JPH01115515A - Controller for electric discharge machine - Google Patents

Controller for electric discharge machine

Info

Publication number
JPH01115515A
JPH01115515A JP27026887A JP27026887A JPH01115515A JP H01115515 A JPH01115515 A JP H01115515A JP 27026887 A JP27026887 A JP 27026887A JP 27026887 A JP27026887 A JP 27026887A JP H01115515 A JPH01115515 A JP H01115515A
Authority
JP
Japan
Prior art keywords
machining
controller
mode
circuit
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27026887A
Other languages
Japanese (ja)
Inventor
Takashi Ishii
隆 石井
Yaichi Okubo
弥市 大久保
Yasuari Shimizu
清水 康有
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP27026887A priority Critical patent/JPH01115515A/en
Publication of JPH01115515A publication Critical patent/JPH01115515A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve machining accuracy and efficiency, in a controller for electric discharge machine where control is made according to recognition result of inter-pole voltage, by making machining control properly corresponding to the type of selected machining mode. CONSTITUTION:A controller recognizes machining condition through a machining condition recognizing circuit 9 based on an output signal from an inter-pole voltage detection circuit 8 for detecting the voltage between an electrode 1 and a work 2, then operates a machining control circuit 13 properly corresponding to the recognition result and carries out machining control. A recognition device 9 in the controller lecognizes machining condition of normal discharge A, arc discharge B, shortcircuit C and abnormal average D, and outputs signals. 9A-9D which are fed to a high speed processing line 11 and a controller 10. The controller 10 provides an operation mode command to the machining control circuit 13 according to a machining mode selected through a machining mode selector 12 from such machining modes as interpolation, interpolation rolling, plane rolling, electrode rotation and the like and operates the machine.

Description

【発明の詳細な説明】 〔産業上の利用分野]。[Detailed description of the invention] [Industrial application field].

本発明は、極間電圧を検出することにより加工状態を識
別し、その識別結果に応じて適宜加工制御する放電加工
機用制御装置に関するものである。
The present invention relates to a control device for an electric discharge machine that identifies a machining state by detecting a voltage between machining electrodes and controls machining appropriately according to the identification result.

〔従来の技術〕[Conventional technology]

従来から、この種の装置は種々あった。例えば、アーク
放電、短絡、無放電、平均値異常などの異常加工状態に
なることにより、加工パルスのパルス幅やパルスエネル
ギを制御したり、あるいは加工送りの方向や速度を制御
するなどの装置があった。
Conventionally, there have been various types of devices of this type. For example, abnormal machining conditions such as arc discharge, short circuit, no discharge, or average value abnormality may cause devices that control the pulse width and pulse energy of machining pulses, or control the direction and speed of machining feed to fail. there were.

そして従来装置では、直線補間、円弧補間、補間揺動、
平面揺動などの加工モードの選択種別に拘らず、ある特
定の異常加工状態に対しては、−率に、あらかじめ定め
られた特定の制御を行うようになっていた。
Conventional equipment can perform linear interpolation, circular interpolation, interpolation oscillation,
Regardless of the type of machining mode selected, such as plane swing, certain predetermined control is performed at a certain abnormal machining state.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらこのような従来装置では、上述したように
加工モードの種別に拘らず一率に加工制御するようにな
っているので、選択された加工モードや加工状態によっ
ては、加工精度は上がるが加工効率は下がったり、ある
いはその逆になったり、さらには双方ともに損なうなど
の問題点があった。
However, with such conventional equipment, as mentioned above, machining is controlled uniformly regardless of the type of machining mode, so depending on the selected machining mode and machining conditions, machining accuracy may increase, but machining efficiency may decrease. There were problems in that the value could go down, or vice versa, or even both could be damaged.

本発明は、上述したような問題点を解消するためになさ
れたもので、加工モードの選択種別に応じてより適切に
加工制御でき、加工精度及び加工効率を向上させること
のできる放電加工機用制御装置を提供することを目的と
する。
The present invention has been made in order to solve the above-mentioned problems, and is an electric discharge machine for electrical discharge machines that can control machining more appropriately depending on the selected type of machining mode and improve machining accuracy and machining efficiency. The purpose is to provide a control device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、選択加工モードに従って加工制御回路を作動
させるとともに、加工状態識別結果に基づいて加工制御
するとき、前記選択加工モードの種別に応じてあらかじ
め設定された動作モードで加工制御するようにしたもの
である。
The present invention operates a machining control circuit according to a selected machining mode, and when controlling machining based on a machining state identification result, machining is controlled in an operation mode preset according to the type of the selected machining mode. It is something.

