JPH02252682A - Metallization of ceramic and bonding of ceramic - Google Patents

Metallization of ceramic and bonding of ceramic

Info

Publication number
JPH02252682A
JPH02252682A JP7126689A JP7126689A JPH02252682A JP H02252682 A JPH02252682 A JP H02252682A JP 7126689 A JP7126689 A JP 7126689A JP 7126689 A JP7126689 A JP 7126689A JP H02252682 A JPH02252682 A JP H02252682A
Authority
JP
Japan
Prior art keywords
ceramic
ceramics
vacuum
paste
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7126689A
Other languages
Japanese (ja)
Inventor
Yuichi Taniguchi
裕一 谷口
Shogo Konya
省吾 紺谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7126689A priority Critical patent/JPH02252682A/en
Publication of JPH02252682A publication Critical patent/JPH02252682A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide the title metallization intended for improving vacuum sealability by heating and baking in a vacuum or an inert gas atmosphere a ceramic coated with a specific paste followed by baking in a mixed atmosphere containing oxygen. CONSTITUTION:Active metal composition powder comprising Ag, Cu and Ti is incorporated with (A) 1-25wt.% of at least two metals selected from Al, Si, Pb, Ba, Zn, Bi, Cd and Tl, (B) an organic binder and (C) an oil to prepare a paste. Thence, the surface of a ceramic is either coated with this paste, or a ceramic and a second ceramic or the former ceramic and a metal plate are brought to mutual contact through said paste, followed by heating and baking in a vacuum or an inert gas atmosphere at temperatures not lower than the eutectic point of the active metal (800-900 deg.C) and then further baking in a 10-1000ppm oxygen contg. mixed atmosphere of N2, He or Ar at temperatures >=500 deg.C but not higher than the above baking temperature for 5-60min.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミックスのメタライズ法及び接合法に関す
るものであり、特に真空封止性が必要な機器におけるセ
ラミックスとセラミックス、セラミックスと金属を、密
接強固に接合するためのメタライジング及び接合法に係
るものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a ceramic metallization method and a joining method, and in particular, it is used to closely and firmly bond ceramics and ceramics, and ceramics and metals in equipment that requires vacuum sealability. This relates to metallizing and bonding methods for bonding.

(従来の技術) 従来のセラミックスとセラミックス、またはセラミック
スと金属を接合する際には、AgとCuの合金に数%の
T1を添加した金属と有機溶媒からなるペーストを印刷
し、これを、真空中の所定温度に保持1−で接合するい
わゆる活性金属法が多く用いられている。しかし、この
方法は、界面の真空封止性が悪く、接合した部品の内部
を真空に保持して使用する場合には、この方法は、−適
用できない欠点があった。
(Prior art) When conventionally bonding ceramics to ceramics or ceramics to metals, a paste consisting of a metal and an organic solvent in which several percent of T1 is added to an Ag and Cu alloy is printed, and this is applied in a vacuum. The so-called active metal method, in which bonding is performed while holding the metal at a predetermined temperature (1-), is often used. However, this method has a drawback that the vacuum sealability of the interface is poor, and this method cannot be applied when the inside of the bonded parts is kept in a vacuum.

一方、真空封止性が要求される部品を接合する場合、一
般にMo−Mn法または高融点金属法とよばれる特殊な
接合方法が用いられている。しかし、この方法は、工程
が非常に複雑である。すなわち、この一般的な方法とし
て、まずセラミックスの表面に、MoとMnと有機溶媒
からなるペーストを印刷し、それを1400℃以上のN
2とN2の混合雰囲気中に保持してメタライズしたのち
、Nlメツキを行う。さらに、Nlを安定に固着するた
め、真空中900℃でシンタリングを行う。次にメタラ
イズされたセラミックスを金属に接合させるため、メタ
ライズ面にろう材を塗布し、これをH2中800℃に保
持してろう付けを行う。
On the other hand, when joining parts that require vacuum sealability, a special joining method called the Mo-Mn method or the high melting point metal method is generally used. However, this method requires very complicated steps. That is, as a general method, a paste consisting of Mo, Mn, and an organic solvent is first printed on the surface of the ceramic, and then it is exposed to N at a temperature of 1400°C or higher.
After being held in a mixed atmosphere of 2 and N2 and metalized, Nl plating is performed. Furthermore, in order to stably fix Nl, sintering is performed in vacuum at 900°C. Next, in order to bond the metallized ceramic to metal, a brazing material is applied to the metallized surface, and brazing is performed by holding this at 800° C. in H2.

