JPH0331822A - Liquid crystal electrooptical device - Google Patents

Liquid crystal electrooptical device

Info

Publication number
JPH0331822A
JPH0331822A JP16798089A JP16798089A JPH0331822A JP H0331822 A JPH0331822 A JP H0331822A JP 16798089 A JP16798089 A JP 16798089A JP 16798089 A JP16798089 A JP 16798089A JP H0331822 A JPH0331822 A JP H0331822A
Authority
JP
Japan
Prior art keywords
spacers
liquid crystal
substrates
substrate
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16798089A
Other languages
Japanese (ja)
Inventor
Hidetaka Nakajima
英貴 中嶋
Tei Hiyoshi
日吉 禎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP16798089A priority Critical patent/JPH0331822A/en
Publication of JPH0331822A publication Critical patent/JPH0331822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To eliminate the possibility that an operator mistakes the spraying conditions of spacers together with the kinds thereof by constituting the device in such a manner that the device has plural spacers between a pair of substrates and the plural spacers are varied in colors with each of the kinds thereof. CONSTITUTION:The film of ITO is formed on soda glass and is patterned to form electrodes. A polyimide thin film is obtd. by applying polyamic acid on the electrode forming surface and heating the same. The surface of the polyimide thin film is subjected to a rubbing treatment and this substrate is stuck onto one substrate; thereafter, the spacing between the substrates is controlled by spraying the spacer materials 1 having a desired diameter, i.e. 6.2mum and the black spacer materials 2 of 5.2mum desired to deal with low-temp. bubbles. A sealing material consisting of an epoxy system is printed on the other substrate and the two substrates are stuck to each other to complete the cell. The liquid crystal 3 is injected into the formed cell and the cell is pressed by an air press machine; thereafter, the liquid crystal injection port is sealed by a UV resin. The operator is thus prevented from mistaking the spraying conditions of the white spacers and the black spacers.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は液晶電気光学装置におけるスペーサーに関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a spacer in a liquid crystal electro-optical device.

〔従来の技術〕[Conventional technology]

従来より、TN型液晶電気光学装置が電卓2時計などの
表示装置として応用されてきた。
Conventionally, TN type liquid crystal electro-optical devices have been applied as display devices for calculators, clocks, and the like.

このTN型液晶電気光学装置は、透明電極を有する一対
の基板間に、90°のツイスト配向をさ〔たカイラル成
分を含むネマティック液晶をイアする構成をしているが
、この一対の基板間隔を一定に、かつ均一にするために
Sin、或いはボリスヂレン等の白色の微粒子をスペー
サーとして基板間に配置せしめることが一般に行われて
いる。
This TN-type liquid crystal electro-optical device has a structure in which a 90° twisted nematic liquid crystal containing a chiral component is placed between a pair of substrates having transparent electrodes. In order to maintain a constant and uniform density, white fine particles such as Sin or borisdyrene are generally placed between the substrates as spacers.

しかしながらTN型液晶電気光学装置では、近年要求さ
れている画面の大型化に対応することができない。なぜ
ならTN型液晶電気光学装置では、走査線の数が多くな
ると、コン]ラストが小さくなってしまうからである。
However, the TN type liquid crystal electro-optical device cannot meet the demand for larger screens in recent years. This is because in a TN type liquid crystal electro-optical device, the contrast becomes smaller as the number of scanning lines increases.

この対策として液晶を90’〜270°のツイスト配向
をさせるSTNTN型液晶電気光学装置近ワープロなど
の表示装置に用いられている。
As a countermeasure against this problem, an STNTN type liquid crystal electro-optical device in which the liquid crystal is twisted at an angle of 90' to 270° is used in display devices such as word processors.

STNTN型液晶電気光学装置晶の屈折率異方性を利用
して表示を行うため、TN型液晶電気光学装置に比較し
てより均一な基板間隔が要求される。
Since the STNTN type liquid crystal electro-optical device performs display by utilizing the refractive index anisotropy of the crystal, a more uniform substrate spacing is required compared to the TN type liquid crystal electro-optical device.

