JPH01113729A - Liquid crystal electro-optic device - Google Patents

Liquid crystal electro-optic device

Info

Publication number
JPH01113729A
JPH01113729A JP27088687A JP27088687A JPH01113729A JP H01113729 A JPH01113729 A JP H01113729A JP 27088687 A JP27088687 A JP 27088687A JP 27088687 A JP27088687 A JP 27088687A JP H01113729 A JPH01113729 A JP H01113729A
Authority
JP
Japan
Prior art keywords
gap control
pieces
liquid crystal
substance
control material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27088687A
Other languages
Japanese (ja)
Inventor
Toshio Watanabe
俊夫 渡辺
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP27088687A priority Critical patent/JPH01113729A/en
Priority to US07/260,605 priority patent/US4973138A/en
Priority to EP88117689A priority patent/EP0314048B2/en
Priority to DE3855344T priority patent/DE3855344T3/en
Publication of JPH01113729A publication Critical patent/JPH01113729A/en
Priority to US07/503,517 priority patent/US5142395A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain good molecular orientation and gap control with high accuracy by simultaneously mixing and using gap control materials consisting of materials having thermoweldability and materials having no thermoweldability and by specifying the average grain size and spraying density thereof. CONSTITUTION:The control materials 5 which do not exhibit the thermoweldability, for example, glass fibers, and the control materials 4 which exhibit the thermoweldability, for example, epoxy particles are simultaneously mixed and used as the gap control materials. The average particle size of the epoxy particles are specified to 1.5-3 times the average grain size of the glass fibers when the average diameter of the glass fibers is 2-8mum. The epoxy particles are sprayed uniformly at 100-150 pieces/mm<2> spraying density and the glass fibers at 10-15 pieces/mm<2>. The good molecular orientation and the gap control with high accuracy are thereby attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は強誘電性液晶を用いた、大型画面液晶表示パネ
ルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a large screen liquid crystal display panel using ferroelectric liquid crystal.

[従来の技術] 近年、強誘電性液晶を用いた液晶表示パネルの開発が進
められている。強誘電性液晶表示素子においては特に対
向する側基板の内側に付着した電極間に電圧を印加とき
に生ずる光学的変化の時間応答性は基板間隔に大きく依
有するので、この間隔が均一に保持されないと、液晶の
応答時間にバラツキが生じ、表示性態が大幅に低下して
しまつう。さらに表示モードとして、液晶の複屈折を用
いるために基板間隔のバラツキが色ムラとなって現れる
。このため、寸法精度の高い熱融着性を示さない物質か
らなるギャップ制御材と熱融着性のエポキシ粒子からな
るギャップ制御材とを同時に混入使用する方法の実用化
が進められようとしている。
[Prior Art] In recent years, development of liquid crystal display panels using ferroelectric liquid crystals has been progressing. In ferroelectric liquid crystal display elements, the time response of optical changes that occur when voltage is applied between electrodes attached to the insides of opposing side substrates is largely dependent on the spacing between the substrates, so this spacing is not maintained uniformly. This causes variations in the response time of the liquid crystal, resulting in a significant deterioration in display quality. Furthermore, since the birefringence of liquid crystal is used as a display mode, variations in the spacing between the substrates appear as color unevenness. For this reason, efforts are being made to put into practical use a method in which a gap control material made of a material that does not exhibit heat-fusibility with high dimensional accuracy and a gap control material made of heat-fusibility epoxy particles are mixed together at the same time.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

しかしながら、上記の方法を用いても、上記2種のギャ
ップ制御材についての散布密度が不確定である為、高精
度ギャップ制御は困難であった。
However, even if the above method is used, high precision gap control is difficult because the dispersion density of the two types of gap control materials is uncertain.

特に、強誘電性液晶を用いた液晶表示素子においては表
示応答特性、駆動電圧特性及び色調がバラツキギャップ
制御材による分子配向欠陥の発生、等の原因となり適切
なギャップ制御材の散布密度と高精度のギャップ制御が
望まれていた。
In particular, in liquid crystal display elements using ferroelectric liquid crystals, display response characteristics, drive voltage characteristics, and color tone may vary, and molecular alignment defects may occur due to the gap control material. gap control was desired.

