JPH01110071A - Driving method for supersonic motor - Google Patents

Driving method for supersonic motor

Info

Publication number
JPH01110071A
JPH01110071A JP62268489A JP26848987A JPH01110071A JP H01110071 A JPH01110071 A JP H01110071A JP 62268489 A JP62268489 A JP 62268489A JP 26848987 A JP26848987 A JP 26848987A JP H01110071 A JPH01110071 A JP H01110071A
Authority
JP
Japan
Prior art keywords
vibration
elastic
board
electrode
elastic board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62268489A
Other languages
Japanese (ja)
Inventor
Sadayuki Takahashi
高橋 貞行
Takeshi Inoue
武志 井上
Osamu Myoga
修 冥加
Osamu Onishi
修 大西
Tadayasu Uchikawa
内川 忠保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62268489A priority Critical patent/JPH01110071A/en
Publication of JPH01110071A publication Critical patent/JPH01110071A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To obtain a thin, high speed, high torque motor, by exciting standing waves of longitudinal vibration and odd order bending vibration simultaneously in an elastic body. CONSTITUTION:A piezoelectric board 12 polarized in the direction of thickness is stuck to the rear face of a rectangular elastic board 11, and metallic electrode films 15 are provided on the opposite main faces thereof. A pair of electrode terminals 16 are led out from these electrode films 15. A moving sheet member 13 is placed on the surface of the rectangular elastic board 11 and pressure contacted with the elastic board 11 through a roller 14 rotatable around the central axis. When AC voltage is applied onto the electrode terminal 16 and the elastic board 11 is resonated, the sheet member 13 is moved in the direction of an arrow with high speed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超音波振動エネルギーを利用したモータに関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a motor that utilizes ultrasonic vibration energy.

(従来の技術) 進行波を応用した超音波モータは低速で高トルクが発生
する等の特徴を持ち、例えば特開昭59−122385
には第6図に示す様なモータが提案されている。
(Prior art) Ultrasonic motors that utilize traveling waves have the characteristics of generating high torque at low speeds.
A motor as shown in FIG. 6 has been proposed.

第6図において弾性体11にはA方向に進行する屈曲波
が励振されている。この場合弾性体の表面粒子は楕円振
動をするため、弾性体上に移動体13を圧接すれば移動
体はBの方向へ動く。
In FIG. 6, a bending wave traveling in the direction A is excited in the elastic body 11. In this case, the surface particles of the elastic body vibrate elliptically, so if the moving body 13 is pressed onto the elastic body, the moving body moves in the direction B.

(発明が解決しようとする問題点) しかし上記の様なモータで直線モータを構成する場合、
純粋な進行波を励振するために端部からの反射波の防止
に特別な配慮をする必要が生じる。例えば弾性板の両端
部に進行波を完全に吸収するための特殊な振動吸収体を
接合する必要がある。
(Problem to be solved by the invention) However, when constructing a linear motor using the motor as described above,
In order to excite pure traveling waves, special consideration must be taken to prevent reflected waves from the ends. For example, it is necessary to attach special vibration absorbers to both ends of the elastic plate to completely absorb traveling waves.

また、弾性体表面の楕円振動の横方向振動成分が小さい
ため移動体の移動速度及びトルクをあまり大きくするこ
とができない。
Furthermore, since the transverse vibration component of the elliptical vibration on the surface of the elastic body is small, the moving speed and torque of the moving body cannot be increased very much.

本発明はこの様な従来の欠点を除去せしめた紙送り用超
音波モータを提供することにある。
The object of the present invention is to provide an ultrasonic motor for paper feeding which eliminates such conventional drawbacks.

(問題点を解決するための手段) 本発明は弾性体に縦振動と奇数次の屈曲振動の定在波を
同時に励振させることにより、弾性体表面に楕円振動を
励起することを特徴とする。
(Means for Solving the Problems) The present invention is characterized in that elliptical vibration is excited on the surface of the elastic body by simultaneously exciting standing waves of longitudinal vibration and odd-numbered bending vibration in the elastic body.

(作用) 上記の様な二つの定在波を同時に励振すると、まず定在
波であることから反射波を抑圧するための特別な装置が
不要となる。
(Function) When two standing waves as described above are excited simultaneously, since they are standing waves, a special device for suppressing reflected waves is not required.

また、縦振動の定在波が屈曲振動とは別個に励振される
ため、横方向振動成分が進行波の場合より大きい。従っ
て高速、高トルクが実現できる。
Furthermore, since the standing wave of longitudinal vibration is excited separately from the bending vibration, the transverse vibration component is larger than that of the traveling wave. Therefore, high speed and high torque can be achieved.