このように、活性金属法では、真空封止性という特性を
満足せず、また、Mo−Mn法では、工程が非常に長く
、かつメタライズ温度が高いというそれぞれの問題を有
していた。
As described above, the active metal method does not satisfy the property of vacuum sealability, and the Mo-Mn method has problems such as a very long process and a high metallization temperature.

(発明が解決しようとする課題) 本発明は、真空スイッチ、電子レンジなどの器械におい
て、真空封止性が要求されるセラミックス−セラミック
ス或はセラミックス−金属の接合を、より簡便な方法で
提供することを目的とするものであって、前述した活性
金属法を改良する簡単な工程を採用することにより、M
o −Mn法によって得られる封止性と同等またはそれ
以上の性能をもつようなメタライジング法及びその接合
法を提供するものである。
(Problems to be Solved by the Invention) The present invention provides a simpler method for joining ceramics-ceramics or ceramics-metal, which requires vacuum sealability, in devices such as vacuum switches and microwave ovens. By adopting a simple process that improves the active metal method described above, M
The object of the present invention is to provide a metallizing method and a joining method thereof that have performance equivalent to or better than the sealing property obtained by the o-Mn method.

(課題を解決するための手段) 本発明はs Ag *  Cu 、 T lなどからな
る活性金属組成粉末に、Ap、Sl、Pb、Ba、Zn
(Means for Solving the Problems) The present invention provides active metal composition powder consisting of sAg*Cu, Tl, etc., with Ap, Sl, Pb, Ba, Zn.
.

Bi、Cd及びTflのうちの少くとも2種の金属を加
え、これに有機バインダーとオイルを添加して形成した
ペーストを、セラミックス面に塗布し、その後真空また
は不活性ガス雰囲気中にて加熱・焼成し、冷却後または
引き続き工程で、酸素をlO〜11000pp含んだ窒
素(N2)、ヘリウム(He)またはアルゴン(Ar)
の単独または混合雰囲気中で、500℃以上乃至前記焼
成温度以下の範囲で焼成してメタライジングすること、
及び前記ペーストをセラミックスとセ”ラミックス或は
金属の間に介在させてセラミックスとセラミックス或は
金属を当接し、その後前記した2段の処理を行ってセラ
ミックスとセラミックス或はセラミックスと金属を接合
することを要旨とするものである。
A paste formed by adding at least two metals of Bi, Cd and Tfl, an organic binder and oil is applied to the ceramic surface, and then heated and heated in a vacuum or an inert gas atmosphere. After firing and cooling or in subsequent steps, nitrogen (N2), helium (He) or argon (Ar) containing 10 to 11000 pp of oxygen is added.
Metallizing by firing in a range from 500 ° C. or higher to the firing temperature or lower in an atmosphere of alone or in a mixture of
The paste is interposed between ceramics and ceramics or metals, and the ceramics and ceramics or metals are brought into contact with each other, and then the two-stage process described above is performed to join the ceramics and ceramics or the ceramics and metals. The gist of this is that

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

従来、セラミックスと金属の接合に用いられている活性
金属法は、酸素に対して活性な金属であるTi 、Zr
、V、Nb等と、セラミックスとの界面における反応を
利用する接合法である。しかし、この方法による接合界
面には、ガスが通過するミクロな間隙が存在している。
The active metal method conventionally used for joining ceramics and metals uses Ti and Zr, which are metals active against oxygen.
This is a bonding method that utilizes the reaction at the interface between , V, Nb, etc., and ceramics. However, at the bonding interface formed by this method, there are microscopic gaps through which gas passes.

これは、真空封止性を要求される部材にはとうてい適用
できない。
This is hardly applicable to members that require vacuum sealability.