〔作用〕[Effect]

直線補間、円弧補間、補間揺動、平面揺動、電極回転な
どの加工モードと、正常放電、アーク放電、短絡、平均
値異常、無放電などの加工状態との各組み合わせに対す
る最適な動作モード(加工パルス、加工送り、電極後退
などの各制御及び制御内容の組み合わせの態様)を実験
などによって求めておき、それに従ってコントローラで
加工制御する。これにより、いかなる加工モードにおい
ても正常放電効率が高められ、加工精度及び加工効率の
向上を両立させ得る。
The optimal operation mode for each combination of machining modes such as linear interpolation, circular interpolation, interpolation oscillation, plane oscillation, and electrode rotation, and machining conditions such as normal discharge, arc discharge, short circuit, average value abnormality, and no discharge ( Each control such as machining pulses, machining feed, and electrode retraction, and the combination of control contents) are determined through experiments, and the machining is controlled by the controller in accordance with these. As a result, normal discharge efficiency is increased in any machining mode, and machining accuracy and machining efficiency can be improved at the same time.

〔実施例〕〔Example〕

以下、図面を参照して本発明の詳細な説明する。第1図
は本発明による放電加工機用制御装置の一実施例を示す
ブロック図で、図中1は加工用の電極、2は電極1に対
向配置された被加工物、3は加工用電源である。4は電
源3により、電極lと被加工物2の間(極間)に加える
パルスエネルギを設定するパルス回路で、オンパルス幅
、オフパルス幅、パルス電圧、パルス電流などを制御す
る。5は電極1の送りモータ(Z軸道りモータ)、6.
7は被加工物2の送りモータ(X、  Y軸道すモータ
)、8は前記極間の電圧を検出する極間検出回路、9は
極間検出回路8からの出力信号(極間電圧波形)により
加工状態を識別する加工状態識別回路である。この識別
回路9は、ここでは第2図に示すように正常放電A、ア
ーク放電B、短絡C及び平均値異常D(個々の又は一定
時間内の極間パルス電圧平均値が所定範囲W外にあるこ
と)の加工状態を識別し、識別結果信号9A〜9Dを出
力する。すなわち、正常放電Aであれば信号9Aを、ア
ーク放電Bであれば信号9Bを、短絡状態であれば信号
9Cを、平均値異常状態であれば信号9Dを、各々個々
の極間パルス毎に出力する。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the control device for an electric discharge machine according to the present invention, in which 1 is an electrode for machining, 2 is a workpiece placed opposite to the electrode 1, and 3 is a power source for machining. It is. 4 is a pulse circuit that sets the pulse energy applied between the electrode 1 and the workpiece 2 (between the electrodes) by the power source 3, and controls the on-pulse width, off-pulse width, pulse voltage, pulse current, etc. 5 is a feed motor for electrode 1 (Z-axis motor); 6.
7 is a feed motor (X, Y-axis motor) for the workpiece 2; 8 is a gap detection circuit that detects the voltage between the gaps; 9 is an output signal from the gap detection circuit 8 (a voltage waveform between the gaps); ) is a machining state identification circuit that identifies the machining state. As shown in FIG. It identifies the machining state (that there is one) and outputs identification result signals 9A to 9D. In other words, signal 9A is generated for normal discharge A, signal 9B is generated for arc discharge B, signal 9C is generated for short circuit, and signal 9D is generated for average value abnormality for each individual interpole pulse. Output.

