JPH01111784A - Production of airtight ceramic vessel - Google Patents

Production of airtight ceramic vessel

Info

Publication number
JPH01111784A
JPH01111784A JP63049758A JP4975888A JPH01111784A JP H01111784 A JPH01111784 A JP H01111784A JP 63049758 A JP63049758 A JP 63049758A JP 4975888 A JP4975888 A JP 4975888A JP H01111784 A JPH01111784 A JP H01111784A
Authority
JP
Japan
Prior art keywords
metal
ceramic
active metal
cylindrical body
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63049758A
Other languages
Japanese (ja)
Other versions
JP2752079B2 (en
Inventor
Isao Okutomi
功 奥富
Shoji Niwa
丹羽 昭次
Mikio Okawa
幹夫 大川
Mitsutaka Honma
三孝 本間
Masako Nakabashi
中橋 昌子
Makoto Shirokane
白兼 誠
Hiromitsu Takeda
博光 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to EP88302967A priority Critical patent/EP0286335B2/en
Priority to DE3888380T priority patent/DE3888380T2/en
Priority to US07/176,752 priority patent/US4917642A/en
Priority to KR1019880003756A priority patent/KR910001350B1/en
Publication of JPH01111784A publication Critical patent/JPH01111784A/en
Priority to US07/419,029 priority patent/US5056702A/en
Priority to KR1019900021744A priority patent/KR910001351B1/en
Application granted granted Critical
Publication of JP2752079B2 publication Critical patent/JP2752079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • C04B2237/406Iron, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • C04B2237/765Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc at least one member being a tube
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/80Joining the largest surface of one substrate with a smaller surface of the other substrate, e.g. butt joining or forming a T-joint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • H01H2033/66215Details relating to the soldering or brazing of vacuum switch housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • H01H2033/66276Details relating to the mounting of screens in vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49146Assembling to base an electrical component, e.g., capacitor, etc. with encapsulating, e.g., potting, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To obtain the above vessel having excellent adhesive strength and airtightness maintenability by placing a metallic solder layer on the active metal layer formed on the open end face of a ceramic barrel, placing a metallic lid thereon to close the opening, and carrying out brazing to join both barrel and lid without previously metallizing the open end face. CONSTITUTION:An active metal paste prepared by kneading the active metal consisting of the Ti powder and/or Zr powder having <=5mu particle diameter (e.g., mixed powder of Ti/Zr=9/1) with a soln. of ethyl cellulose in ethanol is applied at 0.1-10mg/cm<2> (expressed in terms of metal) on both open end faces of the ceramic barrel 1 made of Al2O3, etc., and having 60mm outer diameter, 50mm inner diameter, and 60mm height, and an active metal layer is formed. Metallic solder is placed thereon, the metallic lid 2 of covar, etc., is arranged on the solder to close the open end face, the assembly is put in a vacuum furnace and heated, for example, at about 850 deg.C for about 5min, and both barrel and lid are joined.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は気密性セラミックス容器の製造方法と、該気密
性セラミックス容器を用いた真空バルブの製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing an airtight ceramic container and a method for manufacturing a vacuum valve using the airtight ceramic container.

(従来の技術) セラミックスは優れた耐熱性および絶縁性を有するため
、その特性を生かして種々の電気部品材料として用いら
れている。真空バルブ等の電気部品に用いる気密性容器
もその一例である。このような気密性容器の場合、内部
を不活性ガスで満たした雰囲気または真空状で使用され
る。従って、このような内部雰囲気を維持するために、
厳密に気密性を保ち得るものでなければならない。
(Prior Art) Ceramics have excellent heat resistance and insulation properties, and therefore are used as materials for various electrical components by taking advantage of these characteristics. An example is an airtight container used for electrical components such as vacuum valves. In the case of such an airtight container, the inside is used in an atmosphere filled with an inert gas or in a vacuum state. Therefore, in order to maintain this internal atmosphere,
It must be possible to maintain strict airtightness.

従来の気密性セラミックス容器(本発明における製造対
象)は、第1図(A)に示すように、セラミックス筒状
体1の開口端部を金属製の蓋体2で封着した構造を有し
ている。このような気密性セラミックス容器の製造に際
しては、セラミックス筒状体1の開口端面にメタライジ
ングを施した後、その上に金属ロウを介して金属製蓋体
を接合する方法(ロウ付け)が従来用いられている。こ
の場合、セラミックス筒状体1と金属製蓋体2とでは熱
膨張率が異なるから、接合部にはロウ付けの際に熱応力
が発生する。この熱応力が大きいとセラミクス筒状体2
にクラックが生じ、気密性が損われてしまう。そこで、
この熱応力を低減してクラックの発生を防1卜するため
に、次のような工夫がなされている。
A conventional airtight ceramic container (object to be manufactured in the present invention) has a structure in which the open end of a ceramic cylindrical body 1 is sealed with a metal lid 2, as shown in FIG. 1(A). ing. When manufacturing such an airtight ceramic container, a conventional method (brazing) is to apply metallization to the open end surface of the ceramic cylindrical body 1 and then join a metal lid thereon via metal solder. It is used. In this case, since the ceramic cylindrical body 1 and the metal lid body 2 have different coefficients of thermal expansion, thermal stress is generated at the joint during brazing. If this thermal stress is large, the ceramic cylindrical body 2
Cracks will occur and the airtightness will be compromised. Therefore,
In order to reduce this thermal stress and prevent the occurrence of cracks, the following measures have been taken.

第一は、金属製蓋体として、Mo、W等の熱膨張係数の
小さい金属や、インバー、コバール等の熱膨張係数の小
さい合金を用いることである。
The first is to use a metal with a small coefficient of thermal expansion, such as Mo or W, or an alloy with a small coefficient of thermal expansion, such as Invar or Kovar, as the metal lid.

第二は、第1図に示したように金属製蓋体2の端部を折
曲げ、その端面をセラミックス筒状体1の端面に接合(
端面接合)ことにより、両者の接合面積を小さくしてい
る点である。接合部に発生する熱応力の大きさは両者の
接合面積に比例するから、この端面接合は熱応力の低減
に寄与する。
The second method is to bend the end of the metal lid body 2 as shown in FIG.
This is because the bonding area between the two is reduced by (end surface bonding). Since the magnitude of the thermal stress generated at the joint is proportional to the joint area between the two, this end face bonding contributes to reducing the thermal stress.

なお、このような端面接合において充分な接合強度およ
び充分な気密性を得るためには、第1図(B)に示すよ
うに、ロウ材3が蓋体2の端部からセラミックス筒状体
端面に亙って、外側へ裾を引くように広がった構造を有
することが必要である。
In addition, in order to obtain sufficient joint strength and sufficient airtightness in such end surface joints, as shown in FIG. It is necessary to have a structure that widens outward over the entire length.

次に、上記気密性セラミックス容器の製造に用いられて
いるメタライジング法について説明する。
Next, the metallizing method used to manufacture the above-mentioned airtight ceramic container will be explained.

従来行なわれているメタライジング法は次の通りである
The conventional metallizing method is as follows.

■ セラミックス母材表面にMOまたはWを主成分とす
る粉末を塗布し、還元雰囲気中で例えば1400〜17
00℃に加熱して、セラミックス母材と反応させメタラ
イジングする方法。必要により、メタライズ層の上にN
i等のメツキ処理を施す。このの方法ではメタライジン
グに非常に高温での処理を必要とする等、繁雑な工程に
問題がある。
■ Apply a powder containing MO or W as the main component to the surface of the ceramic base material, and reduce the
A method of metallizing by heating to 00°C and reacting with the ceramic base material. If necessary, apply N on the metallized layer.
Perform plating processing such as i. This method has problems with complicated processes, such as the need for metallizing treatment at extremely high temperatures.

■ セラミックス母材表面にAu又はptを配置し、そ
れらに圧力を加えながら加熱してメタライジングする方
法。この方法では高価な貴金属を使用するため、接合部
面積の大きい真空バルブでは経済性に問題がある。しか
も、密着性を高める目的で高い圧力を必要とするため、
変形を嫌うエレクトロニクス部品への適用は好ましくな
い。
■ A method of metallizing by placing Au or PT on the surface of a ceramic base material and heating it while applying pressure. Since this method uses expensive precious metals, it is not economical for vacuum valves with large joint areas. Moreover, since high pressure is required to improve adhesion,
Application to electronic parts that do not like deformation is not preferred.

■ セラミックス母材上にTi、Zr等の活性金属と、
Ni、Cu等の遷移金属とを配し、それらの合金の融点
より高い温度で熱処理してメタライジングする方法であ
る(特開昭56−183093号)。
■ Active metals such as Ti and Zr on the ceramic base material,
This is a method in which transition metals such as Ni and Cu are arranged and metallized by heat treatment at a temperature higher than the melting point of the alloy (Japanese Patent Application Laid-open No. 183093/1983).

この方法は活性金属としてのTL、Zrを用い、該活性
金属とCu、Ni等の遷移金属との合金を形成すると、
その共晶組成領域において、合金は何れの単体の融点よ
りも数100℃低い融点を示すことに着目したものであ
る。この方法では活性金属がセラミックス母材を濡らす
ため、加圧を殆ど必要と゛せずにメタライジングを行な
うことができる。且つ、活性金属の効果によりセラミッ
クス母材に対し強い密着力でメタライジングできる利点
を有している。
This method uses TL and Zr as active metals, and when an alloy is formed between the active metals and transition metals such as Cu and Ni,
We focused on the fact that in the eutectic composition region, the alloy exhibits a melting point several 100 degrees Celsius lower than the melting point of either element. In this method, since the active metal wets the ceramic matrix, metallization can be carried out with almost no need for pressurization. In addition, it has the advantage that it can be metallized with strong adhesion to the ceramic base material due to the effect of the active metal.

■〜■の何れのメタリジング法を用いるにしても、上記
の方法で気密性セラミックス容器を製造するためには、
セラミックス筒状体の端面にメタライジングを施した後
、更に蓋体をロウ付けしなければならない。即ち、メタ
ライジングの工程と、容器の気密性を確保するための蓋
体のロウ付けとを別々に行なう必要があり、工程が複雑
になる欠点がある。そこで、予め上記のようなメタライ
ジングを施すことなく、金属製蓋体をセラミックス筒状
体の開口端面にロウ付けすることにより、気密性セラミ
ックス容器を製造する方法が検討されるようになった。
No matter which metallizing method from ■ to ■ is used, in order to manufacture an airtight ceramic container using the above method,
After metallizing the end face of the ceramic cylindrical body, the lid must be further brazed. That is, the metallizing process and the brazing of the lid to ensure the airtightness of the container must be performed separately, which has the disadvantage of complicating the process. Therefore, a method of manufacturing an airtight ceramic container by brazing a metal lid to the open end surface of a ceramic cylindrical body without performing the above-mentioned metallization in advance has been studied.