より均一な基板間隔を実現するためには、基板間のスペ
ーサーの数を増加させれば良いことは知られている。し
かしながら、一種類のスペーサーの数を増加させた場合
、確かに基板間隔は均一になるが基板の厚み方向の自由
度が全くないため、周囲の温度が低下して液晶の体積が
小さくなった時、液晶セル内に空間ができてしまう。(
低温気泡と称する) このため前記スペーサーについて大きさの若干異なるも
のを2種類用いる方法が有効であることが明らかになっ
ていて既に行われている。
It is known that in order to achieve more uniform substrate spacing, the number of spacers between the substrates can be increased. However, if the number of one type of spacer is increased, although the spacing between the substrates becomes uniform, there is no degree of freedom in the thickness direction of the substrates, so when the ambient temperature decreases and the volume of the liquid crystal decreases. , a space is created within the liquid crystal cell. (
(referred to as low-temperature bubbles) For this reason, a method of using two types of spacers with slightly different sizes has been found to be effective and has already been carried out.

〔従来の技術の問題点〕[Problems with conventional technology]

前記したように、従来用いられていたスペーサーは特に
大きさ以外の点で区別をするめの目印等がないために、
2種類のスペーサーを散布しようとすると見分けがつか
ず、その結果例えば6.2μmのスペーサーと5.8μ
mのスペーサーを散布する場合、作業者が誤って6.2
μmのスペーサーの散布を5.8μmのスペーサーの条
件で、逆に5.8μmのスペーサーの条件を6.2μm
のスペーサーの条件で散布を行ってしまう可能性が高い
As mentioned above, conventionally used spacers do not have any distinguishing marks other than size, so
If you try to spray two types of spacers, you won't be able to tell them apart, and as a result, for example, a 6.2μm spacer and a 5.8μm spacer.
When spraying spacers of 6.2 m, the worker accidentally
5.8 μm spacer is used for dispersing μm spacer, and 6.2 μm spacer is used for 5.8 μm spacer.
There is a high possibility that the spraying will be carried out under the conditions of the spacer.

さらにスペーサーを2種類用いたセルの作製時において
、それぞれのスペーサーの散布条件を設定する際に、実
験用の基板上に実際に散布を行い、それを顕微鏡を用い
て実際に散布させたスペーサーを計数する方法がとられ
ているが、例えば前記したような6.2μmと5.8μ
mのスペーサーでは顕微鏡を用いても区別がしにくく、
従って散布条件を決定することが困難になってしまう。
Furthermore, when creating a cell using two types of spacers, when setting the spraying conditions for each spacer, we actually sprayed the spacers on the experimental substrate and used a microscope to compare the spacers that were actually sprayed. For example, as mentioned above, 6.2 μm and 5.8 μm are counted.
m spacers are difficult to distinguish even with a microscope;
Therefore, it becomes difficult to determine the spraying conditions.

〔発明の構成〕[Structure of the invention]

前記問題点を解決するために、本発明は電極を有する一
対の基板間に液晶を介在せしめた液晶電気光学装置であ
って、前記一対の基板間には複数のスペーサーを有し、
該複数の種類のスペーサーは、その種類ごとに色が違う
ことを特徴とする。
In order to solve the above problems, the present invention provides a liquid crystal electro-optical device in which a liquid crystal is interposed between a pair of substrates having electrodes, and a plurality of spacers are provided between the pair of substrates,
The plurality of types of spacers are characterized in that each type has a different color.

本発明の構成について前の例を用いて具体的に説明すれ
ば、例えば6.2μmのスペーサーに赤色のスペーサー
を用い、5.8μmのスペーサーに黄色のスペーサーを
用いることを意味する。
To specifically explain the configuration of the present invention using the previous example, it means that, for example, a red spacer is used as a 6.2 μm spacer, and a yellow spacer is used as a 5.8 μm spacer.

〔作用〕[Effect]

本発明の液晶電気光学装置を作製する際には、複数のス
ペーサーについてそれぞれ種類ごとに色を変えているの
で、作業者がスペーサーの種類ごとの散布条件をとり違
える心配がなくなるものである。
When manufacturing the liquid crystal electro-optical device of the present invention, since the colors of the plurality of spacers are changed for each type, there is no need for an operator to mix up the dispersion conditions for each type of spacer.

さらに、実験用の基板に実際に複数種のスペーサーを散
布した後、顕微鏡を用いて観察すれば色の異なるスペー
サーの数をそれぞれ容易に計測できる。
Furthermore, by actually scattering multiple types of spacers on an experimental substrate and observing them using a microscope, it is possible to easily count the number of spacers with different colors.