〔問題を解決するための手段〕[Means to solve the problem]

上記、問題点を解決する為に、熱融着性を示さない物質
を例えばガラスファイバを以て構成し、熱融着性の物質
を例えばエポキシ粒子を以て構成することが好適であり
、ガラスファイバの平均長はガラスファイバ平均径の2
から4倍、エポキシ粒子の平均粒径はガラスファイバの
平均径の1゜5倍から3倍が好適であり、エポキシ粒子
の散布密度は100個/ m m ”から150個/ 
m m ”に均一に散布し、ガラスファイバの散布密度
は10個/ m m ”から15個/ m m ”に均
一に散布することにより、良好な分子配向と高精度なギ
ャップ制御を実現出来るものであります。
In order to solve the above-mentioned problems, it is preferable to configure the substance that does not exhibit thermal fusibility by using, for example, glass fiber, and the substance that exhibits thermal fusibility by using, for example, epoxy particles, and the average length of the glass fiber is is 2 of the glass fiber average diameter
The average particle diameter of the epoxy particles is preferably 1.5 to 3 times the average diameter of the glass fiber, and the scattering density of the epoxy particles is 100 particles/mm'' to 150 particles/mm''.
Good molecular orientation and highly accurate gap control can be achieved by uniformly dispersing glass fibers at a density of 10 pieces/mm” to 15 pieces/mm”. It is.

以下に示す実施例に従い本発明を説明する。The present invention will be explained according to the following examples.

〔実施例〕〔Example〕

第1図に本発明に用いた液晶パネルの断面を示す。 FIG. 1 shows a cross section of a liquid crystal panel used in the present invention.

面積が310X220mmのガラス基板■上にスパッタ
リング法により透明導電膜であるITO膜を1700人
の厚さで形成し写真食刻技術(ホトリソグラフィ)を用
いて幅390μm、パターン間隔20μmの透明電極パ
ターン■を形成しこの電極上を配向膜■で被覆した後、
配向処理を施した。この配向膜としては、通常用いられ
る有機配向膜が使用可能であるが後述のように、熱融着
性のギャップ制御材と密着性のよい物のほうが本発明の
効果がより得られやすい。そのため本実施例ではポリイ
ミド配向膜を用いた。次に平均径2゜5mmで平均長1
0μmのガラスファイバ■を0゜2 g/lの比率でフ
レオン(CFCf:+)溶液に混合し、超音波振動を加
えて充分に分散させた状態で前記の透明電極をパターン
形成したガラス基板上にスプレィした。その後平均粒径
5.5μmのエポキシ粒子■(東し社製、商品名:トレ
バール)を1.0g/lの比率でフレオン(CFCf3
)溶液に混合し、超音波振動を加えて充分に分散させた
状態で前述のガラスファイバーを散布した基板上にスプ
レィした。この時、これらのギャップ材■、■の分散密
度は、スプレィする時間を変更させることにより調整し
た。一方、対向側の基板にはスクリーン印刷法により熱
硬化性エポキシ接着剤により周辺部のシール■を形成し
、上記2種類の基板を互いに向かい合うように貼り合わ
せて、均一に2Kg/Cm”の圧力を加えなから゛18
0″C12時間加熱して、エポキシ粒子■と、周辺部の
エポキシ接着剤■を硬化接着させた。
On a glass substrate with an area of 310 x 220 mm, an ITO film, which is a transparent conductive film, is formed to a thickness of 1,700 mm by sputtering, and a transparent electrode pattern with a width of 390 μm and a pattern interval of 20 μm is created using photolithography. After forming and coating this electrode with an alignment film ■,
Orientation treatment was performed. As this alignment film, a commonly used organic alignment film can be used, but as will be described later, the effects of the present invention can be more easily obtained with a film that has good adhesion to the heat-fusible gap control material. Therefore, in this example, a polyimide alignment film was used. Next, the average diameter is 2.5 mm and the average length is 1.
A 0 μm glass fiber ■ was mixed in a Freon (CFCf:+) solution at a ratio of 0°2 g/l, and ultrasonic vibration was applied to sufficiently disperse the fiber on the glass substrate on which the transparent electrode was patterned. I sprayed it on. After that, Freon (CFCf3
) The mixture was mixed with a solution and sufficiently dispersed by applying ultrasonic vibration, and then sprayed onto the substrate on which the glass fibers described above had been scattered. At this time, the dispersion density of these gap materials (1) and (2) was adjusted by changing the spraying time. On the other hand, on the opposite substrate, a peripheral seal (■) is formed using a thermosetting epoxy adhesive using a screen printing method, and the two types of substrates are pasted together facing each other, and a uniform pressure of 2 Kg/Cm is applied. Do not add ゛18
It was heated at 0''C for 12 hours to harden and bond the epoxy particles (2) and the epoxy adhesive (2) on the periphery.

上記のように作製した液晶パネルに強誘電性液晶■(チ
ッソ社製C3−1011)を真空注入法により充填し、
偏向板■を貼り付けた。
The liquid crystal panel prepared as above was filled with ferroelectric liquid crystal ■ (C3-1011 manufactured by Chisso Corporation) by vacuum injection method.
A deflection plate ■ was attached.

上記の方法において、エポキシ粒子■とガラスファイバ
■の各々の散布密度をたAパネル50〜100個/mm
” 、10〜15個/ m m ”とBパネル100〜
150個/mm” 、10〜15個/mm”とCパネル
150〜200個/mm”、10〜15個/ m m 
”とDパネル100〜150個/mm2.1〜5個/m
m”とEパネル100〜150個/mm2.20〜25
個/mm”として液晶表示パネルを作製した。
In the above method, the distribution density of each of the epoxy particles (■) and the glass fiber (■) is 50 to 100 particles/mm on the A panel.
", 10~15 pieces/mm" and B panel 100~
150 pieces/mm”, 10-15 pieces/mm” and C panel 150-200 pieces/mm”, 10-15 pieces/mm
” and D panel 100-150 pieces/mm2.1-5 pieces/m
m” and E panels 100-150 pieces/mm2.20-25
A liquid crystal display panel was fabricated with a density of 1/mm.

その結果、BSDパネルにおいて高精度のギャップが行
われなおかつ分子配向欠陥の少ないものが出来た。その
なかでもBパネルが最も特性よくまた外観の色ムラもな
かった。
As a result, a BSD panel with high precision gap formation and fewer molecular orientation defects was created. Among them, panel B had the best characteristics and no color unevenness in appearance.

以下、ガラスファイバとエポキシ粒子の散布密度を変化
させた時の例を表1に示す。
Table 1 below shows examples of varying the distribution density of glass fibers and epoxy particles.

表1 本実施例では熱融着性を持たないギャップ制御材として
ガラスファイバを用いたが特にこれに限定されることは
なく、アルミナ等の無機材料でも熱融着性のない有機材
料であってもよかった。
Table 1 In this example, glass fiber was used as the gap control material that does not have heat-fusibility, but it is not limited to this, and even inorganic materials such as alumina and organic materials that do not have heat-fusibility can be used. It was also good.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は強誘電性液晶を用いる液
晶表示パネルにおいて、高精度ギャップ制御と分子配向
欠陥の軽減を提供するものであり、本発明の実施により
パネル内で均一に液晶を駆動することができたので、表
示品質を向上することができる。
As explained above, the present invention provides high-precision gap control and reduction of molecular alignment defects in a liquid crystal display panel using ferroelectric liquid crystal, and by implementing the present invention, it is possible to uniformly drive the liquid crystal within the panel. Therefore, display quality can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の用いた液晶表示パネルの断面図である
。 1.6・・ガラス基板 3・・・・配向膜 4・・・・熱融着性を有するギャップ制御材5・・・・
熱融着性を有さないギャップ制御材7・・・・周辺部シ
ール
FIG. 1 is a sectional view of a liquid crystal display panel used in the present invention. 1.6...Glass substrate 3...Alignment film 4...Gap control material 5 with thermal adhesive properties...
Gap control material 7 that does not have thermal adhesive properties... Peripheral seal

Claims (1)

【特許請求の範囲】 1、少なくとも一方は透明性を有する一対の電極付きの
基板の電極面が互いに向かい合うように配置され、熱融
着性を示さない物質からなるギャップ制御材と熱融着性
を有する物質からなるギャップ制御材とを混入使用して
、前記基板内の間隙を保つと共に、周辺部を接着剤でシ
ールし、かつ前記基板の間隙に液晶組成物を充填してな
る液晶電気光学装置。 2、特許請求の範囲第1項において、前記、熱融着性を
示さない物質からなるギャップ制御材が2〜8μmの平
均径であるときに、熱融着性の物質からなるギャップ制
御材の平均粒径を熱融着性を示さない物質の平均粒子径
の1.5倍から3倍である液晶光学装置。 3、特許請求の範囲第1項において、前記、熱融着性を
示さない物質からなるギャップ制御材の散布密度は10
個/mm^2〜15個/mm^2に均一に散布し、熱融
着性の物質からなるギャップ制御材の散布密度は100
個/mm^2〜150個/mm^2に均一に散布した液
晶電気光学装置。
[Claims] 1. A substrate with a pair of electrodes, at least one of which is transparent, is arranged such that the electrode surfaces thereof face each other, and the gap control material is made of a substance that does not exhibit heat fusibility and has heat fusibility. A liquid crystal electro-optical device comprising: a gap control material made of a substance having a substance having the properties of the substrate; and a gap control material made of a substance having the above-mentioned properties; Device. 2. In claim 1, when the gap control material made of a substance that does not exhibit heat fusibility has an average diameter of 2 to 8 μm, the gap control material made of a heat fusibility substance A liquid crystal optical device in which the average particle size is 1.5 to 3 times the average particle size of a substance that does not exhibit thermal fusibility. 3. In claim 1, the dispersion density of the gap control material made of a substance that does not exhibit thermal fusibility is 10
The gap control material made of a heat-fusible material is uniformly spread at 15 pieces/mm^2 to 15 pieces/mm^2, and the scattering density of the gap control material made of a heat-fusible material is 100 pieces/mm^2 to 15 pieces/mm^2.
Liquid crystal electro-optical device uniformly dispersed at 150 pieces/mm^2 to 150 pieces/mm^2.
JP27088687A 1987-10-27 1987-10-27 Liquid crystal electro-optic device Pending JPH01113729A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP27088687A JPH01113729A (en) 1987-10-27 1987-10-27 Liquid crystal electro-optic device
US07/260,605 US4973138A (en) 1987-10-27 1988-10-21 Liquid crystal device and manufacturing method for the same
EP88117689A EP0314048B2 (en) 1987-10-27 1988-10-24 Liquid crystal device and manufacturing method for the same
DE3855344T DE3855344T3 (en) 1987-10-27 1988-10-24 Liquid crystal device and its manufacturing method
US07/503,517 US5142395A (en) 1987-10-27 1990-03-23 Liquid crystal display with spacers of specific densities which are adhesive and elastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27088687A JPH01113729A (en) 1987-10-27 1987-10-27 Liquid crystal electro-optic device

Publications (1)

Publication Number Publication Date
JPH01113729A true JPH01113729A (en) 1989-05-02

Family

ID=17492335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27088687A Pending JPH01113729A (en) 1987-10-27 1987-10-27 Liquid crystal electro-optic device

Country Status (1)

Country Link
JP (1) JPH01113729A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298919A (en) * 1989-05-12 1990-12-11 Canon Inc Ferroelectric liquid crystal element
JPH0323420A (en) * 1989-06-20 1991-01-31 Semiconductor Energy Lab Co Ltd Device and method for scattering spacer
JPH03137620A (en) * 1989-10-24 1991-06-12 Canon Inc Ferroelectric liquid crystal device
US5581384A (en) * 1992-01-24 1996-12-03 Canon Kabushiki Kaisha Process for producing a display device by deforming thermoplastic spacer particles
JP2001221998A (en) * 1991-08-01 2001-08-17 Seiko Epson Corp Liquid crystal display element and electronic instrument
JP2008305196A (en) * 2007-06-07 2008-12-18 Toshiba Corp Electronic device
WO2020262219A1 (en) * 2019-06-28 2020-12-30 凸版印刷株式会社 Light-modulating sheet and light-modulating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729031A (en) * 1980-07-28 1982-02-16 Nissan Motor Co Ltd Liquid crystal display panel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729031A (en) * 1980-07-28 1982-02-16 Nissan Motor Co Ltd Liquid crystal display panel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298919A (en) * 1989-05-12 1990-12-11 Canon Inc Ferroelectric liquid crystal element
JPH0323420A (en) * 1989-06-20 1991-01-31 Semiconductor Energy Lab Co Ltd Device and method for scattering spacer
JPH03137620A (en) * 1989-10-24 1991-06-12 Canon Inc Ferroelectric liquid crystal device
JP2001221998A (en) * 1991-08-01 2001-08-17 Seiko Epson Corp Liquid crystal display element and electronic instrument
US5581384A (en) * 1992-01-24 1996-12-03 Canon Kabushiki Kaisha Process for producing a display device by deforming thermoplastic spacer particles
JP2008305196A (en) * 2007-06-07 2008-12-18 Toshiba Corp Electronic device
WO2020262219A1 (en) * 2019-06-28 2020-12-30 凸版印刷株式会社 Light-modulating sheet and light-modulating device

Similar Documents

Publication Publication Date Title
JP2654940B2 (en) Manufacturing method of electro-optical element
JPS63110425A (en) Cell for sealing liquid crystal
JPH01113729A (en) Liquid crystal electro-optic device
JPH06308505A (en) Liquid crystal electrooptical device
JPH0378728A (en) Production of liquid crystal panel
JPH06273743A (en) Color liquid crystal electrooptic device
JPH1031222A (en) Production of liquid crystal panel
JPS58100122A (en) Manufacture of liquid crystal cell
JP2807475B2 (en) Powder dispersing method, substrate with powder and liquid crystal cell
JPH02201424A (en) Production of liquid crystal display device
KR100265775B1 (en) Lcd device
JPH04243230A (en) Liquid crystal display element and production thereof
JPS62166317A (en) Manufacture of liquid crystal display panel
JPS62134626A (en) Structure for arranging spacer material in liquid crystal display body
JPH04180026A (en) Liquid crystal element
JP3155121B2 (en) Liquid crystal device manufacturing method
JPH0331822A (en) Liquid crystal electrooptical device
JPS59218425A (en) Liquid crystal display element
JPH02154228A (en) Production of liquid crystal display device
JPS63155128A (en) Liquid crystal display device
JPS62164023A (en) Liquid crystal display panel
JPH02310525A (en) Production of liquid crystal display device
JPH01222223A (en) Manufacture of liquid crystal display element
JPH0381733A (en) Manufacture of liquid crystal device
JP2000310782A (en) Liquid crystal display device