一方、予めメタライジングを施すことなく、セラミック
ス部材と金属部材とを接合する方法として、次のような
一段階接合法が提案されている(特開昭59−3282
8号)。即ち、活性金属としてTi及び/又はZrを含
む低融点のロウ材(特にAgロウ)を用いる接合方法、
或いは、上記活性金属の薄板と上記Agロウ材層とを積
層し、これをセラミックス部材と金属部材との間に挿入
して加熱する接合方法である。この−段階接合法はメタ
ライジングを必要としないから、工程を簡略化すること
ができる。
On the other hand, the following one-step joining method has been proposed as a method for joining ceramic members and metal members without prior metallization (Japanese Patent Laid-Open No. 59-3282
No. 8). That is, a joining method using a low melting point brazing material (particularly Ag brazing material) containing Ti and/or Zr as an active metal,
Alternatively, there is a joining method in which the thin plate of the active metal and the Ag brazing material layer are laminated, and this is inserted between the ceramic member and the metal member and heated. Since this one-step bonding method does not require metallization, the process can be simplified.

しかしながら、上記の一段階接合法の場合、第1図(B
)で説明したような好ましい接合構造が得られない。こ
のため、セラミックス部材と金属部材との接合面積が充
分に大きい場合には略満足できる接合特性が得られるが
、接合面積が小さいと充分な接合特性が得られない。従
って、既述したような気密性セラミックス容器の製造に
適用するのは不適当である。即ち、第1図(C)のよう
に蓋体2の端面より大きいロウ材薄板3を用いてロウ付
けしても、溶融ロウ材によるセラミックス表面の濡れ性
が充分でないため、第1図(D)に示したように蓋体2
の端面直下にしかロウ材層が形成されない。その結果、
接合部に隙間が生じ易く、また小さな外力でも蓋体2が
剥離する問題を生じることになる。
However, in the case of the above-mentioned one-step joining method, Fig. 1 (B
) The preferable bonding structure as explained in 2.) cannot be obtained. Therefore, if the bonding area between the ceramic member and the metal member is sufficiently large, substantially satisfactory bonding characteristics can be obtained, but if the bonding area is small, sufficient bonding characteristics cannot be obtained. Therefore, it is inappropriate to apply it to the production of airtight ceramic containers as described above. That is, even if brazing is performed using a thin brazing material plate 3 that is larger than the end surface of the lid body 2 as shown in FIG. 1(C), the wettability of the ceramic surface by the molten brazing material is not sufficient. ) As shown in
The brazing material layer is formed only directly under the end face of the the result,
A gap is likely to be formed at the joint, and even a small external force may cause the lid 2 to peel off.

次に、上記の気密性セラミックス容器を用いた従来の真
空バルブについて説明する。
Next, a conventional vacuum valve using the above-mentioned airtight ceramic container will be explained.

真空バルブにおける構造の一例を第10図に示す。同図
において、1はセラミックス円筒体である。該円筒体の
両開口端には、銀ロウ8a、8bを介して金属製蓋体2
a、2bが気密に接合され、内部が真空に維持された真
空容器を構成している。
An example of the structure of a vacuum valve is shown in FIG. In the figure, 1 is a ceramic cylinder. A metal lid 2 is attached to both open ends of the cylindrical body via silver solder 8a, 8b.
a and 2b are hermetically joined to form a vacuum container whose interior is maintained in vacuum.

この真空容器内には、固定導電軸5a及び可動導電軸5
bが相対抗し、且つ蓋体2a、  2bを貫通して設け
られている。図示のように、固定導電軸5aは蓋体2a
に固定され、可動導電軸5bは軸方向に可動となってい
る。両導電軸5a、5bの対向する端部には一対の接点
3a、3bが配設されている。接点3aは固定接点、接
点3bは可動接点である。接点3bは導電軸5bに直接
ロウ付けされるか、又は図示しない電極を介して導電軸
5bにロウ付けされている。また、固定導電軸5aの他
端は固定端子4a、可動導電軸5bの他端部は可動端子
4bとなっている。従って、可動導電軸5bの軸方向の
移動により、接点3a。
Inside this vacuum container, there is a fixed conductive shaft 5a and a movable conductive shaft 5.
b are opposed to each other and are provided so as to penetrate through the lids 2a and 2b. As shown in the figure, the fixed conductive shaft 5a is connected to the lid body 2a.
The movable conductive shaft 5b is movable in the axial direction. A pair of contacts 3a, 3b are provided at opposing ends of both conductive shafts 5a, 5b. Contact 3a is a fixed contact, and contact 3b is a movable contact. The contact 3b is brazed directly to the conductive shaft 5b, or is brazed to the conductive shaft 5b via an electrode (not shown). Further, the other end of the fixed conductive shaft 5a is a fixed terminal 4a, and the other end of the movable conductive shaft 5b is a movable terminal 4b. Therefore, due to the axial movement of the movable conductive shaft 5b, the contact point 3a.

3bは開閉される。更に、可動導電軸5bにはベローズ
7が取付けられ、該ベローズによって容器内を真空気密
に保持しながら可動導電軸5bの軸方向の移動が可能に
なっている。更に、ベローズ7の上部には金属製のアー
クシールド(図示せず)が設けられ、ベローズ7がアー
ク蒸気で覆われるのを防止している。また、真空容器内
には、前記接点3a、3bを覆うようにして金属製のア
ークシールド6が設けられ、前記セラミック製円筒体1
がアーク蒸気で覆われるのを防止している。これにより
、蒸発した接点材料材がセラミック製円筒体1の内面に
付着し、回路を短絡するの事態が防止されている。
3b is opened and closed. Further, a bellows 7 is attached to the movable conductive shaft 5b, and the bellows allows the movable conductive shaft 5b to move in the axial direction while keeping the inside of the container vacuum-tight. Further, a metal arc shield (not shown) is provided above the bellows 7 to prevent the bellows 7 from being covered with arc vapor. Further, a metal arc shield 6 is provided in the vacuum container so as to cover the contacts 3a and 3b, and the ceramic cylindrical body 1
This prevents the area from being covered with arc vapor. This prevents the evaporated contact material from adhering to the inner surface of the ceramic cylinder 1 and causing a short circuit.

ところで上記真空バルブにおいては、アークシールドを
真空容器の所定位置に固定しなければならない。そのた
めに、セラミックス筒状体1には図示のように凸部1′
が形成されている。この凸部1′は、アークシールド6
に設けた凹部6′と噛み合うように配置され、アークシ
ールド6の脱落または移動を防止している。セラミック
筒状体1に四部を形成し、アークシールド6には凸部を
設けて両者を噛み合わせる場合もある。この固定方法は
、セラミック製円筒体1とアークシールド6との取付け
にメタライジングを必要としないため経済的な利点を有
している。しかし、両者間には不可避的に隙間が生じる
ため、真空バルブが振動を受けたとき、アークシールド
6の振動或いは移動が避けられない。のみならず、アー
クシールド6の凹部6′のトラブルによっては所定の取
付は位置からの脱落を生じ、耐電圧特性、遮断特性の低
下を招く欠点がある。
By the way, in the above vacuum valve, the arc shield must be fixed at a predetermined position in the vacuum container. For this purpose, the ceramic cylindrical body 1 has a convex portion 1' as shown in the figure.
is formed. This convex portion 1' is connected to the arc shield 6
The arc shield 6 is disposed so as to mesh with a recess 6' provided in the arc shield 6, thereby preventing the arc shield 6 from falling off or moving. In some cases, the ceramic cylindrical body 1 is formed with four parts, and the arc shield 6 is provided with a convex part to engage the two parts. This fixing method has an economical advantage since no metallization is required to attach the ceramic cylinder 1 and the arc shield 6. However, since a gap inevitably occurs between the two, vibration or movement of the arc shield 6 is unavoidable when the vacuum valve is subjected to vibration. Furthermore, if there is a problem with the concave portion 6' of the arc shield 6, the arc shield 6 may fall out of the specified position, resulting in a disadvantage that the withstand voltage characteristics and the interrupting characteristics are deteriorated.

アークシールド6をセラミックス製円筒体1に固定する
第二方法として、円筒体1の内面にメタライジングを施
した後、アークシールド6を円筒体1の内面にロウ接続
する方法も知られている。
As a second method of fixing the arc shield 6 to the ceramic cylindrical body 1, a method is also known in which the inner surface of the cylindrical body 1 is metallized and then the arc shield 6 is soldered to the inner surface of the cylindrical body 1.

なお、メタライジング方法としては、既述した■〜■の
方法が用いられている。この方法によれば、アー クシ
ールド6の脱落あるいは移動トラブルは防止できる。し
かし、前記(1)〜(3)の何れの方法を用いるにして
も、既述したようなメタライジングに伴う問題が生じる
。即ち、■の方法では高温処理等の繁雑な工程を必要と
する問題がある。■の方法では経済性に問題があるのみ
ならず、充分な加圧を得るための部品がロウ付は炉中で
一定の空間を占めるため、生産性に問題がある。(3)
の方法では、望ましい接合強度を得ることが困難である
As the metallizing method, the methods (1) to (4) described above are used. According to this method, troubles such as falling off or movement of the arc shield 6 can be prevented. However, no matter which method (1) to (3) is used, the problems associated with metallization as described above arise. That is, the method (2) has a problem in that it requires complicated steps such as high-temperature treatment. Method (2) not only has problems in terms of economy, but also has problems in productivity because brazing the parts required to obtain sufficient pressure occupies a certain amount of space in the furnace. (3)
With this method, it is difficult to obtain desired bonding strength.

アークシールド6を円筒体1に取付ける第三の手段とし
ては、第11図に示すものが知られている。即ち、第6
図における筒状体を分割した2個のセラミック部材1a
、lbを用意し、その対向端面にメタライジング9a、
9bを施す。そして、前記端面9a、9b間にアークシ
ールド6aに設けたフランジを挿入し、気密封着する。
As a third means for attaching the arc shield 6 to the cylindrical body 1, the one shown in FIG. 11 is known. That is, the sixth
Two ceramic members 1a obtained by dividing the cylindrical body in the figure
, lb is prepared, and metallizing 9a is applied to the opposite end surface.
Apply step 9b. Then, a flange provided on the arc shield 6a is inserted between the end faces 9a and 9b, and the end faces 9a and 9b are hermetically sealed.

この場合にも、メタライジング方法としては既述した■
〜■の方法が用いられている。この方法もメタライジン
グ法を用いているから、上記第二の方法と同様の欠点が
存在する。のみならず、メタライズ箇所が増加するため
経済性の点で不利である。また、気密封着を要する箇所
が増加するため、気密性維持に関する信頼性においても
不利である。
In this case as well, the metallizing method is as described above.
The method of ~■ is used. Since this method also uses a metallizing method, it has the same drawbacks as the second method. In addition, since the number of metalized parts increases, it is disadvantageous in terms of economy. Furthermore, since the number of locations requiring airtight sealing increases, reliability in maintaining airtightness is also disadvantageous.