すなわち、例えばヘリウムリーク量をみても、I X 
LO−3torrfI/秒以下に保持できる場合が非常
に少くない。本発明者らは、前記ミクロ間隙に着眼し、
この間隙を成形しない方法として、接合温度で溶融する
ガラスの粉末を活性金属に添加し、間隙をガラスで充填
する方法を検討した。しかし、この方法では、接合強度
が得られず、また焼成温度や、混合比率を変えても、満
足を得る接合強度を得ることができなかった。このこと
は、ガラス粉末がT1等の活性金属により、還元されて
しまうことが原因であることがわかった。
In other words, if we look at the amount of helium leak, for example, I
There are very few cases where it is possible to maintain LO-3 torrfI/sec or less. The present inventors focused on the micro gap,
As a method that does not mold this gap, we investigated a method in which glass powder that melts at the bonding temperature is added to the active metal and the gap is filled with glass. However, with this method, it was not possible to obtain a satisfactory bonding strength, and even if the firing temperature and the mixing ratio were changed, a satisfactory bonding strength could not be obtained. It was found that this was caused by the glass powder being reduced by active metals such as T1.

そこで本発明者らは、活性金属が反応する時期と、ガラ
スが間隙を充填する時期を分離し、活性金属の反応工程
ではTiに還元されない状態に保持し、その後、間隙充
填工程を実施してガラスとなる雰囲気に制御することに
より、Mo −Mn法に匹敵する高真空封W性を有する
接合部が得られることがわかり、本発明を完成するに至
った。
Therefore, the present inventors separated the period in which the active metal reacts and the period in which the glass fills the gap, held the active metal in a state in which it was not reduced to Ti in the reaction process, and then performed the gap filling process. It was found that by controlling the atmosphere to form a glass, a joint having high vacuum sealing properties comparable to the Mo-Mn method could be obtained, and the present invention was completed.

本発明の対象とするセラミックスは、酸化物系、窒化物
系、その他従来用いられている何れのものでもよい。接
合材となる活性金属としては、Ag −Cu−Ti系で
の粉末が(例えば、Ag:70vt%、  Cu:28
vL%、 Ti:2wt、%)であり、これも活性金属
法に通常用いられているものであって、これに関しては
特別な限定はない。本発明においては、この活性金属粉
末にAl、Sl、−Pb。
The ceramics targeted by the present invention may be oxide-based, nitride-based, or any other conventionally used ceramics. The active metal used as the bonding material is Ag-Cu-Ti powder (for example, Ag: 70vt%, Cu: 28vt%).
vL%, Ti:2wt,%), which is also commonly used in the active metal method, and there are no particular limitations regarding this. In the present invention, this active metal powder contains Al, Sl, and -Pb.

Ba、Zr、Bi、Cd及びTflのうちの少くとも2
種の金属を添加する。これらの金属はガラス化したとき
に接合材中のガラス濃度が1〜15%好ましくは3〜5
26となるように配合する。また2踵以上選択するのは
酸化物として単独では比較的融点の高いものであっても
、2種以上配合することにより、その融点を下げること
ができるからである。
At least two of Ba, Zr, Bi, Cd and Tfl
Add seed metal. When these metals are vitrified, the glass concentration in the bonding material is 1 to 15%, preferably 3 to 5%.
Blend so that it becomes 26. The reason why two or more oxides are selected is that even if the oxide alone has a relatively high melting point, by blending two or more of them, the melting point can be lowered.

この2以上のガラス組成とその融点の一例は下記の通り
である。
Examples of these two or more glass compositions and their melting points are as follows.

ガラス組成 (括弧内はwt%)   融点Pb0(8
3)−B203(25)−8in2(12)   60
0’CPb0(83)−8203(17)      
   555℃Zn0(83)  B203 (37)
        730”Cすなわち、本発明において
配合成分の組合せによって多少異るがはり800℃以下
のガラス化温度を採用することが好ましい。
Glass composition (wt% in parentheses) Melting point Pb0 (8
3)-B203(25)-8in2(12) 60
0'CPb0(83)-8203(17)
555℃ Zn0 (83) B203 (37)
730"C, that is, in the present invention, it is preferable to employ a vitrification temperature of 800"C or less, although this varies somewhat depending on the combination of ingredients.

本発明において、セラミックス表面に或はセラミックス
とセラミックス或は金属の間にペーストを塗布或は介在
するのは、上述した活性金属及びガラス化金属の各粉末
を混合し、これに有機バインダー(Nえばテルピネオー
ル)とオイル(例えばエチルセルローズ)を加えてペー
スト状にし、これをセラミックス表面に、スクリーン印
刷法、はけ或はスプレー法などそれ自身公知の方法で塗
布する。その後、ペーストを塗布したセラミックスを、
または、該セラミックスに他のセラミックス或は金属を
治具などを用いて当接固定してから、これらを、第一段
階の処理として真空焼成炉に入れ、ペーストをセラミッ
クス溶融接合処理をする。
In the present invention, the paste is applied or interposed on the ceramic surface or between the ceramics or the ceramics or metals by mixing the powders of the active metal and vitrified metal described above, and adding an organic binder (for example, N) to the paste. Terpineol) and oil (for example ethyl cellulose) are added to form a paste, which is applied to the ceramic surface by a method known per se, such as screen printing, brushing or spraying. Afterwards, the ceramics coated with the paste are
Alternatively, after abutting and fixing another ceramic or metal to the ceramic using a jig or the like, these are placed in a vacuum firing furnace as a first stage treatment, and the paste is subjected to ceramic melting and joining treatment.

この場合焼成温度は活性金属の共晶点以上であればよく
、通常800〜900℃の範囲が選ばれる。本発明にお
いて、この焼成雰囲気は真空に限らず不活性ガスでよい
。例えば純度の高いArガス雰囲気(02≦1 ppm
)を用いると、次工程のガラス化処理への連続化が可能
となる。
In this case, the firing temperature may be any higher than the eutectic point of the active metal, and is usually in the range of 800 to 900°C. In the present invention, the firing atmosphere is not limited to vacuum, and may be an inert gas. For example, a high purity Ar gas atmosphere (02≦1 ppm
), it becomes possible to continue to the next step of vitrification treatment.

前記焼成工程を経たセラミックスを、第2段階の処理と
してA r = He 、N 2ガスの単独または混合
雰囲気を用いて焼成するのであって、本発明はこの焼成
処理に最大の特徴がある。すなわち、前記ガス雰囲気中
に10〜11000ppの酸素を含有させ、第1段階処
理における焼成温度以下の温度であって、500℃以上
の温度範囲で5〜60分の処理を行う。前記のように第
1段階処理されたメタライズ面或は接合面には、ミクロ
間隙が存在するが、第2段階処理によってsi、pbな
どの添加金属がガラス化し、これを埋める。酸素をlO
〜1000pp■雰囲気ガス中に混合させるのは、Sl
 、 Pbなどの金属が酸素と反応し、ガラス形成に必
要なためである。酸素が10ppm以下ではセラミック
スを他のセラミックス、金属とを接合するときに接合し
ないか、不完全な接合しかできず、io00ppm以上
になる活性金属が酸化し、脆化が起る。また焼成温度を
500℃以上としたのは、それ以下ではガラス化が不足
し、十分な接合強度が得られない。
The ceramics that have undergone the firing process are fired in a second stage treatment using an atmosphere of Ar=He and N2 gas alone or in a mixed atmosphere, and the greatest feature of the present invention is this firing treatment. That is, 10 to 11,000 pp of oxygen is contained in the gas atmosphere, and the treatment is performed for 5 to 60 minutes at a temperature lower than the firing temperature in the first stage treatment and in a temperature range of 500° C. or higher. Micro-gaps exist in the metallized surface or joint surface that has been subjected to the first-stage treatment as described above, but the added metals such as Si and PB are vitrified by the second-stage treatment to fill these gaps. oxygen to lO
~1000pp■ What is mixed in the atmospheric gas is Sl
This is because metals such as Pb react with oxygen and are necessary for glass formation. If the oxygen content is less than 10 ppm, the ceramic will not be bonded to other ceramics or metals, or the bond will be incomplete, and if the oxygen content is more than io00 ppm, the active metal will be oxidized and embrittlement will occur. Further, the reason why the firing temperature is set to 500° C. or higher is that if the firing temperature is lower than that, vitrification is insufficient and sufficient bonding strength cannot be obtained.

また、第1段階の焼成温度以上の温度で焼成すると、ろ
う材が溶は不都合であるからであり、好ましくは800
℃以下とする。
In addition, if fired at a temperature higher than the firing temperature of the first stage, it is inconvenient that the brazing material will melt.
The temperature shall be below ℃.

本発明において、上記範囲を定めたのは下記の実験結果
による。
In the present invention, the above range was determined based on the following experimental results.

セラミックスとしてA1120392%よりなる高さ1
0mm、[7径20mmのパイプを使用し、これに活性
金属としてAg 70vt%、Cu28vL%、Ti 
2wt%よりなる粉末にガラス形成金属としてPb+B
を混合し、これらの粉末をバインダー(エチルセルロー
ズとテルピネオール)でペースト状にしたものを前記バ
イブの両端部に塗布し、一端を有底のコバール製金具に
、他端を銅バイブに次の要件で接合した。
Height 1 made of A1120392% as ceramics
0mm, [7 A pipe with a diameter of 20mm was used, and active metals such as Ag 70vt%, Cu28vL%, Ti
Pb+B as a glass forming metal in powder consisting of 2wt%
Mix these powders and make a paste with a binder (ethyl cellulose and terpineol) and apply it to both ends of the vibrator, one end to the Kovar metal fitting with a bottom, and the other end to the copper vibrator according to the following requirements. It was joined with

第1段階処理として 雰囲気 N2 温度850℃×80分 で焼成した。その後 第2段階処理としてN2雰囲気中で 酸素濃度を第1表    120ppm温 度 750
℃X20分  可変−第2表第2段階の処理において、
ベースの雰囲気をN2とし酸素濃度を変えた場合(75
0℃×20分の条件で処理)の接合状況を第1表に、雰
囲気濃度−を変化させた場合(酸素濃度120ppm+
)の接合状況を第2表に示した。
As the first stage treatment, firing was performed in an atmosphere of N2 at a temperature of 850° C. for 80 minutes. After that, as a second stage treatment, the oxygen concentration was adjusted to 120 ppm in a N2 atmosphere as shown in Table 1. Temperature 750
°C x 20 minutes variable - In the second stage treatment in Table 2,
When the base atmosphere is N2 and the oxygen concentration is changed (75
Table 1 shows the bonding conditions under conditions of 0°C x 20 minutes, and when the atmospheric concentration - was changed (oxygen concentration 120 ppm +
) are shown in Table 2.

第    1    表 第 表 上記試料をHe雰囲気下におき、銅バイブの開放された
上端をHeリークデイティクターに接合して、前記セラ
ミックスバイブとコバール、銅バイブとの接合点よりH
eガスの漏洩性を測定した。
Table 1 The above sample was placed in a He atmosphere, the open upper end of the copper vibe was joined to a He leak detector, and H
The leakage of e-gas was measured.

表において評価良好なものはlO″″” torrI/
secの値を示し、真空封止性が完全であった。それ以
外は、リークが多くみられた。上記結果から本発明の第
2段階処理条件が明らかとなった。
Those with good evaluation in the table are lO″″” torrI/
sec, and the vacuum sealability was perfect. Other than that, there were many leaks. From the above results, the second stage treatment conditions of the present invention were clarified.

本発明において、第1段階の処理雰囲気は、真空にする
ことに限定されず、第1段階と、第2段階を連続して処
理する場合は、第2段階での雰囲気と同種のガスを使用
することが作業上好ましい。
In the present invention, the processing atmosphere in the first stage is not limited to vacuum, but when the first stage and the second stage are processed consecutively, the same type of gas as the atmosphere in the second stage is used. It is preferable for the work.

この場合第1段階の雰囲気は純度の高いこと、すなわち
酸素濃度が1 ppm以下となるようにする必要がある
In this case, the atmosphere in the first stage must be of high purity, that is, the oxygen concentration must be 1 ppm or less.

(実 施 例) 直径20mmのセラミックス(Ag203)の筒1と、
金属としてコバール2及び銅3よりなる部材を添付図に
示すような箱状の接合体をセットした。
(Example) A ceramic (Ag203) cylinder 1 with a diameter of 20 mm,
A box-shaped joined body as shown in the attached figure was set using members made of Kovar 2 and Copper 3 as metals.

セラミックスの両端には、あらかじめ下記金属粉末にテ
ルピネオール(有機バインダー)とエチルセルローズ(
オイル)を加えてつくったペースト4を、スクリーン印
刷法で塗布し、前記金属を冶具で固定した。
At both ends of the ceramic, terpineol (organic binder) and ethyl cellulose (
A paste 4 made by adding oil) was applied by screen printing, and the metal was fixed with a jig.

