) Superconducting element having magneto-resistance effect and manufacture thereof
JP3059464B2 (en) Oxide material
Tsuge et al. Nb3Sn‐Pb Josephson tunnel junctions using patterned rf sputtered material and rf oxidation
JP2877313B2 (en) Method for manufacturing microbridge and method for manufacturing DC-SQUID
JPH0262081A (en) Superconductive parts
JPH0337913A (en) Oxide superconductor film material
JPH01126283A (en) Superconducting material
JPH02217306A (en) Production of oxide superconductor
JP2913653B2 (en) Oxide superconducting thin film structure
JP2501609B2 (en) Method for producing complex oxide superconducting thin film
JP2936125B2 (en) Magnetic bearing detection method
JPH01126206A (en) Superconducting thin film
RU1651704C (en) Method of obtaining films of high-temperature superconductor
Xu et al. Highly textured thick films by a melt‐annealing technique in the Bi‐Sr‐Ca‐Cu‐O system
JPH0567812A (en) High sensitive magneto sensitive element
Saadat Densely mapping the phase diagram of La₂ [subscript]-[subscript] xSr [subscript] xCuO₄
Haung et al. Superconducting properties of oriented YBa2Cu3O7− x films on MgO and SrTiO3 substrates
Mombourquette et al. Processing and Patterning Techniques for Thin Films of YBa 2 Cu 3 O 7

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term