(発明が解決しようとする課題) 本発明は上記事情に鑑みてなされたもので、その第一の
課題は、セラミックス筒状体の開口端面に予めメタライ
ジングを施すことなく、該開口端面に金属製蓋体の周縁
部を端面接合することによって、充分な接合強度と高い
気密性保持能をもった気密性セラミックス容器を製造す
ることである。
(Problems to be Solved by the Invention) The present invention has been made in view of the above circumstances, and the first problem is that metallization is not applied to the open end face of the ceramic cylindrical body without metallizing the open end face in advance. The purpose of the present invention is to manufacture an airtight ceramic container having sufficient joint strength and high ability to maintain airtightness by end-face joining the peripheral edge of a lid.

本発明における第二の課題は、前記気密性セラミックス
容器を利用して真空バルブを製造するに際し、セラミッ
クス筒状体の内面に予めメタライジングを施すことなく
、その一部内面とアークシールドを簡便な方法で直接か
つ充分な強度で接合できる真空バルブの製造方法を提供
することである。
The second problem of the present invention is that when manufacturing a vacuum valve using the airtight ceramic container, a part of the inner surface and the arc shield can be easily connected without metallizing the inner surface of the ceramic cylindrical body in advance. An object of the present invention is to provide a method for manufacturing a vacuum valve that can be directly joined with sufficient strength by a method.

(課題を解決するための手段) 本発明による気密性セラミックス容器の製造方法は、セ
ラミックス筒状体の開口端面に、Ti及び/又はZrか
らなる活性金属を0.1〜10II!i/dの量だけ被
着させることにより活性金属層を形成する工程と、該活
性金属層上に金属ロウ層を載置する工程と、前記セラミ
ックス筒状体の開口部を封着するための金属製蓋体を、
その周縁部端面が前記金属ロウ層に接触するように配置
する工程と、加熱により前記金属ロウ層を溶融させ、前
記金属製蓋体を前記セラミックス筒状体の開口端面にロ
ウ付けする工程とを具備したことを特徴とするものであ
る。
(Means for Solving the Problems) In the method for manufacturing an airtight ceramic container according to the present invention, 0.1 to 10 II of an active metal consisting of Ti and/or Zr is applied to the open end surface of a ceramic cylindrical body. a step of forming an active metal layer by depositing an amount of i/d, a step of placing a metal brazing layer on the active metal layer, and a step of sealing the opening of the ceramic cylindrical body. metal lid body,
a step of arranging the peripheral edge end surface to be in contact with the metal solder layer, and a step of melting the metal solder layer by heating and brazing the metal lid body to the opening end surface of the ceramic cylindrical body. It is characterized by the following:

本発明による真空バルブの製造方法は、上記の方法によ
り得られる気密性セラミックス容器と、該容器の外部か
ら内部に貫通し且つ対抗して配置されると共に、少なく
とも一方を軸方向に移動可能とすることにより開閉可能
とされた一対の接点軸と、該一対の接点軸夫々の先端に
設けられた金属製の接点部材と、前記真空容器内の真空
を維持しつつ前記接点軸の軸方向の移動を可能とするた
めのベローズと、前記接点部材を取囲んで配置され、接
点部材から蒸発した金属の前記セラミックス筒状体内面
への付着を防止する金属製のアークシールドとを具備し
た真空バルブを製造するに際し、前記セラミックス筒状
体の内面を表面粗度が0.1〜101I01Rとなるよ
うに予め研磨仕上げする工程と、Ti及び/又はZrか
らなる平均粒径が0.1〜10u!R以下の活性金属の
粉末を0.1〜1086/mの量だけ被着させることに
より活性金属層を形成する工程と、該活性金属層上に金
属ロウ層を載置する工程と、前記アークシールドを前記
金属ロウ層に接触するように配置する工程と、加熱によ
り前記金属ロウ層を溶融させ、前記アークシールドを前
記セラミックス筒状体の内面にロウ付けする工程とを具
備したことを特徴とするものである。
A method for manufacturing a vacuum valve according to the present invention includes an airtight ceramic container obtained by the above method, which is penetrated from the outside to the inside of the container, and is disposed facing the container, and at least one of which is movable in the axial direction. a pair of contact shafts that can be opened and closed by this, a metal contact member provided at the tip of each of the pair of contact shafts, and movement of the contact shafts in the axial direction while maintaining a vacuum in the vacuum container. and a metal arc shield disposed surrounding the contact member to prevent metal evaporated from the contact member from adhering to the inner surface of the ceramic cylindrical body. When manufacturing, the inner surface of the ceramic cylindrical body is polished in advance so that the surface roughness becomes 0.1 to 101I01R, and the average grain size of Ti and/or Zr is 0.1 to 10u! a step of forming an active metal layer by depositing active metal powder of R or less in an amount of 0.1 to 1086/m; a step of placing a metal brazing layer on the active metal layer; The arc shield is characterized by comprising the steps of arranging the shield so as to be in contact with the metal brazing layer, and melting the metal brazing layer by heating and brazing the arc shield to the inner surface of the ceramic cylindrical body. It is something to do.

(作用) 以下、理解に必要な作用説明を含め、本発明の詳細な説
明する。
(Function) Hereinafter, the present invention will be explained in detail, including explanation of the function necessary for understanding.

まず、本発明の中心をなす接合方法について説明する。First, the bonding method that is the core of the present invention will be explained.

本発明においては、セラミックス筒状体と金属部材とを
接合するに際し、予めセラミックス筒状体の接合面にT
i、Zi等の活性金属を被着する。
In the present invention, when joining a ceramic cylindrical body and a metal member, T is applied to the joining surface of the ceramic cylindrical body in advance.
Deposit active metals such as i, Zi, etc.

これは単なる被着であって、特にメタライジング処理を
行なわない点で従来の技術とは異なる。即ち、予め形成
されるのは活性金属層であって、メタライズ層ではない
。この活性金属層の上から金属部材をロウ付けするから
、その際の加熱で前記活性金属がセラミックス筒状体の
内部に拡散し、従ってメタライズと同時にロウ付けが行
なわれることになる。この接合方法は、予めメタライズ
処理をしない点で、−段階接合法ということができる。
This differs from conventional techniques in that it is simply a deposition process and does not involve any particular metallizing treatment. That is, it is the active metal layer that is preformed and not the metallized layer. Since a metal member is brazed onto the active metal layer, the active metal is diffused into the ceramic cylindrical body by the heating at that time, and therefore brazing is performed simultaneously with metallization. This bonding method can be called a -stage bonding method in that no metallization treatment is performed in advance.

更に重要なことは、上記の一段階接合方において、活性
金属をセラミックス表面に密着した状態で被着すると共
に、その被着量を0.1〜10η/護に限定することで
ある。従って、セラミックス部材の表面に活性金属の板
を単に載置して用いていた従来例とは異なる。この特徴
によって0、第1図(B)で説明したような望ましい接
合部構造が得られる。その理由は、活性金属を被着させ
且つ被着量を上記の範囲とすることにより、セラミック
ス部材表面が良好にメタライジングされるからである。
What is more important is that in the one-step bonding method described above, the active metal is deposited in close contact with the ceramic surface, and the amount of deposited metal is limited to 0.1 to 10 η/protection. Therefore, this is different from the conventional example in which an active metal plate is simply placed on the surface of a ceramic member. This feature provides a desirable joint structure as described in FIG. 1(B). This is because the surface of the ceramic member can be satisfactorily metallized by depositing the active metal and keeping the deposition amount within the above range.

例えば、アルミナセラミックス円板の表面に上記活性金
属の粉末を塗布した後、72%のAg−Cu、Agロウ
剤を配置して真空中で加熱し、ロウ剤の広がりを調査し
た結果、活性金属粉末の塗布量を0.1〜10j29/
dとしたときにロウ材が好適に広がり、良好なメタライ
ジングが行なわれたことが確認された。このように良好
なメタライジングが行なわれる結果、端面接合のように
接合面積が小さい場合にも充分な接合強度を有し、且つ
隙間のない良好な接合を達成することができる。これに
対し、活性金属粉末の被着量が少な過ぎたり多過ぎたり
すると、その後のロウ付けに際して良好なメタライジン
グが行なわれず、ロウ剤の広がりが悪くなる。従って、
所期の特性をもった接合が得られない。
For example, after coating the above active metal powder on the surface of an alumina ceramic disk, 72% Ag-Cu and Ag brazing agent were placed and heated in vacuum, and as a result of investigating the spread of the brazing agent, it was found that the active metal Apply amount of powder from 0.1 to 10j29/
d, it was confirmed that the brazing material spread suitably and that good metallization was performed. As a result of such good metallization, it is possible to achieve sufficient bonding strength and a good bond with no gaps even when the bonding area is small, such as in end-face bonding. On the other hand, if the amount of active metal powder deposited is too small or too large, good metallization will not be achieved during subsequent brazing, and the spread of the brazing agent will be poor. Therefore,
A bond with the desired properties cannot be obtained.

上記の接合法を適用することにより、本発明ではセラミ
ックス筒状体と金属製蓋体との間の接合面積を増大する
ことなく、気密性に優れた信頼性の高い気密性セラミッ
クス容器を得ることができる。また、上記の接合方法を
アークシールドとセラミックス筒状体内面との接合に適
用することにより、簡便な方法で、脱落のおそれなくア
ークシールドを固定することができる。
By applying the above bonding method, the present invention provides a highly reliable airtight ceramic container with excellent airtightness without increasing the bonding area between the ceramic cylindrical body and the metal lid. Can be done. Moreover, by applying the above-described joining method to joining the arc shield and the inner surface of the ceramic cylindrical body, the arc shield can be fixed in a simple manner without fear of falling off.

上記の、接合法において、セラミックス筒状体の接合面
に前記活性金属粉末を被着するための方法としては、例
えば次の方法が挙げられる。
In the above bonding method, examples of the method for depositing the active metal powder on the bonding surface of the ceramic cylindrical body include the following method.

第一の方法は、セラミックス筒状体の接合面に対し、バ
インダおよび溶剤を混練した有機系粘着剤を予め塗布し
ておき、該粘着剤層に前記活性金属の粉末を散布して付
着させる方法である。使用するバインダおよび溶剤は特
に限定されないが、後の熱処理工程で完全に分解し、除
去され得るものが望ましい。例えば、バインダとしては
ポリビニルアルコール、エチルセルロース等、溶剤とし
てはエタノール、テトラリン等が挙げられる。
The first method is to apply an organic adhesive mixed with a binder and a solvent to the joint surface of the ceramic cylindrical body in advance, and then sprinkle the active metal powder onto the adhesive layer to make it adhere. It is. The binder and solvent used are not particularly limited, but it is desirable that they can be completely decomposed and removed in the subsequent heat treatment step. For example, examples of the binder include polyvinyl alcohol and ethyl cellulose, and examples of the solvent include ethanol and tetralin.

第二の方法は、前記活性金属の粉末、有機系バインダお
よび溶剤を混練した混合物を調製し、該混合物を金属メ
ツシュ等からなるスクリーンを通してセラミックス筒状
体の接合面に塗布する方法である。バインダ及び溶剤と
しては、上記のものを用いる。
The second method is to prepare a mixture of the active metal powder, an organic binder, and a solvent, and apply the mixture to the joint surface of the ceramic cylindrical body through a screen made of metal mesh or the like. As the binder and solvent, those mentioned above are used.