また、液晶表示装置の際には、液晶や基板が汚染される
のを防ぐため、スペーサーの計数は液晶注入工程と、注
入口の封止工程が終わった後に行うのが、最も好ましい
が、この時には通常の顕微鏡では白いスペーサーと液晶
との区別が出来ないため、偏光顕微鏡を用いて偏光板を
平行或いは平行に近い状態にすることにより計数するこ
とができる。なぜなら、スペーサーの存在する領域は液
晶が存在しないため、液晶の光学異方性の影響を受けな
いので、計数が可能になるのである。
Furthermore, in the case of liquid crystal display devices, in order to prevent contamination of the liquid crystal and substrate, it is most preferable to count the spacers after the liquid crystal injection process and injection port sealing process. Sometimes it is not possible to distinguish between white spacers and liquid crystals using a normal microscope, so counting can be done by using a polarizing microscope and making the polarizing plates parallel or nearly parallel. This is because there is no liquid crystal in the area where the spacer exists, so it is not affected by the optical anisotropy of the liquid crystal, making counting possible.

特に白色と黒色のスペーサーを基板上に散布した場合、
液晶注入後にスペーサー数を計測する際には偏光顕微鏡
の偏光板の偏光軸を平行にすることにより、白色のスペ
ーサーは白く、黒色のスペーサーは光を吸収して黒く見
える。
Especially when white and black spacers are sprinkled on the board,
When measuring the number of spacers after injecting the liquid crystal, by making the polarizing axes of the polarizing plate of the polarizing microscope parallel, white spacers appear white, and black spacers absorb light and appear black.

だが、もし偏光板の偏光軸を直角にしてしまうとスペー
サーはともに黒く見えてしまうために種類ごとに計数す
ることが困難になってしまう。または偏光機能のない通
常の顕微鏡では液晶と白色のスペーサーの識別ができな
いため注意が必要である。
However, if the polarization axis of the polarizing plate is set at right angles, both spacers will appear black, making it difficult to count each type. Also, care must be taken as it is not possible to distinguish between liquid crystal and white spacers using a normal microscope without a polarizing function.

以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

r実施例11 本実施例においてはSTN型液晶電気光学装置を作製す
る際の実施例を示す。
r Example 11 This example shows an example of manufacturing an STN type liquid crystal electro-optical device.

洗浄済のソーダガラス上にDCマグネトロンスパッタ法
によりITOを成膜し、パターニングを行って電極を形
成する。そして電極作製面にポリアミック酸をオフセッ
ト印刷機を用いて塗布し、250°Cで3時間加熱する
ことにより、ポリイミド薄膜を得る。そしてポリイミド
薄膜表面を綿布を用いてラビング処理を行う。
ITO is formed into a film by DC magnetron sputtering on cleaned soda glass, and patterned to form electrodes. Then, polyamic acid is applied to the electrode-forming surface using an offset printing machine and heated at 250° C. for 3 hours to obtain a polyimide thin film. Then, the surface of the polyimide thin film is rubbed with a cotton cloth.

ラビング処理までの工程を行った2枚の基板のうち、一
方の基板上に貼りあわせ後の基板間隔の制御を目的とす
る直径6.2μmの白色のスペーサー材と、低温気泡対
策を目的とする黒色の5.2μmηのスペーサー材を散
布し、他方の基板上にエポキシ系のシール材をスクリー
ン印刷機を用いて印刷を行い、両基板を貼りあわせてセ
ルを完成さヒる。上記工程により作製されたセル内に真
空注入法により液晶を注入する。液晶の注入を終えた液
晶セルは基板間のギャップ差から生ずる色ムラ及び液晶
の多量注入による液晶セルの肥大をなくす目的でエアプ
レス機によりプレスを行い、その後UV樹脂で液晶注入
し]の封止を行−)。
Of the two substrates that underwent the process up to the rubbing process, a white spacer material with a diameter of 6.2 μm was placed on one of the substrates for the purpose of controlling the distance between the substrates after bonding, and a white spacer material for the purpose of preventing low-temperature bubbles. A black 5.2 μm η spacer material is spread, and an epoxy sealant is printed on the other substrate using a screen printer, and both substrates are pasted together to complete the cell. Liquid crystal is injected into the cell fabricated through the above steps using a vacuum injection method. After the liquid crystal has been injected, the liquid crystal cell is pressed using an air press machine to eliminate color unevenness caused by the gap difference between the substrates and enlargement of the liquid crystal cell due to large amounts of liquid crystal injected, and then the liquid crystal is injected with UV resin and sealed. (stop).

]−記工程で作製された液晶セルのスペーサー材の11
1布密度を偏光顕微鏡と接VF、したCCDカメラを用
いて計測した。
]-11 of the spacer material of the liquid crystal cell produced in the above process
1 The fabric density was measured using a polarizing microscope and a CCD camera connected to VF.

この計測の際には偏光顕微鏡の偏光板の偏光軸の角度を
0°つまり平行の状態で行った。この時のCCDカメラ
を通して得られた画像は第1図のようであった。白色ス
ペーサー(1)は白く黒色スペーサーは黒くはっきりと
観察することができ、周囲の液晶部分(3)は黄色に見
えた。そのため、それぞれのスペーサーの数の計測が非
常に容易であった。
In this measurement, the angle of the polarization axis of the polarizing plate of the polarizing microscope was set to 0°, that is, in a parallel state. The image obtained through the CCD camera at this time was as shown in Figure 1. The white spacer (1) could be clearly observed as white and the black spacer as black, and the surrounding liquid crystal part (3) appeared yellow. Therefore, it was very easy to measure the number of each spacer.

本実施例を用いることにより、作業者は白色のスペーサ
ーと黒色のスペーサーの散布条件を取り違えることがま
ったくなくなった。
By using this example, the operator no longer mixes up the spraying conditions for white spacers and black spacers.

r実施例2J 実施例1と全く同様にラビング工程まで行った一対の基
板のうち一方の基板上に、基板間隔の制御を目的とする
直径6.2μmの赤色のスペーサー材と、低温気泡対策
を目的きする直径5.2μmの青色のスペーサー材を散
布し、他方の基板上にエポキシ系のシール材をスクリー
ン印刷機を用いて印刷して、両基板を貼り合わせてセル
を完成さけ・る。上記工程により作製されたセルに真空
注入法により液晶を注入する。液晶の注入を柊えた液晶
セルは基板間のギャンブ差から生ずる色ムラ及び液晶の
多量注入による液晶セルの肥大をなくす[1的でエアプ
レス機によりプレスを行い、その10■樹脂で液晶注入
口の封止を行う。
r Example 2J A red spacer material with a diameter of 6.2 μm for the purpose of controlling the substrate spacing and a measure against low-temperature bubbles were placed on one of the pair of substrates that had been subjected to the rubbing process in exactly the same manner as in Example 1. Spread blue spacer material with a desired diameter of 5.2 μm, print an epoxy sealant on the other substrate using a screen printer, and bond both substrates together to complete the cell. Liquid crystal is injected into the cell manufactured by the above steps using a vacuum injection method. The liquid crystal cell that has been injected with liquid crystal eliminates color unevenness caused by the gap difference between the substrates and enlargement of the liquid crystal cell due to large amounts of liquid crystal injection. Perform sealing.

上記工程で作製された液晶セルのスペーサー材の散布密
度を偏光機能を有さない通常の顕微鏡と接続したカメラ
を用いて計測した。ただし本実施例においては色温度補
正フィルターを通して計測を行った。
The dispersion density of the spacer material in the liquid crystal cell produced in the above process was measured using a camera connected to an ordinary microscope without a polarizing function. However, in this example, the measurement was performed through a color temperature correction filter.

本実施例においては赤色とft色の2種類のスペーサー
を用いたため、計数の際に用いる顕微鏡は偏光機能のな
い顕微鏡を用いることができる。逆に偏光顕?ij、t
f’tを用いると液晶の部分が着色して見えるため却っ
てみにくくなってしまう。
In this example, since two types of spacers, red and ft color, were used, a microscope without a polarizing function can be used for counting. On the other hand, a polarized light microscope? ij,t
If f't is used, the liquid crystal part will appear colored, making it rather difficult to see.

本実施例のように赤色と青色のスペーサーを用いた場合
、実施例1のように白色と黒色を用いた場合に比較して
スペーサーの直径が非常に小さいため識別し易さの点で
は若干劣るものである。
When red and blue spacers are used as in this example, the diameter of the spacers is much smaller than when white and black are used as in Example 1, so the ease of identification is slightly inferior. It is something.

r実施例3J ITO電極作製工程までを実施例1とまったく同様に行
った2枚の基板のうち一方の基板上にスクリーン印刷機
を用いてエポキシ系のシール材を印刷する。
r Example 3J An epoxy sealing material is printed on one of the two substrates, which are manufactured in exactly the same manner as in Example 1 up to the ITO electrode manufacturing process, using a screen printer.

そして他方の基板上に実施例1と同様な方法でポリアミ
ック酸を塗布した後、加熱を行いポリイミド′薄n々を
得る。その後ポリイミド薄Hり」−を綿布を用いてラビ
ングを行う。
Then, polyamic acid is coated on the other substrate in the same manner as in Example 1, and then heated to obtain a polyimide film. Thereafter, the polyimide thin layer is rubbed with a cotton cloth.

そしてラビング処理を行った基板上に基板間のギヤツブ
制御を目的とする赤色の2.5μmのスペーサー材と、
低)コ気泡対策用の青色の2.071mのスペーサー材
と、5.5μmの黄色のエポキシ系のスペーサー材の散
布を行った。このエポキシ系のスペーサーは、加熱する
ことにより基板を接着する役目を果たすものであり、外
部からの衝?に弱い強誘電性液晶セルには欠かせないも
のである。
Then, on the rubbed substrate, a red 2.5 μm spacer material was placed for the purpose of gear control between the substrates.
Low) A 2.071 m blue spacer material and a 5.5 μm yellow epoxy spacer material were sprayed to prevent bubbles. This epoxy spacer serves to bond the substrate together by heating, and is protected against external impact. This is indispensable for ferroelectric liquid crystal cells, which are susceptible to

上記工程を経た後で、2枚の基板を貼り合わせて強誘電
性液晶を注入し、その後液晶注入口の封止を行いセルを
完成する。
After passing through the above steps, the two substrates are bonded together, ferroelectric liquid crystal is injected, and then the liquid crystal injection port is sealed to complete the cell.

そして、実施例2と同様に偏光機能を持たない通常の顕
微鏡と色温度補正フィルターとを用いて3M!11のス
ペーサーそれぞれの数を計測することができた。
Then, as in Example 2, using a normal microscope without polarization function and a color temperature correction filter, 3M! The number of each of the 11 spacers could be measured.

本実施例においては赤、黄、青の3種類の色のスペーサ
ーを用いることで、それぞれの散布密度を容易に計測で
きた。
In this example, by using spacers of three colors, red, yellow, and blue, the respective dispersion densities could be easily measured.

〔効果〕〔effect〕

以上述べたように本発明の構成である複数の種類のスペ
ーサーの色をそれぞれ変えることによってそれぞれのス
ペーサーの散布密度を容易に計測することができる。こ
のため、均一な基板間隔が得られ、かつ低温気泡が生じ
ないような散布密度を決定することが容易である。そし
て散布密度を計測するのみによって均一な基板間隔が得
られ、かつ低温気泡が生じないような液晶セルが得られ
たかどうか実際に基板間隔の測定や低温状態に放置する
等の実験を行わすとも確実に予測することができるよう
になった。従って散布密度が不良のセルに対しては、後
の駆動回路との接続等の実相工程を行わずに廃棄すれば
良く、製造コストを低下させることができた。
As described above, by changing the colors of the plurality of types of spacers that constitute the present invention, it is possible to easily measure the dispersion density of each spacer. Therefore, it is easy to determine a dispersion density that provides uniform substrate spacing and does not generate low-temperature bubbles. Then, by simply measuring the dispersion density, we will be able to obtain a liquid crystal cell with uniform substrate spacing and no low-temperature bubbles, by conducting experiments such as actually measuring the substrate spacing and leaving it in a low-temperature state. It is now possible to predict with certainty. Therefore, cells with poor distribution density can be discarded without performing any actual process such as connection with a later drive circuit, thereby reducing manufacturing costs.

さらに本発明を用いることにより、複数の種類のスペー
サーを散布する際、作業者が散布条件を取り違えて散布
を行ってしまう可能性を大幅に減少することができた。
Furthermore, by using the present invention, when spraying multiple types of spacers, it was possible to significantly reduce the possibility that an operator would mix up the spraying conditions and perform the spraying.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスペーサーの散布状態を示す。 ■・・・白色スペーサー 2・・・黒色スペーサー 3・・・液晶部分 FIG. 1 shows the state of dispersion of spacers. ■・・・White spacer 2...Black spacer 3...LCD part

Claims (1)

【特許請求の範囲】 1、電極を有する一対の基板間に液晶を介在せしめた液
晶電気光学装置であって、前記一対の基板間には複数の
種類のスペーサーを有し、該複数のスペーサーはその種
類ごとに色が違うことを特徴とする液晶電気光学装置。 2、特許請求の範囲第1項において、一対の基板間には
2種類のスペーサーを有し、その色は一方が白、他方が
黒であることを特徴とする液晶電気光学装置。
[Claims] 1. A liquid crystal electro-optical device in which a liquid crystal is interposed between a pair of substrates having electrodes, wherein a plurality of types of spacers are provided between the pair of substrates, and the plurality of spacers are A liquid crystal electro-optical device characterized by different colors depending on its type. 2. A liquid crystal electro-optical device according to claim 1, characterized in that there are two types of spacers between the pair of substrates, one of which is white and the other of which is black.
JP16798089A 1989-06-28 1989-06-28 Liquid crystal electrooptical device Pending JPH0331822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16798089A JPH0331822A (en) 1989-06-28 1989-06-28 Liquid crystal electrooptical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16798089A JPH0331822A (en) 1989-06-28 1989-06-28 Liquid crystal electrooptical device

Publications (1)

Publication Number Publication Date
JPH0331822A true JPH0331822A (en) 1991-02-12

Family

ID=15859581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16798089A Pending JPH0331822A (en) 1989-06-28 1989-06-28 Liquid crystal electrooptical device

Country Status (1)

Country Link
JP (1) JPH0331822A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338646A (en) * 2004-05-28 2005-12-08 Kyocera Corp Liquid crystal display
JP2006235398A (en) * 2005-02-25 2006-09-07 Kyocera Corp Liquid crystal display device and display body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235817A (en) * 1985-04-12 1986-10-21 Hitachi Ltd Liquid crystal display element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235817A (en) * 1985-04-12 1986-10-21 Hitachi Ltd Liquid crystal display element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338646A (en) * 2004-05-28 2005-12-08 Kyocera Corp Liquid crystal display
JP4544908B2 (en) * 2004-05-28 2010-09-15 京セラ株式会社 Liquid crystal display
JP2006235398A (en) * 2005-02-25 2006-09-07 Kyocera Corp Liquid crystal display device and display body
JP4594132B2 (en) * 2005-02-25 2010-12-08 京セラ株式会社 Liquid crystal display device and display body

Similar Documents

Publication Publication Date Title
JP4584973B2 (en) Liquid crystal device
JPH09105946A (en) Liquid crystal display element and its production
JPH03122615A (en) Liquid crystal display device
JP2001290152A (en) Liquid crystal display device
US7453545B2 (en) Liquid crystal display panel
JPH0331822A (en) Liquid crystal electrooptical device
KR20050000572A (en) The method for fabricating retardation film and the method for fabricating liquid crystal display device using the same
KR100463793B1 (en) Liquid crystal display element
KR20070066014A (en) Liquid crystal display using polymer dispersed liquid crystal
US20040125276A1 (en) Liquid crystal display
JPH01113729A (en) Liquid crystal electro-optic device
JPH0521056Y2 (en)
JPH06273743A (en) Color liquid crystal electrooptic device
JPH09179131A (en) Liquid crystal display device
KR0122051Y1 (en) Seal print for liquid crystal display
JP2545877B2 (en) Liquid crystal display
JP3613807B2 (en) Color polarizing filter and liquid crystal display device using the same
JPH1031222A (en) Production of liquid crystal panel
KR100308490B1 (en) Liquid crystal display
JPH09258230A (en) Liquid crystal display panel
JPH0750735Y2 (en) Liquid crystal display
JPS63228126A (en) Liquid crystal display device
JPH04134322A (en) Liquid crystal display element
KR20040100558A (en) The method for fabricating in-plane-switching luquid crystal display device
JPH07306414A (en) Liquid crystal display element and production thereof