活性金属粉末 (Ag:88vt%、  Cu:30%、Ti:2%)
を80%ガラス形成用金属粉末 (S i:30vt%、  Pb:40%、B:30%
)を20%これを第3表に示す条件でセラミックスと各
金属を接合した。
Active metal powder (Ag: 88vt%, Cu: 30%, Ti: 2%)
80% glass forming metal powder (Si: 30vt%, Pb: 40%, B: 30%
) was used to bond ceramics and each metal under the conditions shown in Table 3.

第3表 メタライジングの条件 実施例 2 実施例1の条件でセラミックス表面をメタライズ処理後
、メタライズ面3とコバール2及び銅3のそれぞれの間
にろう材(BAg−8)を挿入し治具でこれらを固定し
た後真空中(1o−6torr)で800℃XIO分間
のろう付は処理をした。
Table 3 Metallizing conditions Example 2 After metalizing the ceramic surface under the conditions of Example 1, insert a brazing filler metal (BAg-8) between the metallized surface 3 and each of Kovar 2 and Copper 3 using a jig. After these were fixed, brazing was performed at 800° C. for 10 minutes in a vacuum (10-6 torr).

実施例1及び2で処理した接合部材に真空封止試験及び
引張り試験を実施した。何れも真空封止度10−” t
orrg/see s引張強度300kg f以上の結
果が得られ、真空スイッチ等の真空器機に十分使用でき
ることが確認できた。
The bonded members treated in Examples 1 and 2 were subjected to a vacuum sealing test and a tensile test. All vacuum sealing degree 10-”t
orrg/sees tensile strength of 300 kg f or more was obtained, confirming that it can be used satisfactorily for vacuum equipment such as vacuum switches.

(効  果) 上述したように、本発明は活性金属法を改良した簡易な
工程によって、Mn −Mo法で可能のような優れた真
空封止性をHするセラミックス−セラミックスまたはセ
ラミックス−金属の接合面を得ることができ、工業的に
極めて有用である。
(Effects) As described above, the present invention provides ceramic-ceramic or ceramic-metal bonding that achieves excellent vacuum sealing properties as possible with the Mn-Mo method using a simple process that improves the active metal method. It is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明実施例の試験材の断面を示す。 復代理人 弁理± IE 村弘明 The drawing shows a cross section of a test material according to an example of the present invention. Sub-agent Patent Attorney ± IE Hiroaki Mura

Claims (1)

【特許請求の範囲】 1、Ag、Cu、Tiからなる活性金属組成粉末に、A
l、Si、Pb、Ba、Zn、Bi、Cd及びTlのう
ちの2種以上の金属を加え、これに有機バインダーとオ
イルを添加して形成したペーストを、セラミックス面に
塗布し、その後真空中または不活性ガス雰囲気中にて加
熱焼成し、さらに、酸素を10〜1000ppm含んだ
窒素、ヘリウムまたはアルゴンの単独または混合雰囲気
で、500℃以上乃至前記加熱焼成温度以下の範囲で焼
成することを特徴とするセラミックスのメタライズ法。 2、Ag、Cu、Tiからなる活性金属組成粉末に、A
l、Si、Pb、Ba、Zn、Bi、Cd及びTlのう
ちの2種以上の金属を加え、これに有機バインダーとオ
イルを添加して形成したペーストを、セラミックスとセ
ラミックス或は金属の間に介在せしめて、セラミックス
とセラミックス或は金属を当接し、その後真空中または
不活性ガス雰囲気中にて加熱焼成し、さらに、酸素を1
0〜1000ppm含んだ窒素、ヘリウムまたはアルゴ
ンの単独または混合雰囲気で、500℃以上乃至前記加
熱焼成温度以下の範囲で焼成することを特徴とするセラ
ミックスの接合法。
[Claims] 1. In active metal composition powder consisting of Ag, Cu, and Ti, A
A paste formed by adding two or more metals selected from L, Si, Pb, Ba, Zn, Bi, Cd, and Tl, an organic binder and oil is applied to the ceramic surface, and then heated in a vacuum. Alternatively, the method is characterized by heating and firing in an inert gas atmosphere, and further firing in a nitrogen, helium, or argon atmosphere containing 10 to 1000 ppm of oxygen, alone or in a mixed atmosphere, in a range of 500°C or higher and below the heating and firing temperature. Ceramics metallization method. 2.A to active metal composition powder consisting of Ag, Cu, and Ti
A paste formed by adding two or more metals from L, Si, Pb, Ba, Zn, Bi, Cd, and Tl, and an organic binder and oil is placed between ceramics or metals. Ceramics and ceramics or metals are brought into contact with each other, and then heated and fired in a vacuum or in an inert gas atmosphere.
A method for joining ceramics, characterized in that firing is carried out in an atmosphere of nitrogen, helium, or argon containing 0 to 1000 ppm, alone or in a mixture, in a range of 500° C. or more to the heating firing temperature or less.
JP7126689A 1989-03-23 1989-03-23 Metallization of ceramic and bonding of ceramic Pending JPH02252682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7126689A JPH02252682A (en) 1989-03-23 1989-03-23 Metallization of ceramic and bonding of ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7126689A JPH02252682A (en) 1989-03-23 1989-03-23 Metallization of ceramic and bonding of ceramic

Publications (1)

Publication Number Publication Date
JPH02252682A true JPH02252682A (en) 1990-10-11

Family

ID=13455749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7126689A Pending JPH02252682A (en) 1989-03-23 1989-03-23 Metallization of ceramic and bonding of ceramic

Country Status (1)

Country Link
JP (1) JPH02252682A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0597534A (en) * 1991-10-04 1993-04-20 Fujikura Ltd Method for bonding metal to solid electrolyte
JPH05105536A (en) * 1991-10-15 1993-04-27 Fujikura Ltd Bonding between metal and solid electrolyte
JP2010241627A (en) * 2009-04-03 2010-10-28 Dowa Metaltech Kk Metal-ceramic bonding substrate and brazing filler material used for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0597534A (en) * 1991-10-04 1993-04-20 Fujikura Ltd Method for bonding metal to solid electrolyte
JPH05105536A (en) * 1991-10-15 1993-04-27 Fujikura Ltd Bonding between metal and solid electrolyte
JP2010241627A (en) * 2009-04-03 2010-10-28 Dowa Metaltech Kk Metal-ceramic bonding substrate and brazing filler material used for the same

Similar Documents

Publication Publication Date Title
DE69707283T2 (en) METHOD FOR THE ASSEMBLY OF MATERIAL PARTS BASED ON SILICON CARBIDE WITH THE AID OF A THICK CONNECTING LAYER THROUGH FIRE-RESISTANT SOLDERED SOLUTION AND A COMPOSITE THEREFORE OBTAINED
DE1964639A1 (en) Method for joining ceramic bodies using metal-coated particles of molybdenum or tungsten
US4163074A (en) Method for fast adhesion of silver to nitride type ceramics
JPH02252682A (en) Metallization of ceramic and bonding of ceramic
US5139704A (en) Fluxless solder
EP0384950B1 (en) Method of metallizing oxide ceramic with excellent hermetic sealing and brazing properties
US3117003A (en) Titanium-zirconium containing brazing material
JPS6272472A (en) Joining method for ceramics and metal or the like
US2838390A (en) Method of making metal-to-ceramic seals
JPS59217680A (en) Metallizing paste and ceramic product
JPS6350382A (en) Formation of metal coating for ceramic
JPH0574552B2 (en)
JPH0427192B2 (en)
JPH022921B2 (en)
JPH01111784A (en) Production of airtight ceramic vessel
KR20000009463A (en) Method for joining nitriding silicon and carbon steel
JPH05286777A (en) Bonding method of ceramics with ti or ti alloy
JPH0648873A (en) Metallizing method of high purity alumina
JPS6362477B2 (en)
JPS61236661A (en) Method of joining ceramic and metal, same kind of ceramics or different kind of ceramics
JPH10236886A (en) Production of vacuum vessel
SU1498743A1 (en) Composition for metallization of metallization of multiple -corundum ceramic
JPH08169778A (en) Brazing filler alloy for joining alumina ceramics to aluminum alloy and joined body
JPH03146487A (en) Production of aluminum nitride sintered body with metallizing layer
JPH0769749A (en) Brazing material for ceramic