第三の方法は、蒸着またはスパッタリング等により、セ
ラミックス筒状体の接合面に活性金属を被着する方法で
ある。
The third method is to deposit an active metal on the joint surface of the ceramic cylindrical body by vapor deposition, sputtering, or the like.

上記の被着方法のうちで塗布法または散布法を用いる場
合には、粒子が大き過ぎると流動性が低下するため、1
0−以下とするのが望ましい。また、活性金属としてT
i、Zrの混合物を用いる場合、その混合比率は特に限
定されず、全く任意に設定することができる。一方、活
性金属粉末を被着すべきセラミックス筒状体の表面粗度
は、0.1〜10mとするのが望ましい。表面粗度が大
き過ぎると、接合強度が不充分となる場合があるからで
ある。
When using the coating method or the scattering method among the above-mentioned deposition methods, if the particles are too large, the fluidity will decrease.
It is desirable to set it to 0- or less. In addition, T as an active metal
When using a mixture of i and Zr, the mixing ratio is not particularly limited and can be set completely arbitrarily. On the other hand, the surface roughness of the ceramic cylindrical body to which the active metal powder is to be deposited is preferably 0.1 to 10 m. This is because if the surface roughness is too large, the bonding strength may become insufficient.

なお、真空バルブにおけるアークシールドとセラミック
ス筒状体とを接合するときには、特に散布法または塗布
法のみを用いる。且つ、この場合には活性金属の平均粒
径を1OtuR以下とし、セラミックス筒状体の表面粗
度を0.1〜10pとする必要がある。
Note that when joining the arc shield and the ceramic cylindrical body in the vacuum valve, only the spraying method or coating method is particularly used. In addition, in this case, the average particle size of the active metal must be 1 OtuR or less, and the surface roughness of the ceramic cylindrical body must be 0.1 to 10p.

上記の接合法で用いる金属ロウ材としては、例えばAg
−Cu系、Ag−Cu−Sn系、Ag−Cu−Zn系等
のAgロウが好ましい。ロウ付けに際しては、前記活性
金属粉末が被着されたセラミックス筒状体の接合面上に
ロウ材を配置し、接合すべき金属部材(金属製蓋体また
はアークシールド)をロウ材に接触させた後、ロウ材の
融点以上の温度に加熱する。このときの熱処理雰囲気と
しては、真空またはアルゴンガス等の非酸化性雰囲気が
好適である。
As the metal brazing material used in the above joining method, for example, Ag
-Cu-based, Ag-Cu-Sn-based, Ag-Cu-Zn-based, and other Ag waxes are preferred. During brazing, a brazing material was placed on the joining surface of the ceramic cylindrical body coated with the active metal powder, and the metal member to be joined (metal lid or arc shield) was brought into contact with the brazing material. After that, it is heated to a temperature higher than the melting point of the brazing material. The heat treatment atmosphere at this time is preferably a non-oxidizing atmosphere such as vacuum or argon gas.

次に、本発明による気密性セラミックス容器の製造方法
について説明する。この場合、セラミックス筒状体1の
材質は特に限定されない。例えば、Aノコ03等の酸化
物系セラミックス、A、fl’NやSi3N、1等の窒
化物系セラミックスを好適に用いることができる。一方
、金属製蓋体2としては、熱膨張率がセラミックス筒状
体のそれに近い材質のものを用いるのが望ましい。既述
した通り、接合時の熱応力を低減するためである。好ま
しい材質としては、Mo、W、 コバール、インパール
等が挙げられる。また、セラミックス筒状体1と金属製
蓋体2との接合には、接合面積を小さくして熱応力を小
さくするために、第1図に示したような端面接合を用い
る。既述のように、本発明では端面接合においても充分
な接合強度と気密性を得ることができる。
Next, a method for manufacturing an airtight ceramic container according to the present invention will be explained. In this case, the material of the ceramic cylindrical body 1 is not particularly limited. For example, oxide ceramics such as A Noko 03, nitride ceramics such as A, fl'N, Si3N, 1, etc. can be suitably used. On the other hand, as the metal lid body 2, it is desirable to use a material whose coefficient of thermal expansion is close to that of the ceramic cylindrical body. As mentioned above, this is to reduce thermal stress during bonding. Preferred materials include Mo, W, Kovar, Imphal, and the like. Further, for joining the ceramic cylindrical body 1 and the metal lid body 2, an end surface joint as shown in FIG. 1 is used in order to reduce the joint area and reduce thermal stress. As described above, in the present invention, sufficient bonding strength and airtightness can be obtained even in end surface bonding.

ところで、本発明による気密性セラミックス容器の製造
においては、セラミックス筒状体1と金属製蓋体2との
ロウ付げに際し、第2図(A)または(B)に示したよ
うなロウ材薄板を用いるのが望ましい。図示のように、
これらロウ材薄板は上面のみが凹凸をもった粗な表面と
され、下面は平滑な表面とされている。更に、第2図(
B)のロウ材薄板では、凸部を貫通する孔が形成されて
いる。このロウ材薄板を用いてロウ付けするに際しては
、その平滑な下面をセラミックス筒状体2の接合面に接
触させ、凹凸のある工面を金属製蓋体2の端面に接触さ
せる。この状態でロウ付けを行なうことにより、次のよ
うな効果が得られる。
By the way, in manufacturing the airtight ceramic container according to the present invention, when brazing the ceramic cylindrical body 1 and the metal lid body 2, a thin plate of brazing material as shown in FIG. 2(A) or (B) is used. It is preferable to use As shown,
These brazing thin plates have a rough surface with irregularities only on the upper surface, and a smooth surface on the lower surface. Furthermore, Figure 2 (
In the brazing thin plate B), a hole is formed to penetrate the convex portion. When brazing is performed using this thin plate of brazing material, its smooth lower surface is brought into contact with the joint surface of the ceramic cylindrical body 2, and the uneven work surface is brought into contact with the end surface of the metal lid body 2. By performing brazing in this state, the following effects can be obtained.

ロウ付けの際には、その加熱に伴ってセラミックス筒状
体2から不純物の分解ガス、吸着ガス等が容器内部に放
出される。従って、容器内に真空状態等の所期の雰囲気
を達成するためには、ロウ付けが完了するまでの間にこ
れらのガスを外部に排出しなければならない。上記のロ
ウ材薄板を用いた場合、ロウ材薄板の金属製蓋体との間
には前記凹凸による隙間が形成される。従って、前記の
ガスはこの隙間を通って外部に排出され、真空等の望ま
しい容器内雰囲気を得ることができる。即ち、前記ロウ
材上面の凹凸によってガスの排出路が確保されるのであ
る。この効果は、第2図(B)のように貫通孔を設ける
ことによって更に大きくなる。しかし、当然ながら、こ
の排出路はロウ付げによる封着終了時には完全に閉鎖さ
れ、充分な気密性を達成できるものでなければならない
。このような観点、並びにロウ材を接合部に配置したと
きの安定性の観点から、前記凹凸の深さまたは高さは2
0−〜511+1が適当である。
During brazing, decomposed gas, adsorbed gas, etc. of impurities are released from the ceramic cylindrical body 2 into the interior of the container as it is heated. Therefore, in order to achieve a desired atmosphere such as a vacuum state within the container, these gases must be exhausted to the outside before brazing is completed. When the thin brazing material plate described above is used, a gap is formed between the thin brazing material plate and the metal lid due to the unevenness. Therefore, the gas is discharged to the outside through this gap, and a desired atmosphere such as vacuum can be obtained inside the container. That is, the unevenness of the upper surface of the brazing material ensures a gas discharge path. This effect is further enhanced by providing through holes as shown in FIG. 2(B). However, as a matter of course, this discharge passage must be completely closed when sealing by brazing is completed, and must be able to achieve sufficient airtightness. From this perspective as well as from the perspective of stability when the brazing material is placed in the joint, the depth or height of the unevenness should be 2.
0- to 511+1 is appropriate.

一方、上記のロウ材薄板は下面が平滑であることによっ
て、ロウ材の濡れ性に劣るセラミックス端面に対しても
良好な接合を得ることができる。
On the other hand, since the thin brazing material plate described above has a smooth lower surface, it is possible to obtain good bonding even to the ceramic end face, which has poor wettability with the brazing material.

もし、ロウ材とセラミックス筒状体表面との間にも隙間
が存在すると、ロウ材は濡れ性に劣る接合面上に充分に
広がることができないため、良好な接合が得られず、気
密不良を生じる原因となる。
If there is a gap between the brazing material and the surface of the ceramic cylinder, the brazing material will not be able to spread sufficiently over the bonding surface, which has poor wettability, resulting in poor bonding and poor airtightness. cause it to occur.

このように、第2図(A)(B)のロウ材薄板は、金属
に接する上面に凹凸を形成してガスの排出路を確保する
と同時に、セラミックスに接する下面を平滑にして良好
な接合性を確保したものである。
In this way, the brazing metal thin plates shown in Fig. 2 (A) and (B) form unevenness on the upper surface in contact with the metal to ensure a gas discharge path, and at the same time, the lower surface in contact with the ceramics is smooth to ensure good bonding. This is what we have ensured.

第3図(A)、好ましいロウ材薄板の他の例を示してい
る。図示のように、このロウ材薄板は二つのロウ材層3
1.32の間に、このロウ材よりも融点の高い金属から
なるバリヤ層を介在させた積層構造を有している。二つ
のロウ材層31゜32は、同じものであってもよく、異
なるものであってもよい。このようなロウ材薄板を用い
る目的と、これにより得られる作用および効果は次の通
りである。
FIG. 3(A) shows another example of a preferable brazing material thin plate. As shown in the figure, this thin plate of brazing material has two layers of brazing material 3.
It has a laminated structure in which a barrier layer made of a metal having a melting point higher than that of the brazing material is interposed between the brazing material and the brazing material. The two brazing metal layers 31 and 32 may be the same or different. The purpose of using such a thin brazing material plate and the effects and effects obtained thereby are as follows.

ロウ材を用いた異種材料間の接合技術は、拡散接合や溶
融溶接と異なり、被接合材料同志を反応させて合金層を
形成させるものではない。従って、脆弱な合金層の生成
することによる強度低下を生じない利点を有している。
Unlike diffusion bonding or fusion welding, the technique for joining dissimilar materials using brazing metal does not involve making the materials to be joined react with each other to form an alloy layer. Therefore, it has the advantage of not causing a decrease in strength due to the formation of a brittle alloy layer.

しかし、被接合部材の種類によっては、これら部材の構
成元素が溶融したロウ材中に急速に拡散して相互に反応
し、脆弱な合金層を形成する場合がある。そこで、第3
図(A)のロウ材薄板ではバリヤWI32を設けること
により、溶融ロウ材中に溶出して拡散してきた元素が互
いに接触するのを阻止し、脆弱な合金層の形成を防止し
ている。即ち、バリヤ層32は融点が高いから、ロウ材
層31.33が溶融したときにも溶融せずに残る。従っ
て、両側の被溶接部材から拡散してきた元素相互の接触
は阻止されるのである。
However, depending on the type of members to be joined, the constituent elements of these members may rapidly diffuse into the molten brazing material and react with each other to form a brittle alloy layer. Therefore, the third
By providing the barrier WI32 in the brazing material thin plate shown in FIG. 3A, elements eluted and diffused into the molten brazing material are prevented from coming into contact with each other, thereby preventing the formation of a fragile alloy layer. That is, since the barrier layer 32 has a high melting point, it remains unmelted even when the brazing material layers 31 and 33 melt. Therefore, contact between the elements diffused from the members to be welded on both sides is prevented.