これら各信号9A〜9Dは、高速処理ライン(加工状態
識別結果に応じて即時に加工制御を行わせるためのライ
ン)11とコントローラ10に各々供給される。コント
ローラ10は、補間、補間揺動、平面揺動、電極回転な
どの加工モードのうちの任意の加工モードを選択する加
工モード選択器12で選択された加工モード(選択加工
モード)に従って加工制御回路13に動作モード選択指
令14を与え、作動させる。またコントローラ10は、
前記加工状態識別回路9から与えられる識別結果信号9
A〜9Dに基づいて、通常処理ライン15を経て加工制
御回路13を次のように作動させる。すなわち、前記選
択加工モードの種別と加工状態識別結果の各種紐み合わ
せに対する最適な、換言すれば加工効率を下げることな
く正常放電率を高められる動作モードを実験などによっ
てあらかじめ求めておき、それに従って加工制御回路1
3を作動させる。
These signals 9A to 9D are respectively supplied to a high-speed processing line 11 (a line for immediately performing processing control according to the processing state identification result) and a controller 10. The controller 10 controls a machining control circuit according to a machining mode (selected machining mode) selected by a machining mode selector 12 that selects any machining mode from among machining modes such as interpolation, interpolation oscillation, plane oscillation, and electrode rotation. An operation mode selection command 14 is given to 13 to activate it. Further, the controller 10 is
Identification result signal 9 given from the processing state identification circuit 9
Based on A to 9D, the processing control circuit 13 is operated via the normal processing line 15 as follows. That is, the optimum operation mode for various combinations of the selected machining mode type and the machining state identification results, in other words, the operation mode that can increase the normal discharge rate without reducing machining efficiency, is determined in advance through experiments, and the operation mode is then Processing control circuit 1
Activate 3.

上記加工制御回路13は、ここでは加工パルス制御回路
13A、加工送り、速度制御回路13B及び電極後退制
御切換回路13Cを備えてなる。この場合、加工パルス
制御回路13Aは、与えられた動作モードに基づいてパ
ルス回路4にパルス制御指令を与え、パルスエネルギを
調節するもので、例えば、平均値異常(信号9D)に対
してはオフタイムを広くし、短絡(信号9C)に対して
は微小幅の大電流パルスを流し、無放電に対しては高圧
パルスを印加する、などの制御を行う。加工送り、速度
制御回路13Bは、電極1の送り方向(前進、後退方向
)と送り速度を制御するもので、コントローラ10から
通常処理ライン15を経て送られてきた信号に基づき、
例えば送り速度の切り換えを微細に行い、極間距離(放
電ギャップ)を適宜制御して安定な放電が行われるよう
にする。後退制御切換回路13Cは、電極1の後退時、
前記選択加工モードの種別に応じてあらかじめ設定され
た軌跡後退、停止あるいは中心後退などの各種後退(こ
こでは停止も含む)動作を行わせる。すなわち、NC放
電加工においては、揺動加工、コンタリング加工を行う
ため、電極後退方式を各種用意し、加工に見合った最適
の後退方式を用いるようにしているが、これを、加工状
態識別結果に応じて電極後退させるときに適用するもの
で、前記選択加工モードの種別に応じて同様に適用する
。モータ送り制御回路16は、このような制御回路13
B及び切換回路13Cより送り速度、方向などの指令を
受け、送りモータ5〜7を制御する。なお、17は位置
監視回路である。
The processing control circuit 13 here includes a processing pulse control circuit 13A, a processing feed and speed control circuit 13B, and an electrode retraction control switching circuit 13C. In this case, the processing pulse control circuit 13A gives a pulse control command to the pulse circuit 4 based on the given operation mode to adjust the pulse energy, and for example, turns off when the average value is abnormal (signal 9D). Control is performed such as widening the time, applying a large current pulse with a minute width in response to a short circuit (signal 9C), and applying a high voltage pulse in response to no discharge. The processing feed and speed control circuit 13B controls the feed direction (forward, backward direction) and feed speed of the electrode 1, based on the signal sent from the controller 10 via the normal processing line 15.
For example, the feeding speed is finely switched and the inter-electrode distance (discharge gap) is appropriately controlled to ensure stable discharge. The retraction control switching circuit 13C controls when the electrode 1 is retracted.
Various retreat operations (including stopping here) such as trajectory retreat, stop, and center retreat, which are set in advance according to the type of the selected machining mode, are performed. In other words, in NC electrical discharge machining, in order to perform swing machining and contouring machining, various electrode retraction methods are prepared, and the most suitable retraction method for the machining is used. This is applied when retracting the electrode according to the selected processing mode, and similarly applied depending on the type of the selected processing mode. The motor feed control circuit 16 is based on such a control circuit 13.
It receives commands such as feed speed and direction from switching circuit 13C and controls feed motors 5 to 7. Note that 17 is a position monitoring circuit.

以上の動作により異常放電(アーク放電、短絡など)や
無放電の発生を防止し、正常放電率を高めるための放電
パルス及び放電ギャップ制御が行われ、加工精度及び加
工効率の向上が達成される。
The above operations prevent the occurrence of abnormal discharge (arc discharge, short circuit, etc.) and no discharge, and perform discharge pulse and discharge gap control to increase the normal discharge rate, thereby achieving improvements in machining accuracy and machining efficiency. .