第3図(a)は縦振動と一次元屈曲振動の定在波を同時
に励振するための一つの方法を示している。弾性板11
の裏面には厚み方向に一様に分極された圧電セラミック
板が貼り合せられており、圧電セラミック板の両面には
金属電極膜が設けられている。この電極間に2つの振動
モードの共振周波数の交流電気信号を入力すると縦振動
及び−次元屈曲振動の定在波が弾性体に励振される。図
では縦振動定在波の変位分布31と一次元屈曲振動の定
在波の変位分布32を示している。また、第3図(b)
は2つの定在波が同時に励振された場合の弾性体表面の
粒子の運動を示す。領域AとC及び領域BとDとでは互
いに逆方向の楕円振動が励振され、AとB、 CとDで
は振幅が異なる。
FIG. 3(a) shows one method for simultaneously exciting standing waves of longitudinal vibration and one-dimensional bending vibration. Elastic plate 11
A piezoelectric ceramic plate that is uniformly polarized in the thickness direction is bonded to the back surface of the piezoelectric ceramic plate, and metal electrode films are provided on both sides of the piezoelectric ceramic plate. When alternating current electrical signals at resonance frequencies of two vibration modes are input between the electrodes, standing waves of longitudinal vibration and -dimensional bending vibration are excited in the elastic body. The figure shows a displacement distribution 31 of longitudinal vibration standing waves and a displacement distribution 32 of one-dimensional bending vibration standing waves. Also, Fig. 3(b)
shows the motion of particles on the surface of an elastic body when two standing waves are excited simultaneously. In areas A and C and areas B and D, elliptical vibrations in opposite directions are excited, and the amplitudes are different between A and B and between C and D.

超音波モータでは移動体を圧接するローラが多いほどモ
ータの推力を大きくすることができる。
In an ultrasonic motor, the more rollers that press against the moving body, the greater the thrust of the motor can be.

11次の屈曲振動と2次の縦振動との2重モード振動子
に例をとり説明する。第4図(a)は2種類の振動の振
幅変位分布を示すもので、図中11は矩形状金属弾性板
、41.42はそれぞれ2次の縦振動と11次の屈曲振
動との振幅変位分布を示している。図から明らかなよう
に矩形弾性板のA、 B、 Cの各点では2つの振動の
振幅変位が略等しい。その結果第4図(b)に示すよう
に上記の各点では2つの振動が合成されて振幅が略等し
く回転方向の等しい楕円振動が励起されることになる。
An example of a dual mode vibrator with 11th-order bending vibration and 2nd-order longitudinal vibration will be explained. Figure 4(a) shows the amplitude displacement distributions of two types of vibrations. In the figure, 11 is the rectangular metal elastic plate, and 41 and 42 are the amplitude displacements of the second-order longitudinal vibration and the 11th-order bending vibration, respectively. It shows the distribution. As is clear from the figure, the amplitude displacements of the two vibrations are approximately equal at each point A, B, and C of the rectangular elastic plate. As a result, as shown in FIG. 4(b), the two vibrations are combined at each of the above points, and elliptical vibrations having substantially equal amplitude and the same direction of rotation are excited.

従って上記の3点にローラを圧接すれば各ローラは同一
回転数で同一方向に回転する。
Therefore, if the rollers are pressed against the three points mentioned above, each roller will rotate at the same rotation speed and in the same direction.

このように11次の屈曲振動と2次の縦振動との2重モ
ード振動子を用いれば3点でローラが駆動できる。従っ
て該振動子をステータとして用いれば推力の大きい超音
波モータが実現できる。
In this way, by using a dual mode vibrator with 11th order bending vibration and 2nd order longitudinal vibration, the roller can be driven at three points. Therefore, if the vibrator is used as a stator, an ultrasonic motor with a large thrust can be realized.

なお上記の振動モードの組み合わせ以外にも3点駆動の
できる2重モード振動子は多数存在し、一般に奇数次の
屈曲振動と2次の縦振動とを組み合わせればよい。
In addition to the combinations of vibration modes described above, there are many dual mode vibrators that can be driven at three points, and generally odd-order bending vibration and second-order longitudinal vibration may be combined.

(実施例) 以下本発明の実施例について図面を参照しながら説明す
る。
(Example) Examples of the present invention will be described below with reference to the drawings.