なお、バリヤ層32の厚さは特に限定されない。Note that the thickness of the barrier layer 32 is not particularly limited.

しかし、充分且つ確実にバリヤとして作用し、且つ取扱
い易い範囲は約0.01〜5Bである。
However, the range that sufficiently and reliably acts as a barrier and is easy to handle is about 0.01 to 5B.

上記第3図(A)の構成と、第2図(A)(B)の構成
とを組合せた構成からなるロウ材薄板を用いてもよい。
A brazing material thin plate having a configuration that combines the configuration shown in FIG. 3(A) and the configurations shown in FIGS. 2(A) and (B) may also be used.

そのようなロウ材薄板の例を、第3図(B)(C)に示
す。この場合には、第2図(A)(B)で説明したガス
排出をも同時に行なうことができる。
Examples of such brazing thin plates are shown in FIGS. 3(B) and 3(C). In this case, the gas discharge described in FIGS. 2(A) and 2(B) can also be performed at the same time.

第4図は、第3図(C)のロウ材薄板を用い、本発明に
より気密性セラミックス容器を製造する状態を示してい
る。この図から、第3図(A)〜(C)のロウ材薄板を
用いることにより得られる上記以外の別の効果が理解さ
れる。即ち、バリア層32はロウ付けの加熱によっても
溶融せず、機械的強度を保持する。従って、金属製蓋体
2の位置合せに多少のズレが生じても、バリア層32が
連結材として機能し、所期の気密性容器を得ることがで
きる。
FIG. 4 shows a state in which an airtight ceramic container is manufactured according to the present invention using the brazing material thin plate shown in FIG. 3(C). From this figure, it is understood that another effect other than the above obtained by using the thin brazing material plates shown in FIGS. 3(A) to 3(C) is obtained. That is, the barrier layer 32 does not melt even when heated during brazing and maintains its mechanical strength. Therefore, even if some misalignment occurs in the alignment of the metal lid 2, the barrier layer 32 functions as a connecting material, and the desired airtight container can be obtained.

本発明による真空バルブの製造方法は、第10図で説明
した真空バルブを製造するに際し、既述の接合方法を用
いてアークシールドをセラミックス筒状体1の内面に直
接接合するものである。従って、この場合にも両者の間
には充分な強度をもった良好な接合が得られ、アークシ
ールドの脱落や移動等が防止されるから、耐電圧特性の
変動を抑制する等、信頼性を向上することができる。ま
た、予めメタライジング処理を施す必要がないから、工
程の簡略化を図ることができる。
In the method for manufacturing a vacuum valve according to the present invention, when manufacturing the vacuum valve illustrated in FIG. 10, an arc shield is directly joined to the inner surface of the ceramic cylindrical body 1 using the above-described joining method. Therefore, in this case as well, a good bond with sufficient strength is obtained between the two, preventing the arc shield from falling off or moving, thereby improving reliability by suppressing fluctuations in withstand voltage characteristics. can be improved. Furthermore, since there is no need to perform metallizing treatment in advance, the process can be simplified.

なお、この真空バルブの製造においても、第3図(A)
に示したロウ材を用いることにより、既述のような効果
を得ることができる。
In addition, in manufacturing this vacuum valve, as shown in Fig. 3 (A),
By using the brazing filler metal shown in , it is possible to obtain the effects described above.

(実施例) 以下、実施例に基づいて本発明をより具体的説明する。(Example) Hereinafter, the present invention will be explained more specifically based on Examples.

実施例1(気密性セラミックス容器の製造)次のように
して、第1図に示したような気密性セラミックス容器を
製造した。
Example 1 (Manufacture of an airtight ceramic container) An airtight ceramic container as shown in FIG. 1 was manufactured in the following manner.

まず、外径60B、内径50mm、高さ[iomのA)
203製セラミックス筒状体1を用意した。
First, outer diameter 60B, inner diameter 50mm, height [iom A)
A ceramic cylindrical body 1 made of 203 was prepared.

また、粒径5p以下のTi粉末およびZr粉末を9:1
の比率で混合し、これをエチルセルロースのエタノール
溶液と混練することにより、活性金属ペーストを調製し
た。次いで、このペーストを前記セラミックス筒状体1
の両端開口端面に塗布した。その際、活性金属の被着量
が1η/crjになるように、ペーストの塗布量を調節
した。
In addition, Ti powder and Zr powder with a particle size of 5p or less were mixed in a ratio of 9:1.
An active metal paste was prepared by mixing this with an ethanol solution of ethyl cellulose. Next, apply this paste to the ceramic cylindrical body 1.
It was applied to the open end faces of both ends. At that time, the amount of paste applied was adjusted so that the amount of active metal deposited was 1η/crj.

次に、セラミックス筒状体1の上記ペースト塗布面に、
厚さ5011MのAgロウ(72%Ag−Cu)を配置
した。更に、コバール(Ni−Co−Fe合金)からな
る金属製蓋体2.2を、第1図で説明したようにしてロ
ウ材上に配置した。こうして得られた第4図と同様の積
層体を、真空炉(2×10″″5Torr)中において
850℃で5分間加熱することにより、金属性蓋体2.
2をセラミックス筒状体の開口端面に接合した。
Next, on the paste application surface of the ceramic cylindrical body 1,
Ag wax (72% Ag-Cu) with a thickness of 5011M was placed. Furthermore, a metal lid body 2.2 made of Kovar (Ni-Co-Fe alloy) was placed on the brazing material as explained in FIG. The thus obtained laminate similar to that shown in FIG. 4 was heated at 850° C. for 5 minutes in a vacuum furnace (2×10″″5 Torr) to form a metallic lid 2.
2 was joined to the open end surface of the ceramic cylindrical body.

こうして得られた気密性セラミックス容器を、冷却後に
炉から取出して接合部の状態を調べた。
After cooling, the airtight ceramic container thus obtained was taken out of the furnace and the state of the joint was examined.

その結果、金属製蓋体2とセラミックス筒状体とを接合
しているロウ材層8は、メタライズされたセラミックス
面に向けて裾を引くように広がっており、第1図(B)
に示した良好な接合構造で強固に固定されていた。また
、この気密性セラミックス容器についてHeリーク試験
により接合部の気密性を評価したところ、Heリーク量
は10−10Torr・に! /see以下で、漏れは
認められなかった。
As a result, the brazing material layer 8 that joins the metal lid body 2 and the ceramic cylindrical body expands toward the metallized ceramic surface, as shown in FIG. 1(B).
It was firmly fixed with the good joint structure shown in . Furthermore, when the airtightness of the joint of this airtight ceramic container was evaluated using a He leak test, the amount of He leakage was 10-10 Torr. /see or less, no leakage was observed.

実施例2(気密性セラミックス容器の製造)第2図(A
)に示したように上面に高さ50gの凹凸を有し、且つ
外径5ON、内径40朋、厚さ1001lI4のドーナ
ツ状の′をへgコウ材薄板(72%Ag−Cu)を用意
した。また、外径50s、内径40M、高さBoaのA
ノコ03製セラミックス筒り体1を用意した。
Example 2 (Production of airtight ceramic container) Figure 2 (A
), a doughnut-shaped thin plate (72% Ag-Cu) with an unevenness of 50 g in height on its upper surface, an outer diameter of 5 mm, an inner diameter of 40 mm, and a thickness of 1001 mm was prepared. . Also, A with an outer diameter of 50s, an inner diameter of 40M, and a height of Boa.
A ceramic cylinder body 1 manufactured by Noko 03 was prepared.

上記セラミックス筒状体1の両端開口端面に、LKI/
cdだけのTi粉末を塗布した。このTi塗布面に前記
Agロウ材材板板配置した。更に、実施例1と同様にし
てNi−Fe合金からなる金属製蓋体2.2をロウ材薄
板上に配置し、真空炉(2X 10−5Torr)中に
おいて880℃で6分間加熱することにより、金属性蓋
体2,2をセラミックス筒状体の開口端面に接合した。
LKI/
Ti powder of only CD was applied. The Ag brazing material plate was placed on this Ti-coated surface. Furthermore, in the same manner as in Example 1, a metal lid body 2.2 made of Ni-Fe alloy was placed on a thin plate of brazing material, and heated at 880°C for 6 minutes in a vacuum furnace (2X 10-5 Torr). , the metallic lids 2, 2 were joined to the open end surface of the ceramic cylindrical body.

こうして得られた気密性セラミックス容器を、冷却後に
炉から取出して調べたところ、内部の真空度も高く、接
合状態も良好であった。
When the airtight ceramic container thus obtained was taken out from the furnace after cooling and examined, it was found that the internal vacuum degree was high and the bonding state was good.

実施例3(気密性セラミックス容器の製造)第2図(B
)に示したように、上面に高さ100xの凸部および該
凸部に設けられた貫通孔を有し、且つ外径40顛、内径
30m、厚さ100 uのドーナツ状を有するAgロウ
材材板板72%Ag−Cu)を用意した。また、外径4
0M、内径30M。
Example 3 (Production of airtight ceramic container) Figure 2 (B
), the Ag brazing material has a convex portion with a height of 100 x and a through hole provided in the convex portion on the upper surface, and has a donut shape with an outer diameter of 40 mm, an inner diameter of 30 m, and a thickness of 100 u. A wood board (72% Ag-Cu) was prepared. Also, outer diameter 4
0M, inner diameter 30M.

高さ40MのAノコ03製セラミックス筒り体1を用意
した。
A ceramic cylinder body 1 made of A-saw 03 and having a height of 40M was prepared.

上記セラミックス筒状体1の両端開口端面に、I It
g/ CdだけのTi粉末を塗布した。このTi塗布面
に前記Agロウ材材板板配置した。更に、実施例1と同
様にしてNi−Fe合金からなる金属製蓋体2,2をロ
ウ材薄板上に配置し、真空炉(2X 10−5Torr
)中において850℃で6分間加熱することにより、金
属性蓋体2,2をセラミックス筒状体の開口端面に接合
した。
I It
Ti powder with only g/Cd was applied. The Ag brazing material plate was placed on this Ti-coated surface. Furthermore, in the same manner as in Example 1, metal lids 2, 2 made of Ni-Fe alloy were placed on a thin plate of brazing material, and heated in a vacuum furnace (2X 10-5 Torr).
) by heating at 850° C. for 6 minutes, the metal lids 2, 2 were joined to the open end surface of the ceramic cylindrical body.