第3図は、コントローラ10による上述動作の具体例を
示すフローチャートであり、コントローラ10は、まず
加工状態識別回路9より異常計測値データ(識別結果)
を受は付ける(ステップ31)。
FIG. 3 is a flowchart showing a specific example of the above-mentioned operation by the controller 10. The controller 10 first collects abnormal measurement value data (identification results) from the machining state identification circuit 9.
is accepted (step 31).

ここで、異常計測値とは例えば一定時間中におけるアー
ク放電や短絡などの異常放電(正常放電状態以外の加工
状態及び平均値異常状態をいう)の各発生回数あるいは
それらの総回数で、この異常計測値(今回異常計測値P
N−)が前回異常計測値BNより大きいか否かをステッ
プ32で判定する。
Here, the abnormal measurement value is, for example, the number of occurrences of abnormal discharges such as arc discharge or short circuit (referring to machining conditions other than normal discharge conditions and average value abnormal conditions) or the total number of such occurrences, and Measured value (this time abnormal measured value P
In step 32, it is determined whether or not N-) is larger than the previous abnormality measurement value BN.

PNがBNより大きいときには、前回での加工制御変更
前の動作モードに復元する(ステップ33)、PNがB
Nより小さいか、同じときには、ステップ34において
、PNがあらかじめ定められた規定値RNより大きいか
否かが判定される。RNは、加工モードや加工パルスエ
ネルギに基づいて作成されたテーブル(図示せず)によ
り与えられるが、このRNよりPNが大きいときには、
選択加工モードに応じて定められた後退制御動作がテー
ブル(図示せず)から選択される(ステップ35)。次
に、その際の加工送り速度も選択、例えば短絡回数が多
いときは速度降下動作を、アーク放電回数が多いときは
速度上昇動作を、各々あらかじめ定められた程度に選択
し、かつその速度を前回速度に代えて保持(更新)する
(ステップ36)。この例では、加工パルスの制御は除
かれているが、その制御をも行うことは有益である。
When PN is larger than BN, the operation mode is restored to the one before the last machining control change (step 33).
If PN is smaller than or equal to N, it is determined in step 34 whether PN is larger than a predetermined value RN. RN is given by a table (not shown) created based on the machining mode and machining pulse energy, but when PN is larger than this RN,
A backward control operation determined according to the selected machining mode is selected from a table (not shown) (step 35). Next, select the machining feed rate at that time. For example, if there are many short circuits, reduce the speed, and if there are many arc discharges, increase the speed, each to a predetermined degree, and adjust the speed. It is held (updated) in place of the previous speed (step 36). Although control of machining pulses is excluded in this example, it would be beneficial to provide that control as well.

なお、上述実施例では、加工状態識別回路9で識別され
る加工状態を、正常放電、アーク放電、短絡及び平均値
異常の4つとしたが、これに無放電などを加えるように
してもよい。
In the above-mentioned embodiment, the machining states identified by the machining state identification circuit 9 are four: normal discharge, arc discharge, short circuit, and average value abnormality, but non-discharge, etc. may be added to these.

また、前記平均値の検出には、極間にモニタ電圧を印加
し、これを常時検出する方法や、上記モニタ電圧を用い
ず、加工電圧(極間電圧)の平均値を求める方法などが
ある。
In addition, there are methods for detecting the average value, such as applying a monitor voltage between the electrodes and constantly detecting it, and determining the average value of the machining voltage (voltage between the electrodes) without using the monitor voltage. .

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、加工モードの選択種
別に応じてより適切に加工制御でき、加工精度及び加工
効率を共に向上させることができるという効果がある。
As described above, according to the present invention, there is an effect that machining can be controlled more appropriately depending on the selected type of machining mode, and both machining accuracy and machining efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例を示すブロック図、第2
図は各種加工状態の電圧波形を示す図、第3図は第1図
中のコントローラの動作の具体例を示すフローチャート
である。 1・・・電極、2・・・被加工物、3・・・加工電源、
4・・・パルス回路、5〜7・・・送りモータ、8・・
・極間検出回路、9・・・加工状態識別回路、10・・
・コントローラ、12・・・加工モード選択器、13・
・・加工制御回路、16・・・モータ送り制御回路。
FIG. 1 is a block diagram showing one embodiment of the device of the present invention, and FIG.
The figures are diagrams showing voltage waveforms in various machining states, and FIG. 3 is a flowchart showing a specific example of the operation of the controller in FIG. 1. 1... Electrode, 2... Workpiece, 3... Processing power source,
4...Pulse circuit, 5-7...Feed motor, 8...
- Gap detection circuit, 9... Machining state identification circuit, 10...
・Controller, 12... Machining mode selector, 13.
...Processing control circuit, 16...Motor feed control circuit.

Claims (1)

【特許請求の範囲】[Claims] 電極と被加工物間の電圧を検出する極間検出回路の出力
信号に基づいて加工状態識別回路で加工状態を識別し、
その識別結果に応じて加工制御回路を適宜作動させ、加
工制御する放電加工機用制御装置において、複数種の加
工モードのうちの任意の加工モードを選択する加工モー
ド選択器と、この加工モード選択器による選択加工モー
ドに従って前記加工制御回路を作動させるとともに、前
記加工状態識別回路による識別結果に基づいて前記加工
制御回路を作動させるとき、前記選択加工モードの種別
に応じてあらかじめ設定された動作モードで前記加工制
御回路を作動させるコントローラとを具備することを特
徴とする放電加工機用制御装置。
The machining state is identified by the machining state identification circuit based on the output signal of the gap detection circuit that detects the voltage between the electrode and the workpiece,
In a control device for an electric discharge machine that controls machining by appropriately operating a machining control circuit according to the identification result, there is provided a machining mode selector that selects any machining mode from among a plurality of machining modes; When operating the processing control circuit according to the selected processing mode by the machine and operating the processing control circuit based on the identification result by the processing state identification circuit, an operation mode preset according to the type of the selected processing mode is activated. A controller for an electrical discharge machine, comprising: a controller for operating the machining control circuit.
JP27026887A 1987-10-28 1987-10-28 Controller for electric discharge machine Pending JPH01115515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27026887A JPH01115515A (en) 1987-10-28 1987-10-28 Controller for electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27026887A JPH01115515A (en) 1987-10-28 1987-10-28 Controller for electric discharge machine

Publications (1)

Publication Number Publication Date
JPH01115515A true JPH01115515A (en) 1989-05-08

Family

ID=17483885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27026887A Pending JPH01115515A (en) 1987-10-28 1987-10-28 Controller for electric discharge machine

Country Status (1)

Country Link
JP (1) JPH01115515A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7145096B2 (en) * 2003-12-01 2006-12-05 Fanuc Ltd Electric discharge machine power supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7145096B2 (en) * 2003-12-01 2006-12-05 Fanuc Ltd Electric discharge machine power supply

Similar Documents

Publication Publication Date Title
US4673791A (en) Method and apparatus for controlling an electric discharge machine
JPH05154717A (en) Wire electric discharge machining method and device thereof
EP0526089B1 (en) Electric discharge machining apparatus
CN109332830A (en) The wire drive device and method of to-and-fro wire-travelling type electric spark linear cutting machine
JPH01115515A (en) Controller for electric discharge machine
JP3367345B2 (en) Wire electric discharge machine
US6667453B1 (en) Electric discharge machining method and apparatus with control of rocking function parameters
JP2801280B2 (en) Wire cut EDM power supply
JPH01103228A (en) Controller for wire electric discharge machine
CN209256028U (en) The control device of Wire Electrode WEDM
JPS61111813A (en) Spark erosion apparatus
JPS63185523A (en) Electric discharge machining device
JPS61111841A (en) Wire-cut electric discharge machinine
JPH0732218A (en) Wire electric discharge machining device
JPH0276624A (en) Electric discharge machine
JPS63185522A (en) Electric discharge machining device
JP2762198B2 (en) Electric discharge machining method and apparatus
JPS61111818A (en) Spark erosion apparatus
JPH0724638A (en) Electric discharge machining control device
CN109332829A (en) The control device and wire-walking method of Wire Electrode WEDM
JPS63185524A (en) Electric discharge machining device
JP2976223B2 (en) Processing machine adaptive control device
KR101235485B1 (en) AC Electric Power for Wire Cut Discharging Manufacturing Unit
JPH0675807B2 (en) Electric discharge machine
JP2000071123A (en) Electrical discrge machining method, and its device