第1図は一次縦振動と一次屈曲振動の2重モード振動子
をステータとした超音波モータの構成を示す断面図であ
る。矩形弾性板11の裏面には厚み方向に分極された圧
電セラミック板12か貼り合わせられており、この圧電
板の両生面には金属電極膜15が設けられている。そし
てこれらの電極膜からは一対の電極端子16が取り出′
されている。矩形弾性板11の表面にはシート状移動体
13が置かれ、中心軸廻りに回転のできるローラ14で
弾性板に圧接されている。電極端子16に交流電圧を印
加し弾性板を共振させると、シート状移動体13は高速
で矢印の方向に移動する、。なお、ローラを圧接する位
置は振動節以外であればどこでもよい。
FIG. 1 is a sectional view showing the configuration of an ultrasonic motor in which a stator is a dual-mode vibrator for primary longitudinal vibration and primary bending vibration. A piezoelectric ceramic plate 12 polarized in the thickness direction is bonded to the back surface of the rectangular elastic plate 11, and a metal electrode film 15 is provided on both sides of the piezoelectric plate. A pair of electrode terminals 16 are taken out from these electrode films.
has been done. A sheet-like moving body 13 is placed on the surface of the rectangular elastic plate 11, and is pressed against the elastic plate by a roller 14 that can rotate around a central axis. When an AC voltage is applied to the electrode terminal 16 to cause the elastic plate to resonate, the sheet-like moving body 13 moves at high speed in the direction of the arrow. Note that the roller may be pressed at any position other than the vibration node.

次に他の実施例について説明する。第5図(a)はステ
ータにおける弾性板11に励振される2次の縦振動の応
力分布52と11次の屈曲振動の応力分布53を示して
いる。この関係から上記2種類の振動を同時に効率よく
励振する方法が決まるが、その結果を第5図(b)に示
した。弾性板11の裏面に圧電セラミック板12が図示
のように貼り合わせられている。各圧電セラミック板は
矢印の方向に分極されており表裏面には金属電極膜15
が設けられている。弾性板11と各圧電セラミック板か
らは図示のように2組の電極端子54.55が取り出さ
れている。電極端子54に交流電圧を印加すると2次の
縦振動が励振でき、電極端子55に交流電圧を印加する
と11次の屈曲振動が励振できる。そして位相の90度
異なった交流電圧をそれぞれの端子に印加した場合には
2次の縦振動と11次の屈曲振動との2重モード振動子
となる。
Next, other embodiments will be described. FIG. 5(a) shows a stress distribution 52 of the second-order longitudinal vibration and a stress distribution 53 of the eleventh-order bending vibration excited in the elastic plate 11 in the stator. This relationship determines a method for efficiently exciting the two types of vibrations at the same time, and the results are shown in FIG. 5(b). A piezoelectric ceramic plate 12 is bonded to the back surface of the elastic plate 11 as shown. Each piezoelectric ceramic plate is polarized in the direction of the arrow, and has metal electrode films 15 on the front and back surfaces.
is provided. As shown in the figure, two sets of electrode terminals 54 and 55 are taken out from the elastic plate 11 and each piezoelectric ceramic plate. When an AC voltage is applied to the electrode terminal 54, a second order longitudinal vibration can be excited, and when an AC voltage is applied to the electrode terminal 55, an 11th order bending vibration can be excited. When alternating current voltages with phases different by 90 degrees are applied to the respective terminals, the vibrator becomes a dual mode vibrator with second-order longitudinal vibration and eleventh-order bending vibration.

第2図は前記ステータとローラを含む構成を示している
。第2図に示した2重モード振動子の表面にシート状移
動体13を置き、これを3個の回転自由なローラ14で
圧接する。ローラの圧接位置は第4図に示したA、 B
、 Cの各点とする。振動子の2対の電極端子に90度
位相の異なった交流電圧を印加して共振させると、シー
ト状移動体13は矢印の方向に移動する。そしてこの場
合の推力はローラを1ケ使用した従来のモータの約3倍
であった。
FIG. 2 shows a configuration including the stator and rollers. A sheet-like moving body 13 is placed on the surface of the dual mode vibrator shown in FIG. 2, and is pressed against it by three freely rotatable rollers 14. The pressure contact positions of the rollers are A and B shown in Figure 4.
, C. When alternating voltages having a phase difference of 90 degrees are applied to the two pairs of electrode terminals of the vibrator to cause resonance, the sheet-like moving body 13 moves in the direction of the arrow. The thrust in this case was approximately three times that of a conventional motor using one roller.

なお本実施例では寸法が120 X 30 X 2mm
のステンレス製弾性板に厚さ5mmのPZT系圧電セラ
ミック板を貼り合わせて2重モード振動子とした。また
駆動交流電圧の周波数は42.2kHzとした。
In this example, the dimensions are 120 x 30 x 2 mm.
A 5 mm thick PZT piezoelectric ceramic plate was bonded to a stainless steel elastic plate to form a dual mode vibrator. Further, the frequency of the driving AC voltage was 42.2 kHz.

(発明の効果) 本発明によれば振動吸収装置が不要で、高速、高トルク
、薄型で推力の大きい超音波モータが実現できる。
(Effects of the Invention) According to the present invention, a vibration absorbing device is not required, and an ultrasonic motor that is high speed, high torque, thin, and has a large thrust can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の実施例を示す図。第3図、第
4図、第5図は縦振動定在波と奇数次の屈曲振動の定在
波励振状態を示す図。第6図は従来の超音波モータの原
理を示す図。 図中、11・・・弾性板、12・・・圧電セラミック板
、13・・・移動体、14・・・ローラー、15・・・
電極、16.54゜55・・・電極端子、31,41,
52・・・縦振動変位分布、32.42゜53、・・屈
曲振動変位分布、をそれぞれ示している。
FIG. 1 and FIG. 2 are diagrams showing embodiments of the present invention. FIG. 3, FIG. 4, and FIG. 5 are diagrams showing standing wave excitation states of longitudinal vibration standing waves and odd-order bending vibrations. FIG. 6 is a diagram showing the principle of a conventional ultrasonic motor. In the figure, 11... elastic plate, 12... piezoelectric ceramic plate, 13... moving body, 14... roller, 15...
Electrode, 16.54°55... Electrode terminal, 31, 41,
52...Longitudinal vibration displacement distribution, 32.42°53...Bending vibration displacement distribution, respectively.

Claims (1)

【特許請求の範囲】[Claims] 縦振動と奇数次の屈曲振動を同時に励振させることを特
徴とする超音波モータの駆動方法。
A method for driving an ultrasonic motor characterized by simultaneously exciting longitudinal vibration and odd-order bending vibration.
JP62268489A 1987-10-23 1987-10-23 Driving method for supersonic motor Pending JPH01110071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62268489A JPH01110071A (en) 1987-10-23 1987-10-23 Driving method for supersonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62268489A JPH01110071A (en) 1987-10-23 1987-10-23 Driving method for supersonic motor

Publications (1)

Publication Number Publication Date
JPH01110071A true JPH01110071A (en) 1989-04-26

Family

ID=17459205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62268489A Pending JPH01110071A (en) 1987-10-23 1987-10-23 Driving method for supersonic motor

Country Status (1)

Country Link
JP (1) JPH01110071A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665918A (en) * 1994-12-26 1997-09-09 Canon Kabushiki Kaisha Linear vibration actuator utilizing combined bending and longitudinal vibration modes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665918A (en) * 1994-12-26 1997-09-09 Canon Kabushiki Kaisha Linear vibration actuator utilizing combined bending and longitudinal vibration modes
US5936328A (en) * 1994-12-26 1999-08-10 Canon Kabushiki Kaisha Linear vibration actuator utilizing combined bending and longitudinal vibration modes

Similar Documents

Publication Publication Date Title
CN111464070B (en) Linear ultrasonic motor stator and electric excitation method thereof
JPS61224880A (en) Vibration wave motor
JPH05146171A (en) Ultrasonic oscillator
JP2847758B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JPH01110071A (en) Driving method for supersonic motor
JPH05137359A (en) Ultrasonic vibrator and ultrasonic driving apparatus
JPH01110070A (en) Driving method for supersonic motor
JP2646668B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JP2605355B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JP2590536B2 (en) Ultrasonic motor
JPS62277079A (en) Piezoelectric driving device
JPH0470876B2 (en)
JPS63290176A (en) Driving method for supersonic motor
JPH01117672A (en) Driving method for ultrasonic motor
JPH05316756A (en) Ultrasonic oscillator and driver employing thereof
JPS63294271A (en) Ultrasonic wave motor
JPH0697863B2 (en) Piezoelectric drive
JPS63294270A (en) Driving method for ultrasonic wave motor
JPS63294269A (en) Driving method for ultrasonic wave motor
JPS63294272A (en) Driving method for ultrasonic wave motor
JPH01103177A (en) Supersonic motor
JPH01308172A (en) Ultrasonic wave driver
JPS61277386A (en) Ultrasonic wave motor
JPS63213480A (en) Ultrasonic motor
JPH0775475B2 (en) Ultrasonic motor and its driving method