こうして得られた気密性セラミックス容器を、冷却後に
炉から取出して調べたところ、内部の真空度も高く、接
合状態も良好であった。
When the airtight ceramic container thus obtained was taken out from the furnace after cooling and examined, it was found that the internal vacuum degree was high and the bonding state was good.

参考例1 この参考例1及び次の参考例2では、第3図(A)のロ
ウ材薄板におけるバリア層32の効果を調べた。
Reference Example 1 In this Reference Example 1 and the following Reference Example 2, the effect of the barrier layer 32 in the brazing thin plate of FIG. 3(A) was investigated.

第3図(A)に示したように、4%Ti−B9%Ag−
Cuからなる厚さ504のAgロウ材層31と72%A
g−Cuからなる厚さ50.のAgロウ材層33の間に
、13%Cr−Feからなる厚さ50mのバリア層32
を設けたロウ材薄板を作製した。また、外径40M、内
径30u、高さ60IIIIIのA、I’203製セラ
ミックス筒状体1を用意した。
As shown in Figure 3(A), 4%Ti-B9%Ag-
A 504-thick Ag brazing material layer 31 made of Cu and 72% A
Made of g-Cu, thickness 50. A barrier layer 32 with a thickness of 50 m made of 13% Cr-Fe is placed between the Ag brazing material layers 33 of
A thin brazing material plate was prepared. In addition, a ceramic cylindrical body 1 made of A, I'203 and having an outer diameter of 40M, an inner diameter of 30u, and a height of 60III was prepared.

上記セラミックス筒状体1の開口端面に上記ロウ材薄板
を配置した。更に、表面にNLメツキを施したNi−F
e合金からなる金属製蓋体2,2をロウ材薄板上に配置
し、真空炉(2X10−5Torr)中において850
℃で10分間加熱することにより、金属性蓋体2,2を
セラミックス筒状体の開口端面に接合した。こうして得
られた気密性セラミックス容器を、冷却後に炉から取出
して調べたところ、接合面の全面に亙って良好に接合さ
れていた。
The thin plate of brazing material was placed on the open end surface of the ceramic cylindrical body 1. Furthermore, Ni-F with NL plating applied to the surface
The metal lids 2, 2 made of e-alloy were placed on a thin plate of brazing material, and heated at 850° C. in a vacuum furnace (2X10-5 Torr).
By heating at ℃ for 10 minutes, the metal lids 2, 2 were joined to the open end surface of the ceramic cylindrical body. When the airtight ceramic container thus obtained was taken out from the furnace after cooling and examined, it was found that the entire joint surface was well joined.

比較のために、1%Ti−71%Ag−Cuのみからな
る厚さ100 mのロウ材薄板を用い、それ以外は上記
と同様の条件で接合実験を行なった。その結果、部分的
に接合不良の箇所が存在していた。
For comparison, a bonding experiment was conducted using a 100 m thick thin plate of brazing material made of only 1% Ti-71% Ag-Cu, but under the same conditions as above. As a result, there were some parts with poor bonding.

この接合不良は、金属製蓋体2のNiメツキ層から拡散
したNiがロウ材中のTiと合金を形成したことによる
思われる。
This poor bonding appears to be due to Ni diffused from the Ni plating layer of the metal lid 2 forming an alloy with Ti in the brazing material.

参考例2 第3図(C)に示したように、厚さ40.の4%Ti−
89%Ag−Cuロウ材層31と、厚さ20gIRのM
oバリヤ層32と、厚さ401m72%で且つ下面にガ
ス抜き用の深さ204の凹部を形成したAg−Cuロウ
材層33とを順次積層し、ロウ材薄板を作製した。また
、外径50JIIJI!、内径40u、高さ60MのA
、f’203製セラミックス筒状体1と、42%Fe−
Ni製の金属性蓋体2を用意した。
Reference Example 2 As shown in FIG. 3(C), the thickness was 40. 4% Ti-
89%Ag-Cu brazing material layer 31 and 20g IR M
The o-barrier layer 32 and the Ag--Cu brazing material layer 33 having a thickness of 401 m and 72% and having a recessed portion of 204 depth for degassing formed on the lower surface were successively laminated to produce a thin brazing material plate. Also, the outer diameter is 50JIIJI! , inner diameter 40u, height 60M A
, f'203 ceramic cylindrical body 1 and 42% Fe-
A metallic lid body 2 made of Ni was prepared.

次に、第4図に示したようにしてセラミックス筒状体1
、ロウ材薄板および金属製蓋体2を配置し、真空炉(2
X10″″5Torr)中において850℃で10分間
加熱することにより、金属性蓋体2をセラミックス筒状
体の開口端面に接合した。
Next, as shown in FIG. 4, the ceramic cylindrical body 1 is
, a thin plate of brazing material and a metal lid 2 are placed, and a vacuum furnace (2
The metal lid body 2 was bonded to the open end surface of the ceramic cylindrical body by heating at 850° C. for 10 minutes in a vacuum chamber (X10″″5 Torr).

こうして得られた気密性セラミックス容器を炉から取出
して調べたところ、金属製蓋体2の位置が多少ズしてい
たにも拘らず、バリヤ層32の寄与により連続調が維持
されており、また気密性も良好に維持されていた。
When the airtight ceramic container thus obtained was taken out of the furnace and examined, it was found that although the position of the metal lid 2 was slightly misaligned, continuous tone was maintained due to the contribution of the barrier layer 32. Airtightness was also well maintained.

実施例4〜6 (Q空バルブの製造) この実施例では、第5図および第6図に示す真空バルブ
を製造した。これらの図において、第10図および第1
1図と同じ部分には同一の参照番号を付しである。
Examples 4 to 6 (Manufacture of Q empty valve) In this example, the vacuum valve shown in FIGS. 5 and 6 was manufactured. In these figures, Figures 10 and 1
The same parts as in Figure 1 are given the same reference numbers.

まず、外形123M%内径110M、高さ170 rt
mのAg203製セラミックス筒状体1を用意し、その
内面21を研磨仕上げした。研磨仕上げの程度は、夫々
0.1u(実施例4) 、0.5 ts (実施例5)
 、 lO!ER(実施例6)の表面粗度を持つように
調整した。
First, the outer diameter is 123M, the inner diameter is 110M, and the height is 170 rt.
A ceramic cylindrical body 1 made of Ag203 with a diameter of 1.5 mm was prepared, and its inner surface 21 was polished. The degree of polishing was 0.1 u (Example 4) and 0.5 ts (Example 5), respectively.
, lO! It was adjusted to have the surface roughness of ER (Example 6).

次いで、平均粒径3.5pのTi粉末を用意し、このT
i粉末を、研磨仕上げしたセラミックス筒状体内面21
の必要部分(アークシールド6を接合すべき部分)に均
一に塗布し、活性金属彼着層12を形成した。塗布量は
1151/dとし、塗布方法としては金属メツシュを通
して刷毛塗りする方法を用いた。しかし、必要部分以外
をマスキングした後、スパッタリング、真空蒸着又はイ
オンブレーティング等で付着させる方法を用いてもよい
Next, Ti powder with an average particle size of 3.5p was prepared, and this T
Ceramic cylindrical body inner surface 21 polished and finished with i powder
The active metal adhesion layer 12 was formed by uniformly coating the required portions (the portions to which the arc shield 6 is to be bonded). The coating amount was 1151/d, and the coating method was brush coating through a metal mesh. However, it is also possible to use a method of masking other than necessary portions and then depositing by sputtering, vacuum evaporation, ion blasting, or the like.

第2図に示したように、上記のTi塗布面21とSUS
製のアークシールド8に設けた凸部1oの間に、厚さ0
.2顛の銀ロウ11を介在させてロウ付けを行なった。
As shown in Fig. 2, the above Ti coated surface 21 and the SUS
There is a thickness of 0 between the protrusions 1o provided on the arc shield 8 made of
.. Brazing was performed with two pieces of silver solder 11 interposed.

このロウ付けは、真空度2x10 ”” Torr、温
度850℃、時間6分の条件で行なった。
This brazing was carried out under the conditions of a vacuum degree of 2 x 10 '' Torr, a temperature of 850° C., and a time of 6 minutes.

その結果、何れの実施例においても、アークシールドは
ガタもなく完全に接続された。
As a result, the arc shields were completely connected without play in any of the examples.

また、上記実施例4〜6で得た真空バルブに対し、昇降
法によるインパルス耐電圧試験を行なった。その結果、
第10図に示した従来の真空バルブのインパルス耐電圧
値を100%とした場合、何れも130%と高い値が得
られた。この結果は、セラミックス筒状体の内面に凸部
10を設けなかったことと、シールドの完全化との相乗
効果によるものである。
Further, the vacuum valves obtained in Examples 4 to 6 above were subjected to an impulse withstand voltage test using a lifting method. the result,
When the impulse withstand voltage value of the conventional vacuum valve shown in FIG. 10 is taken as 100%, a high value of 130% was obtained in each case. This result is due to the synergistic effect of not providing the convex portion 10 on the inner surface of the ceramic cylindrical body and perfecting the shield.

実施例7(真空バルブの製造) この実施例では、アークシールド6とセラミックス筒状
体1との間に、第7図に示した接合構造を形成した。こ
の場合、アークシールド6には第6図における凸部10
を設けない。その代り、SUS製アークシールド6の接
合部とセラミック筒状体の内面21との間に、SUS製
のスペーサ13と、銀ロウ14とを介在させた。
Example 7 (Manufacture of Vacuum Valve) In this example, the joint structure shown in FIG. 7 was formed between the arc shield 6 and the ceramic cylindrical body 1. In this case, the arc shield 6 has a convex portion 10 in FIG.
is not provided. Instead, a spacer 13 made of SUS and a silver solder 14 were interposed between the joint portion of the SUS arc shield 6 and the inner surface 21 of the ceramic cylindrical body.

なお、研磨仕上げによるセラミック筒状体内面21の表
面素度は0.5pとした。また、その接合予定部分には
、前記実施例4〜6と同様に、活性金属粉12として粒
径3.5pの平均粒径を有するTi粉を1η/iだけ付
性させて活性金属層12を形成した。
The surface roughness of the inner surface 21 of the ceramic cylindrical body after polishing was set to 0.5p. Further, as in Examples 4 to 6, Ti powder having an average particle size of 3.5p is applied to the part to be joined by 1η/i as the active metal powder 12 to form an active metal layer 12. was formed.

これらを真空度2×10″″5Torr、温度850℃
、時間6分なる条件で、前記銀ロウ11及び14を溶融
させて、活性金属粉12を介してセラミック部材1の内
面21との接合を行なった。
These were placed at a vacuum level of 2 x 10''5 Torr and a temperature of 850°C.
The silver waxes 11 and 14 were melted and bonded to the inner surface 21 of the ceramic member 1 via the active metal powder 12 under conditions of , 6 minutes.

得られた真空バルブに対し、1500kg[’の衝撃荷
重を10万回繰り返し与えたが、アークシールドの移動
或いはガタの発生はなかった。
An impact load of 1500 kg[' was repeatedly applied 100,000 times to the obtained vacuum valve, but no movement or rattling of the arc shield occurred.

また、インパルス耐電圧試験(昇降法)による耐電圧試
験を行なったところ、第10図の従来の真空バルブのイ
ンパルス耐電圧値を100%とじて140%の値が得ら
れた。
Further, when a withstand voltage test was conducted using an impulse withstand voltage test (elevating method), a value of 140% was obtained, taking the impulse withstand voltage value of the conventional vacuum valve shown in FIG. 10 as 100%.

実施例8.9(真空バルブの製造) これらの実施例では、セラミックス筒状体1とアークシ
ールド6との接合ににおいて、応力緩和機構を設けた。
Example 8.9 (Manufacture of Vacuum Valve) In these examples, a stress relaxation mechanism was provided in the bonding between the ceramic cylindrical body 1 and the arc shield 6.

即ち、実施例8では、セラミックス筒状体1とアークシ
ールド6との間に応力緩和部材15を介在させた。また
、実施例9ではアークシールド6の一部に凸部16を設
け、該凸部16に応力緩和作用をもたせた。
That is, in Example 8, the stress relaxation member 15 was interposed between the ceramic cylindrical body 1 and the arc shield 6. Further, in Example 9, a convex portion 16 was provided in a part of the arc shield 6, and the convex portion 16 was given a stress relaxation effect.

セラミック筒状体1とアークシールド6とでは熱膨張率
が約1桁異なるため、ロウ付げにおける加熱の方法、条
件によってはアークシールドに熱歪みが生じる場合があ
る。そこで、第8図または第9図の構造によって熱応力
を緩和することとしたものである。
Since the thermal expansion coefficients of the ceramic cylindrical body 1 and the arc shield 6 differ by about one order of magnitude, thermal distortion may occur in the arc shield depending on the heating method and conditions during brazing. Therefore, it was decided to alleviate the thermal stress by using the structure shown in FIG. 8 or 9.

なお、上記の応力緩和機構を採用した点を除き、全て実
施例4〜P′)と同と良性でアークシールドの接合を行
ない、真空バ、艮、、 S、、’ k製造した〇得られ
た真空バルブに)1・、・て前記と同様のインパルス耐
電圧試験を行なったところ、実施例8では135%、実
施例9では140%の値が得られた。
Incidentally, except for the adoption of the stress relaxation mechanism described above, all the arc shields were bonded with the same benign properties as in Examples 4 to P'), and the vacuum bar, S,,'k was manufactured. When the same impulse withstand voltage test as above was carried out on the vacuum valves (1) and 2), a value of 135% in Example 8 and 140% in Example 9 was obtained.

また、何れも真空バルブもアークシールドのガタはなか
った。
In addition, there was no play in the arc shield of any of the vacuum valves.

実施例10.11(真空バルブの製造)実施例4〜9お
よび比較例1では、何れも平均粒径が3.5pの活性金
属粉を用いている。そこで、活性金属の粒径を変えてそ
の影響を調べた。
Examples 10 and 11 (Manufacture of vacuum valve) In Examples 4 to 9 and Comparative Example 1, activated metal powder having an average particle size of 3.5p is used. Therefore, we investigated the effect of changing the particle size of the active metal.

即ち、平均粒径が1.z(実施例10)、10m(実施
例11)の活性金属粉を用い、それ以外は全て実施例7
と同様に行なった。
That is, the average particle size is 1. z (Example 10), 10m (Example 11) active metal powder was used, and everything else was Example 7.
I did the same thing.

その結果、平均粒径がlu!R(実施例10)、10p
(実施例11)の場合の何れにおいても、実施例7(3
,5m)のときと同様の良好な接合が見らの製造) 活性金属粉の塗布量の影響を調べるため、その塗布量を
0.O1η/d(比較例3) 、0.1 #/Cd(実
施例12) 、1Oti/Crj (実施例13)、5
01E/cd(比較例4)とし、それ以外は全て実施例
7と同様に行なった。
As a result, the average particle size is lu! R (Example 10), 10p
In any case of (Example 11), Example 7 (3
In order to investigate the effect of the amount of active metal powder applied, the amount of application was changed to 0.5m. O1η/d (Comparative Example 3), 0.1 #/Cd (Example 12), 1Oti/Crj (Example 13), 5
01E/cd (Comparative Example 4), and everything else was carried out in the same manner as in Example 7.

その結果、比較例3 (0,OL四/cri)ではアー
クシールドとセラミック部材との接合が充分に行なわれ
ず、衝撃を与えるとシールドの移動が見られた。また、
インパルス耐電圧試験でも耐圧値にバラツキがみられた
。比較例4 (506/d)でも部分的に接合の不良な
箇所がみられ、良好な接合は得られなかった。その結果
、インパルス耐圧値にもバラツキが認められた。
As a result, in Comparative Example 3 (0, OL4/cri), the arc shield and the ceramic member were not sufficiently bonded, and movement of the shield was observed when an impact was applied. Also,
Variations in withstand voltage values were also observed in impulse withstand voltage tests. Comparative Example 4 (506/d) also had some poor bonding points, and good bonding could not be obtained. As a result, variations were observed in the impulse withstand voltage values.

これに対し、実施例12. 13 (0,1η/d。In contrast, Example 12. 13 (0,1η/d.

106/cd)ではアークシールドの移動もなく、イン
パルス耐圧値の変動も認められなかった。
106/cd), there was no movement of the arc shield and no fluctuation in the impulse withstand voltage value was observed.

実施例14 この実施例では、活性金属粉末としてTi:Zr−1:
1の混合粉末を用い、それ以外は全て実施例7と同様に
行なった。その結果、アークシールドの移動は認められ
ず、インパルス耐電圧特性も130%と良好であった。
Example 14 In this example, Ti:Zr-1:
Example 7 was carried out in the same manner as in Example 7 except that the mixed powder of No. 1 was used. As a result, no movement of the arc shield was observed, and the impulse withstand voltage characteristics were as good as 130%.

なお、上記実施例4〜14及び比較例1〜4の結果を、
下記第1表に纏めて示す。
In addition, the results of Examples 4 to 14 and Comparative Examples 1 to 4 are as follows:
They are summarized in Table 1 below.

[発明の効果] 以上詳述したように、本発明によれば、セラミックス筒
状体の開口端面に予めメタライジングを施すことなく、
該開口端面に金属性蓋体の周縁部を端面接合することに
より、充分な接合強度と高い気密性保持能をもった気密
性セラミックス容器を製造することができる。また、こ
の気密性セラミックス容器の内部にアークシールドを固
定した真空バルブを製造するに際し、簡便な方法で且つ
充分な強度でアークシールドを接合し、耐電圧特性の安
定化した真空バルブを製造することができる。
[Effects of the Invention] As described in detail above, according to the present invention, the opening end surface of the ceramic cylindrical body is not subjected to metallization in advance;
By end face-bonding the peripheral edge of the metal lid to the opening end face, an airtight ceramic container having sufficient bonding strength and high ability to maintain airtightness can be manufactured. In addition, when manufacturing a vacuum valve with an arc shield fixed inside this airtight ceramic container, the arc shield can be bonded with sufficient strength in a simple manner to manufacture a vacuum valve with stabilized withstand voltage characteristics. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による気密性セラミックス容器の製造
方法を説明するための図、第2図および第3図は、本発
明において好適に使用することができるロウ材薄板を示
す図。第4図は、第3図(C)のロウ材薄板の使用法を
示す図、第5図および第6図は、本発明の一実施例によ
り得られる真空バルブの一例を示す断面図、第7図〜第
9図は、夫々本発明の他の実施例により得られる真空2
、A 、j(1)ああや8オユウ01、讐。およ。第リ
レ図は、夫々従来の真空バルブの断面図である。 1・・・セラミックス筒状体、2・・・金属性蓋体、3
a・・・固定接点、3b・・・可動接点、4a・・・固
定端子、4b・・・可動端子、5a・・・固定導電軸、
5b・・・可動導電軸、6・・・アークシールド、7・
・・ベローズ、8・・・金属ロウ、10・・・アークシ
ールドの凸部、11.14・・・金属ロウ層、12・・
・活性金属粉層、13・・・スペーサ部材、21・・・
セラミックス筒状体の内面、15.1.6・・・応力緩
和部材、31.33・・・金属ロウ層、32・・・バリ
ヤ層出願人代理人  弁理士 鈴江武彦 第1図 (A)              (B)第2図 (A) 第4図 (C) 第3図 第5図 第6図 第7図 第8図 第9図 b 第10図
FIG. 1 is a diagram for explaining the method of manufacturing an airtight ceramic container according to the present invention, and FIGS. 2 and 3 are diagrams showing a thin plate of brazing material that can be suitably used in the present invention. FIG. 4 is a diagram showing how to use the thin brazing material plate of FIG. 3(C), and FIGS. 7 to 9 show vacuum 2 obtained by other embodiments of the present invention, respectively.
, A , j (1) Oh ya 8 Oyuu 01, enemy. Oyo. The respective figures are cross-sectional views of conventional vacuum valves. 1... Ceramic cylindrical body, 2... Metallic lid, 3
a... Fixed contact, 3b... Movable contact, 4a... Fixed terminal, 4b... Movable terminal, 5a... Fixed conductive shaft,
5b...Movable conductive shaft, 6...Arc shield, 7.
... Bellows, 8... Metal solder, 10... Convex portion of arc shield, 11.14... Metal solder layer, 12...
・Active metal powder layer, 13... Spacer member, 21...
Inner surface of ceramic cylindrical body, 15.1.6... Stress relaxation member, 31.33... Metal brazing layer, 32... Barrier layer Applicant's representative Patent attorney Takehiko Suzue Figure 1 (A) ( B) Figure 2 (A) Figure 4 (C) Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 b Figure 10

Claims (12)

【特許請求の範囲】[Claims] (1)セラミックス筒状体の開口端面に、Ti及び/又
はZrからなる活性金属を0.1〜10mg/cm^2
の量だけ被着させることにより活性金属層を形成する工
程と、該活性金属層上に金属ロウ層を載置する工程と、
前記セラミックス筒状体の開口部を封着するための金属
製蓋体を、その周縁部端面が前記金属ロウ層に接触する
ように配置する工程と、加熱により前記金属ロウ層を溶
融させ、前記金属製蓋体を前記セラミックス筒状体の開
口端面にロウ付けする工程とを具備したことを特徴とす
る気密性セラミックス容器の製造方法。
(1) 0.1 to 10 mg/cm^2 of active metal consisting of Ti and/or Zr is applied to the open end surface of the ceramic cylindrical body.
forming an active metal layer by depositing an amount of; placing a metal brazing layer on the active metal layer;
a step of arranging a metal lid for sealing the opening of the ceramic cylindrical body so that its peripheral edge end surface contacts the metal solder layer; and melting the metal solder layer by heating; A method for manufacturing an airtight ceramic container, comprising the step of brazing a metal lid to the open end surface of the ceramic cylindrical body.
(2)前記活性金属を被着するために、前記活性金属の
粉末を含むペーストを塗布する方法を用いることを特徴
とする請求項第1項に記載の気密性セラミックス容器の
製造方法。
(2) The method for manufacturing an airtight ceramic container according to claim 1, characterized in that in order to deposit the active metal, a method of applying a paste containing powder of the active metal is used.
(3)前記活性金属を被着するために、粘着材を塗布し
た前記セラミックス筒状体の開口端面に、前記活性金属
の粉末を散布して付着させる方法を用いることを特徴と
する請求項第1項に記載の気密性セラミックス容器の製
造方法。
(3) In order to adhere the active metal, a method is used in which powder of the active metal is spread and adhered to the open end surface of the ceramic cylindrical body coated with an adhesive material. A method for manufacturing an airtight ceramic container according to item 1.
(4)前記金属ロウ層として、上面には前記セラミック
ス容器の開口端面の幅方向に沿って凸部を設け、且つ下
面は平滑な金属ロウ材薄板を用いることを特徴とする請
求項第1項〜第3項の何れか1項に記載の気密性セラミ
ックス容器の製造方法。
(4) As the metal brazing layer, a convex portion is provided on the upper surface along the width direction of the opening end surface of the ceramic container, and the lower surface is a thin plate of metal brazing material that is smooth. The method for manufacturing an airtight ceramic container according to any one of Items 1 to 3.
(5)前記金属ロウ層として、前記セラミックス容器の
開口端面の幅方向に沿って貫通孔を設けた金属ロウ材薄
板を用いることを特徴とする請求項第4項に記載の気密
性セラミックス容器の製造方法。
(5) The airtight ceramic container according to claim 4, characterized in that the solder metal layer is a thin plate of brazing metal having through holes provided along the width direction of the open end surface of the ceramic container. Production method.
(6)前記金属ロウ層として、二層の金属ロウ層の間に
、これら金属ロウ層よりも融点の高い金属からなるバリ
ア層を介在させた積層構造の金属ロウ材薄板を用いるこ
とを特徴とする請求項第1項〜第5項の何れか1項に記
載の気密性セラミックス容器の製造方法。
(6) The metal solder layer is characterized by using a metal solder thin plate having a laminated structure in which a barrier layer made of a metal having a higher melting point than these metal solder layers is interposed between two metal solder layers. The method for manufacturing an airtight ceramic container according to any one of claims 1 to 5.
(7)請求項第1項〜第6項の何れか1項に記載の方法
により製造された気密性セラミックス容器。
(7) An airtight ceramic container manufactured by the method according to any one of claims 1 to 6.
(8)請求項第7項の気密性セラミックス容器と、該容
器の外部から内部に貫通し且つ対抗して配置されると共
に、少なくとも一方を軸方向に移動可能とすることによ
り開閉可能とされた一対の接点軸と、該一対の接点軸夫
々の先端に設けられた金属製の接点部材と、前記真空容
器内の真空を維持しつつ前記接点軸の軸方向の移動を可
能とするためのベローズと、前記接点部材を取囲んで配
置され、接点部材から蒸発した金属の前記セラミックス
筒状体内面への付着を防止する金属製のアークシールド
とを具備した真空バルブを製造するに際し、前記セラミ
ックス筒状体の内面を表面粗度が0.1〜10μmとな
るように予め研磨仕上げする工程と、Ti及び/又はZ
rからなる平均粒径が0.1〜10μm以下の活性金属
の粉末を0.1〜10mg/cm^2の量だけ被着させ
ることにより活性金属層を形成する工程と、該活性金属
層上に金属ロウ層を載置する工程と、前記アークシール
ドを前記金属ロウ層に接触するように配置する工程と、
加熱により前記金属ロウ層を溶融させ、前記アークシー
ルドを前記セラミックス筒状体の内面にロウ付けする工
程とを具備したことを特徴とする真空バルブの製造方法
(8) The airtight ceramic container according to claim 7, which penetrates from the outside to the inside of the container and is disposed opposite to the container, and is made openable and closable by making at least one movable in the axial direction. a pair of contact shafts, a metal contact member provided at the tip of each of the pair of contact shafts, and a bellows for enabling axial movement of the contact shafts while maintaining a vacuum in the vacuum container. and a metal arc shield disposed surrounding the contact member to prevent metal evaporated from the contact member from adhering to the inner surface of the ceramic cylinder. A step of polishing the inner surface of the shaped body in advance so that the surface roughness becomes 0.1 to 10 μm, and
a step of forming an active metal layer by depositing active metal powder having an average particle size of 0.1 to 10 μm or less in an amount of 0.1 to 10 mg/cm^2, and on the active metal layer; a step of placing a metal solder layer on the metal solder layer, and a step of arranging the arc shield so as to be in contact with the metal solder layer,
A method for manufacturing a vacuum valve, comprising the steps of melting the metal brazing layer by heating and brazing the arc shield to the inner surface of the ceramic cylindrical body.
(9)前記活性金属を被着するために、前記活性金属の
粉末を含むペーストを塗布する方法を用いることを特徴
とする請求項第8項に記載の真空バルブの製造方法。
(9) The method for manufacturing a vacuum valve according to claim 8, wherein a method of applying a paste containing powder of the active metal is used to deposit the active metal.
(10)前記活性金属を被着するために、粘着剤を塗布
した前記セラミックス筒状体の内面に、前記活性金属の
粉末を散布して付着させる方法を用いることを特徴とす
る請求項第8項に記載の気密性真空バルブの製造方法。
(10) In order to adhere the active metal, a method is used in which powder of the active metal is spread and adhered to the inner surface of the ceramic cylindrical body coated with an adhesive. A method for manufacturing an airtight vacuum valve as described in .
(11)前記アークシールドに応力緩和部材を設け、該
応力緩和部材と前記セラミックス筒状体の内面とを接合
することを特徴とする請求項第8項〜第10項の何れか
1項に記載の真空バルブの製造方法。
(11) The arc shield is provided with a stress relaxation member, and the stress relaxation member and the inner surface of the ceramic cylindrical body are bonded to each other. A method of manufacturing a vacuum valve.
(12)請求項第8項〜第11項の何れか1項に記載の
方法により製造された真空バルブ。
(12) A vacuum valve manufactured by the method according to any one of claims 8 to 11.
JP63049758A 1987-03-02 1988-03-04 Method of manufacturing airtight ceramic container Expired - Fee Related JP2752079B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP88302967A EP0286335B2 (en) 1987-04-02 1988-03-31 Air-tight ceramic container
DE3888380T DE3888380T2 (en) 1987-04-02 1988-03-31 Airtight ceramic container.
US07/176,752 US4917642A (en) 1987-04-02 1988-04-01 Air-tight ceramic container
KR1019880003756A KR910001350B1 (en) 1987-03-02 1988-04-02 Ceramic vessel and method for producing thereof
US07/419,029 US5056702A (en) 1987-04-02 1989-10-10 Method of manufacturing a semiconductor device
KR1019900021744A KR910001351B1 (en) 1987-04-02 1990-12-24 Method for producing vacuum valve used ceramic vessel

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP62-79618 1987-04-02
JP7961887 1987-04-02
JP62-172845 1987-07-13
JP17284387 1987-07-13
JP62-172843 1987-07-13
JP17284587 1987-07-13

Publications (2)

Publication Number Publication Date
JPH01111784A true JPH01111784A (en) 1989-04-28
JP2752079B2 JP2752079B2 (en) 1998-05-18

Family

ID=27303064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63049758A Expired - Fee Related JP2752079B2 (en) 1987-03-02 1988-03-04 Method of manufacturing airtight ceramic container

Country Status (2)

Country Link
JP (1) JP2752079B2 (en)
KR (1) KR910001350B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012206A1 (en) * 2003-08-02 2005-02-10 Brazing Co., Ltd. Active binder for brazing, part for brazing employing the binder, brazed product obtained with the binder, and silver brazing material
JP2007331029A (en) * 2000-11-20 2007-12-27 Metglas Inc Brazing foil preform and its use in manufacture of heat exchanger
WO2014156093A1 (en) * 2013-03-27 2014-10-02 パナソニック株式会社 Ceramic-metal bonded object and process for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101976520B1 (en) * 2019-01-10 2019-05-10 주식회사 유성엔지니어링 Evacuator for tank and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133761U (en) * 1975-04-18 1976-10-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133761U (en) * 1975-04-18 1976-10-28

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331029A (en) * 2000-11-20 2007-12-27 Metglas Inc Brazing foil preform and its use in manufacture of heat exchanger
JP2012187637A (en) * 2000-11-20 2012-10-04 Metglas Inc Preform for use in manufacture of shell and tube type heat exchanger
WO2005012206A1 (en) * 2003-08-02 2005-02-10 Brazing Co., Ltd. Active binder for brazing, part for brazing employing the binder, brazed product obtained with the binder, and silver brazing material
JPWO2005012206A1 (en) * 2003-08-02 2007-11-22 株式会社ブレイジング Brazing active binder, brazing parts and brazing product using the binder, and silver brazing material
JP4576335B2 (en) * 2003-08-02 2010-11-04 株式会社ブレイジング Brazing active binder and method for producing brazing product using the binder
WO2014156093A1 (en) * 2013-03-27 2014-10-02 パナソニック株式会社 Ceramic-metal bonded object and process for producing same
JP2014189450A (en) * 2013-03-27 2014-10-06 Panasonic Corp Ceramic-metal joined body and method for manufacturing the same

Also Published As

Publication number Publication date
JP2752079B2 (en) 1998-05-18
KR880012502A (en) 1988-11-28
KR910001350B1 (en) 1991-03-04

Similar Documents

Publication Publication Date Title
US4917642A (en) Air-tight ceramic container
US4624404A (en) Method for bonding ceramics and metals
JP2003212669A (en) Joined product of different kinds of materials and its manufacturing process
US3793705A (en) Process for brazing a magnetic ceramic member to a metal member
JPH01111784A (en) Production of airtight ceramic vessel
JPH02208274A (en) Composition for metallizing ceramic surface, surface-metallizing method and surface-metallized product
JP2760987B2 (en) Joining method of ceramics and metal
KR910001351B1 (en) Method for producing vacuum valve used ceramic vessel
JP3302121B2 (en) Manufacturing method of vacuum valve
JP2642386B2 (en) Vacuum valve and method of manufacturing the same
US11241752B2 (en) Method for eliminating runout of braze filler metal during active brazing
JPH03254030A (en) Joining method for vacuum valve and vacuum valve
JPH06239668A (en) Soldering material for joining and its production
JPH0779014B2 (en) Vacuum valve manufacturing method
EP1300377B1 (en) Process for producing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel
JP2755659B2 (en) Vacuum valve
JPH0749152B2 (en) Method for manufacturing envelope of rectifying element
JPH01264127A (en) Manufacture of vacuum valve
JPH049752B2 (en)
JPH10255606A (en) Manufacture of vacuum valve
JPH06183851A (en) Soldering pretreatment of ceramic
JPH02252682A (en) Metallization of ceramic and bonding of ceramic
JPH02208957A (en) Electronic equipment sealing material
JPH08171839A (en) Manufacture of vacuum bulb
JPS6270284A (en) Metallized silicon carbide ceramics body and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees