JPH0470876B2 - - Google Patents

Info

Publication number
JPH0470876B2
JPH0470876B2 JP62130314A JP13031487A JPH0470876B2 JP H0470876 B2 JPH0470876 B2 JP H0470876B2 JP 62130314 A JP62130314 A JP 62130314A JP 13031487 A JP13031487 A JP 13031487A JP H0470876 B2 JPH0470876 B2 JP H0470876B2
Authority
JP
Japan
Prior art keywords
vibrator
piezoelectric
drive device
contacted member
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62130314A
Other languages
Japanese (ja)
Other versions
JPS63294279A (en
Inventor
Hiroshi Shimizu
Takashi Takada
Masateru Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP62130314A priority Critical patent/JPS63294279A/en
Publication of JPS63294279A publication Critical patent/JPS63294279A/en
Publication of JPH0470876B2 publication Critical patent/JPH0470876B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/026Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/0015Driving devices, e.g. vibrators using only bending modes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/103Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、圧電素子を用いた往復動型または
回転型等の圧電駆動装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a piezoelectric drive device, such as a reciprocating type or a rotary type, using a piezoelectric element.

〔背景技術〕[Background technology]

従来、圧電素子を用いた超音波モータとして、
特公昭59−037672号公報に示されるものがある。
これは、圧電素子を振動体に貼りつけて縦振動を
発生させ、振動体の先端部に傾きを持つた駆動片
を形成し、その先端部が前記縦振動によつて楕円
運動を行い、円板と接触することにより、摩擦力
により円板を回転させるものである。
Conventionally, as an ultrasonic motor using piezoelectric elements,
There is one shown in Japanese Patent Publication No. 59-037672.
In this method, a piezoelectric element is attached to a vibrating body to generate longitudinal vibration, and a driving piece with an inclination is formed at the tip of the vibrating body. By contacting the disk, the disk is rotated by frictional force.

しかし、この従来構造であると、回転方向が駆
動片の傾き方向によつて決まつてしまい、また駆
動片の先端部は細く、摩擦のために摩耗も大き
く、寿命的にも問題がある。
However, with this conventional structure, the direction of rotation is determined by the direction of inclination of the drive piece, and the tip of the drive piece is thin, so wear is large due to friction, and there are problems with longevity.

また、他の従来例として、特開昭58−148682号
公報に示されるものがある。この例は、圧電素子
の全体振動を振動体に伝え、一方の波形をもう一
方の波形と90°位相をずらせて振動させることに
より、振動体表面に進行波を発生させ、その上に
ロータを接触させることにより、摩擦でロータを
回転させるものである。
Further, as another conventional example, there is one shown in Japanese Patent Application Laid-Open No. 148682/1982. In this example, the entire vibration of the piezoelectric element is transmitted to the vibrating body, and by vibrating one waveform with a 90° phase shift from the other waveform, a traveling wave is generated on the surface of the vibrating body, and a rotor is placed on top of the traveling wave. By making contact, the rotor is rotated by friction.

この例によると、逆転も可能であるが、常に振
動子全体にエネルギを与える必要があり、しかも
圧電素子の振動体に貼着された面と反対側の面の
振動は吸収してやる必要がある。このためエネル
ギロスが大きく、効率向上に難がある。また、リ
ニアモータの形成には進行波を循環させる方策を
取らなければ、エネルギロスが大きすぎて問題に
成らず、その循環方法も極めて難しい。
According to this example, reversal is possible, but it is necessary to always apply energy to the entire vibrator, and moreover, it is necessary to absorb vibrations on the surface of the piezoelectric element opposite to the surface attached to the vibrating body. Therefore, energy loss is large and it is difficult to improve efficiency. In addition, in forming a linear motor, unless a measure is taken to circulate the traveling waves, the energy loss is too large to be a problem, and the circulation method is also extremely difficult.

〔発明の目的〕[Purpose of the invention]

この発明は、低消費電力で効率良く機械的駆動
力を得ることができ、かつ接触点が多点化されて
摩耗が軽減され、また安定駆動が可能な圧電駆動
装置を提供することを目的とする。
An object of the present invention is to provide a piezoelectric drive device that can efficiently obtain mechanical driving force with low power consumption, has multiple contact points to reduce wear, and is capable of stable driving. do.

〔発明の開示〕[Disclosure of the invention]

この発明の圧電駆動装置は、図の符号を引用し
て説明すると、振動子1と、電源装置5と、被接
触部材6とを有する圧電駆動装置であつて、 前記振動子1は弾性を有する材料によりコ字状
およびロの字状のいずれかの形状に形成され、か
つ一対の対向辺3の断面形状が各々ほぼ方形に形
成され、それぞれ少なくとも隣合う2面に圧電素
子部4を有してなり、 前記電源装置5は前記各対向辺3の隣合う圧電
素子部4に位相差を持たせて高周波電圧を印加す
ることにより前記各対向辺3の最大振幅部を円ま
たは楕円運動させるものであり、 前記被接触部材6は前記振動子1の対向辺3と
接触するものであり、 前記振動子1の前記対向辺3の最大振動部と前
記被接触部材6の前記対向辺3と接触する部分の
少なくとも一部とのいずれか一方を永久磁石7と
し、他方を磁性体とし、 さらに前記被接触部材6または振動子1のいず
れかを移動可能としたものである。
The piezoelectric drive device of the present invention, to be described with reference to the reference numerals in the figures, is a piezoelectric drive device that includes a vibrator 1, a power supply device 5, and a contacted member 6, and the vibrator 1 has elasticity. It is formed into either a U-shape or a V-shape using a material, and the cross-sectional shape of the pair of opposing sides 3 is each approximately rectangular, and each has piezoelectric element portions 4 on at least two adjacent sides. The power supply device 5 applies a high frequency voltage to adjacent piezoelectric element portions 4 of each of the opposing sides 3 with a phase difference, thereby causing the maximum amplitude portion of each of the opposing sides 3 to move in a circular or elliptical manner. The contacted member 6 is in contact with the opposing side 3 of the vibrator 1, and the maximum vibration part of the opposing side 3 of the vibrator 1 is in contact with the opposing side 3 of the contacted member 6. At least a part of the contacting part is made of a permanent magnet 7, the other part is made of a magnetic material, and either the contacted member 6 or the vibrator 1 is made movable.

前記圧電素子部は、前記振動子に圧電素子を貼
着して形成したものあつても、また前記振動子を
圧電材料にて形成して、この圧電材料に直接に電
極を形成したものであつてもよい。
The piezoelectric element portion may be formed by adhering a piezoelectric element to the vibrator, or may be formed by forming the vibrator from a piezoelectric material and forming electrodes directly on this piezoelectric material. It's okay.

この発明の構成によると、振動子の各対向辺の
隣合う2面に設けた圧電素子部に位相差を持つた
高周波電圧を印加するので、各対向辺は最大振幅
点が円または楕円運動をする。この対向辺の1面
に被接触部材が接触するので、摩擦力でこの被接
触部材または振動子のいずれかが駆動され、機械
的駆動力が得られる。
According to the configuration of the present invention, a high frequency voltage having a phase difference is applied to the piezoelectric element portions provided on two adjacent surfaces of each opposing side of the vibrator, so that the maximum amplitude point of each opposing side exhibits circular or elliptical motion. do. Since the contacted member comes into contact with one of the opposing sides, either the contacted member or the vibrator is driven by the frictional force, and a mechanical driving force is obtained.

この場合に、各振動体はコ字状またはロ字状と
してあるので、その両対向辺が互いに共振し、大
きな振幅が得られる。そのため、電気的エネルギ
を効率良く機械的駆動力に変換できる。
In this case, since each vibrating body is U-shaped or square-shaped, both opposing sides resonate with each other and a large amplitude can be obtained. Therefore, electrical energy can be efficiently converted into mechanical driving force.

また、振動子と被接触部材とが永久磁石と磁性
体とで接するようにしているので、磁力により両
者の間に安定した接触力が得られ、前記摩擦力に
よる駆動が確実となる。しかも、振動子の円また
は楕円運動に伴なつて磁力による移動力が前記摩
擦力による進行方向と同方向に与えられる。その
ため、摩擦力と磁力とが加わつた駆動力が得られ
ることになり、効率の良い駆動ができる。しか
も、永久磁石を設けたという簡単な構造で、この
効率向上が図れる。
Further, since the vibrator and the contacted member are brought into contact with each other through a permanent magnet and a magnetic body, a stable contact force is obtained between the two due to magnetic force, and the drive by the frictional force is ensured. Moreover, along with the circular or elliptical motion of the vibrator, a moving force due to magnetic force is applied in the same direction as the traveling direction due to the frictional force. Therefore, a driving force that includes frictional force and magnetic force can be obtained, and efficient driving can be achieved. Furthermore, this efficiency can be improved with a simple structure that includes a permanent magnet.

さらに、振動子の共振は、2本の対向辺が連続
した基端部において非振動状態となるように行わ
れるので、基端部を支持部とすることにより、支
持によつて振動を妨げることがなく、このことか
らも高効率が得られる。また、このように振動子
に振動しない箇所があることから、振動子と被接
触部材のいずれを固定側としても可動側としても
用いることができる。さらに、振動子は2本の対
向辺を有し、この部分で被接触部材に接するの
で、接触点が多点化される。そのため、摩耗が軽
減され、かつ安定した駆動が可能となる。
Furthermore, since the resonance of the vibrator occurs in a non-vibrating state at the base end where two opposing sides are continuous, by using the base end as a support part, vibration can be prevented by the support. This also results in high efficiency. Further, since the vibrator has such a portion that does not vibrate, either the vibrator or the contacted member can be used as either a fixed side or a movable side. Furthermore, since the vibrator has two opposing sides and contacts the contacted member at these portions, the number of contact points is multiplied. Therefore, wear is reduced and stable driving is possible.

実施例 この発明の第1の実施例を第1図ないし第6図
に基づいて説明する。この圧電駆動装置は、リニ
アモータに適用した例であり、金属弾性材料の振
動部材2により振動子1を形成している。すなわ
ち、この圧電駆動装置は、コ字状に形成されて断
面形状が各々方形である一対の対向辺3の隣合う
2面に圧電素子を貼着して圧電素子部4が形成さ
れ、この圧電素子部4に所定の高周波電圧が印加
されると対向辺3が屈曲振動により共振する振動
子1と、各対向辺3の隣合う圧電素子部4に位相
差を持たせて高周波電圧を印加する電源装置5
と、振動子1の対向辺3の各1面に設けた永久磁
石7と、この永久磁石7と接触せしめられる磁性
体よりなる被接所部材6とを備え、振動子1の対
向辺3の最大振幅点が円または楕円運動をするこ
とにより、被接触部材6または振動子1のいずれ
かが駆動されるものである。この場合、永久磁石
7の円または楕円運動によつて被接触部材6との
間に磁束の変化が生じ、円または楕円運動に伴な
つて接触および磁力により駆動される。また、振
動子1と被接触部材6との間に磁力で接触力が得
られる。
Embodiment A first embodiment of the present invention will be described based on FIGS. 1 to 6. This piezoelectric drive device is an example applied to a linear motor, and a vibrator 1 is formed by a vibrating member 2 made of a metal elastic material. That is, in this piezoelectric drive device, a piezoelectric element portion 4 is formed by pasting piezoelectric elements on two adjacent sides of a pair of opposing sides 3, each of which is formed in a U-shape and has a rectangular cross-section. When a predetermined high-frequency voltage is applied to the element section 4, the high-frequency voltage is applied to the vibrator 1 whose opposing sides 3 resonate by bending vibration, and to the adjacent piezoelectric element sections 4 on each opposing side 3 with a phase difference. Power supply device 5
, a permanent magnet 7 provided on each side of the opposite side 3 of the vibrator 1, and a contact member 6 made of a magnetic material that is brought into contact with the permanent magnet 7. Either the contacted member 6 or the vibrator 1 is driven by the circular or elliptical movement of the maximum amplitude point. In this case, the circular or elliptical motion of the permanent magnet 7 causes a change in magnetic flux between the permanent magnet 7 and the contacted member 6, and the permanent magnet 7 is driven by contact and magnetic force along with the circular or elliptical motion. Further, contact force is obtained between the vibrator 1 and the contacted member 6 by magnetic force.

振動部材2はエリンバ等の恒弾性体を用いてい
るが、精度や大振幅が不要のときは、一般の鋼材
を用いても良く、またその他の金属やセラミツク
等を用いることもできる。振動部材2が磁性体で
あれば、磁束の変化量が大きく、駆動効率が向上
する。振動子1の各対向辺3の断面形状は方形で
あるが、各角部に面取りを施して8角形状の断面
形状としてもよく、また面取りの代りに角部を丸
めてもよい。要は、対向辺3は互いに直角に隣合
う4面を有する断面形状であればよい。振動子1
の基端部2aは、固定しても振動に影響を与えな
い長さをとり、第2図のように基台21に固定し
てある。基台21に対し、被接触部材6は相対的
に第1図の矢印P方向へ進退移動自在にガイド手
段(図示せず)で支持してある。被接触部材6
は、対抗辺3の圧電素子部4が貼着されていない
各1面における先端部であるX点およびY点(第
4図B)に接するように配置してある。なお、必
ずしも先端部に接するようにしなくてもよい。ま
た、被接触部材6は、対抗辺3の圧電素子部4が
貼着された1面における圧電素子部4の貼着され
ていない部分に接触するようにしてもよい。さら
に、振動子1は、一対の対抗辺3の3面または4
面に圧電素子部4を貼着し、対向辺3の圧電素子
部4が貼着されていない1面、または圧電素子部
4が貼着された1面における圧電素子部4の貼着
されていない部分に被接触部材6が接するように
してもよい。これらの例において、対向辺3の圧
電素子部4は貼着された面に、絶縁部材を介して
被接触部材6が接するようにしてもよい。
The vibrating member 2 is made of a constant elastic material such as Erinba, but if accuracy and large amplitude are not required, general steel material, other metals, ceramics, etc. may also be used. If the vibrating member 2 is made of a magnetic material, the amount of change in magnetic flux is large and drive efficiency is improved. Although the cross-sectional shape of each opposing side 3 of the vibrator 1 is rectangular, each corner may be chamfered to have an octagonal cross-sectional shape, or the corners may be rounded instead of chamfered. In short, the opposing sides 3 only need to have a cross-sectional shape having four sides adjacent to each other at right angles. Vibrator 1
The base end portion 2a has a length that does not affect vibration even when fixed, and is fixed to a base 21 as shown in FIG. 2. The contact member 6 is supported by guide means (not shown) so as to be movable forward and backward relative to the base 21 in the direction of arrow P in FIG. Contacted member 6
are arranged so as to be in contact with point X and point Y (FIG. 4B), which are the tips of each side of the opposite side 3 to which the piezoelectric element portion 4 is not attached. Note that it does not necessarily have to be in contact with the tip. Further, the contacted member 6 may be brought into contact with a portion of the opposing side 3 on which the piezoelectric element portion 4 is not attached on one side thereof. Further, the vibrator 1 has three or four faces of a pair of opposing sides 3.
The piezoelectric element part 4 is pasted on the surface, and the piezoelectric element part 4 is pasted on one side on the opposite side 3 where the piezoelectric element part 4 is not pasted, or on the one side where the piezoelectric element part 4 is pasted. The to-be-contacted member 6 may be brought into contact with a portion that is not present. In these examples, the surface to which the piezoelectric element portion 4 of the opposing side 3 is attached may be brought into contact with the contacted member 6 via an insulating member.

電源装置5は、第6図に示すように高周波電源
8と90°位相器9とを有し、各圧電素子部4(41
〜44)に同図のように電圧を印加する。同図の
+、−の符号は分極方向を示す。
The power supply device 5 has a high frequency power supply 8 and a 90° phase shifter 9 as shown in FIG .
4 4 ) as shown in the same figure. The + and - signs in the figure indicate the polarization direction.

動 作 振動体2の2本の対向辺3の各圧電素子部41
〜44に、第6図の電源装置5で高周波電圧を印
加して励振すると、各対向辺3はそれぞれの圧電
素子部41〜44の励振に従つて縦および横方向に
振動する。このとき圧電素子部42,44には圧電
素子部41,43よりも90°位相を遅らせた電圧を
印加すると、振動子1の対向辺3の先端部のX
点、Y点は、第5図の様な円または楕円軌道を描
いて運動する。したがつて、対向辺3の1面に被
接触部材6が接触するように配置してあると、被
接触部材6は矢印P方向に直線的に移動する。X
点、Y点の楕円軌道の偏平度は、対向辺3の曲げ
方向による曲げ剛性の違いや、各圧電素子部41
〜44に印加する電圧の大きさ、位相差等により
調整できる。
Operation Each piezoelectric element portion 4 on the two opposing sides 3 of the vibrating body 2
4 4 , when a high frequency voltage is applied and excited by the power supply device 5 of FIG. 6, each opposing side 3 vibrates in the vertical and horizontal directions in accordance with the excitation of the respective piezoelectric element portions 4 1 to 4 4 . At this time, when a voltage whose phase is delayed by 90° than that of the piezoelectric element parts 4 1 and 4 3 is applied to the piezoelectric element parts 4 2 and 4 4 , the X
The point, Y point, moves in a circular or elliptical orbit as shown in FIG. Therefore, when the contacted member 6 is arranged so as to be in contact with one surface of the opposing side 3, the contacted member 6 moves linearly in the direction of the arrow P. X
The flatness of the elliptical orbits of points and Y points is determined by the difference in bending rigidity depending on the bending direction of the opposing sides 3 and by the difference in bending rigidity of each piezoelectric element part 4 1
~4 It can be adjusted by adjusting the magnitude of the voltage applied to 4 , the phase difference, etc.

圧電素子部42,44に90°進み位相の電圧を印
加すれば、第5図と反対回りの軌道を描くことに
なり、被接触部材6は矢印Pと逆方向に移動す
る。
If a voltage with a 90° advance phase is applied to the piezoelectric elements 4 2 and 4 4 , the contact member 6 will move in the opposite direction to the arrow P, drawing a trajectory opposite to that shown in FIG. 5 .

この時、振動子の先端部の永久磁石7と磁性体
よりなる被接触部材6は、互いに吸引し合つて一
定の接触力を維持し、さらに振動子1の円または
楕円運動に従つて永久磁石7の磁束変化により被
接触部材6が移動する。すなわち、前記接触力に
よる摩擦駆動力と磁力による駆動力とを加えた駆
動力を得ることができる。
At this time, the permanent magnet 7 at the tip of the vibrator and the contacted member 6 made of a magnetic material attract each other and maintain a constant contact force, and furthermore, the permanent magnet 7 at the tip of the vibrator 1 The contacted member 6 moves due to the change in magnetic flux 7. That is, it is possible to obtain a driving force that is the sum of the frictional driving force due to the contact force and the driving force due to the magnetic force.

このように動作するが、各振動子1はコ字状と
してあるので、その両対向辺3が互いに共振し、
大きな振幅が得られる。そのため、電気的エネル
ギを効率良く機械的駆動力に変換できる。また、
振動子1の共振は、2本の対向辺3が連続した基
端部2aにおいて第3図Aのように非振動状態と
なるように行われるので、基端部2aを支持部と
することにより、支持によつて振動を妨げること
がなく、このことからも高効率が得られる。ま
た、このように振動子1に振動しない箇所がある
ことから、振動子1と被接触部材6のいずれを固
定側としても可動側としても用いることができ
る。さらに、振動子1は2本の対向辺3を有し、
この部分で被接触部材6に接するので、接触点が
多点化される。そのため、摩耗が軽減され、かつ
安定した駆動が可能となる。
It operates in this way, but since each vibrator 1 is U-shaped, its opposite sides 3 resonate with each other,
Large amplitude can be obtained. Therefore, electrical energy can be efficiently converted into mechanical driving force. Also,
The resonance of the vibrator 1 is performed so that the base end 2a where the two opposing sides 3 are continuous is in a non-vibrating state as shown in FIG. 3A, so by using the base end 2a as a support part, , vibrations are not hindered by the support, which also provides high efficiency. Furthermore, since there are parts of the vibrator 1 that do not vibrate as described above, either the vibrator 1 or the contacted member 6 can be used as either a fixed side or a movable side. Furthermore, the vibrator 1 has two opposing sides 3,
Since this portion contacts the member to be contacted 6, the number of contact points is multiplied. Therefore, wear is reduced and stable driving is possible.

この実施例では、対向辺3を第3図Aのように
1次モードで振動させる場合につき説明したが、
第3図B,Cに示すように、2次モードや3次モ
ード等、高次モードで振動させると、対向辺3の
被接触部材6に対する接触点をより一層多くでき
る。これにより、接触点における摩耗をより一層
少なくし、かつ動作の安定を図ることができる。
1次モードは、対向辺3の長手方向につき、1枚
の圧電素子部4を貼り付けた場合に発生する。2
次モードは、この1枚の圧電素子部4を長手方向
に2分割し、分極方向を反対にして貼付けたとき
に発生する。3次モードは、1枚の圧電素子部4
を長手方向に3分割し、中央の分割圧電素子と両
側の分割圧電素子の分極方向を反対として貼り付
け、各分割圧電素子の同一面側の電極を共通とし
て同一の電圧を印加したときに発する振幅モード
を示す。
In this embodiment, the case where the opposing side 3 is vibrated in the first mode as shown in FIG. 3A has been explained.
As shown in FIGS. 3B and 3C, by vibrating in a higher-order mode such as a second-order mode or a third-order mode, the number of contact points of the opposite side 3 with the contacted member 6 can be further increased. This makes it possible to further reduce wear at the contact points and stabilize the operation.
The primary mode occurs when one piezoelectric element portion 4 is attached to the opposite side 3 in the longitudinal direction. 2
The next mode occurs when this single piezoelectric element section 4 is divided into two parts in the longitudinal direction and pasted together with the polarization directions reversed. In the tertiary mode, one piezoelectric element section 4
is divided into three parts in the longitudinal direction, and the piezoelectric elements in the center and the divided piezoelectric elements on both sides are pasted with opposite polarization directions, and when the same voltage is applied to each divided piezoelectric element using a common electrode on the same side, it emits. Indicates amplitude mode.

なお、第1図ないし第6図に示した第1の実施
例では、振動子1側に永久磁石7を設け、被接触
部材6を磁性体としたが、この逆に被接触部材6
を永久磁石とし、振動子1を単に磁性体としても
よい。前記磁性体は永久磁石を含むものであり、
被接触部材6と振動子1の両方を永久磁石として
もよい。
In the first embodiment shown in FIGS. 1 to 6, the permanent magnet 7 is provided on the side of the vibrator 1, and the contacted member 6 is made of a magnetic material.
may be a permanent magnet, and the vibrator 1 may be simply a magnetic material. The magnetic body includes a permanent magnet,
Both the contacted member 6 and the vibrator 1 may be permanent magnets.

第7図以下に説明する各実施例においても、被
接触部材と振動子のいずれを永久磁石としてもよ
い。要は、振動子の対向辺の最大振幅部と振動子
の前記対向辺と接触する部分の少なくとも一部と
のいずれか一方を永久磁石とし、他方を磁性体と
してあればよい。
In each of the embodiments described below in FIG. 7, either the contacted member or the vibrator may be a permanent magnet. In short, it is sufficient that one of the maximum amplitude portion of the opposite side of the vibrator and at least a part of the portion of the vibrator that contacts the opposite side is a permanent magnet, and the other is a magnetic material.

第7図は、1個のコ字状の振動部材2からなる
振動子1を用いて回転モータとした実施例を示
す。永久磁石よりなる被接触部材16は円板状に
形成し、その軸18を軸受19で基台17に回転
自在に支持してある。磁性体よりなる振動子1
は、基端部2aで基台17の立片部分に固定して
ある。振動子1の2本の対向辺3は被接触部材1
6と平行に配置し、その先端部が被接触部材16
の外周縁に位置するようにする。対向辺3の先端
には摩擦片20をつけ、2本の振動子3が同方向
に円運動するように振動させ、被接触部材16が
回転するようにしてある。その他は第1の実施例
と同様である。
FIG. 7 shows an embodiment in which a vibrator 1 consisting of one U-shaped vibrating member 2 is used as a rotary motor. The contact member 16 made of a permanent magnet is formed into a disk shape, and its shaft 18 is rotatably supported on a base 17 by a bearing 19. Vibrator 1 made of magnetic material
is fixed to the vertical piece of the base 17 at the base end 2a. The two opposing sides 3 of the vibrator 1 are the contacted member 1
6, and its tip end is connected to the contacted member 16.
so that it is located on the outer periphery of the A friction piece 20 is attached to the tip of the opposing side 3, and the two vibrators 3 are vibrated so as to move circularly in the same direction, so that the contacted member 16 is rotated. The rest is the same as the first embodiment.

第8図および第9図は、2個のコ字状の磁性体
よりなる振動部材2を間隔を開けて重合的に配置
し、上下の振動部材2の間に永久磁石よりなる被
接触部材6′を配置したものである、上下の振動
子1は互いに基端部2aでスペーサ(図示せず)
を介して重ね合わせてある。なお、スペーサを用
いずに基台(図示せず)に各振動子1を個別に取
付けてもよい。振動子101の対向辺3の各点
m,n,p,qは、圧電素子部4により第9図の
ように振動させられ、被接触部材6′は上下両面
で各対向辺3に接して直進駆動させる。この場
合、2個の振動子1で駆動するので、より一層大
出力の駆動力が得られ、かつ動作が安定する。そ
の他は、第1の実施例と同様である。両振動部材
2は、第10図のように基端部2a′で互いに一体
化させ、1個の振動子1′としてもよい。
FIGS. 8 and 9 show two U-shaped vibrating members 2 made of magnetic materials arranged in a superimposed manner with an interval between them, and a contacted member 6 made of a permanent magnet between the upper and lower vibrating members 2. ′, the upper and lower vibrators 1 are connected to each other by a spacer (not shown) at the base end 2a.
They are superimposed via . Note that each vibrator 1 may be individually attached to a base (not shown) without using a spacer. Each point m, n, p, q on the opposite side 3 of the vibrator 101 is vibrated by the piezoelectric element 4 as shown in FIG. Drive straight ahead. In this case, since the two vibrators 1 are used for driving, an even larger output driving force can be obtained, and the operation can be stabilized. The rest is the same as the first embodiment. Both vibrating members 2 may be integrated with each other at the base end portion 2a' as shown in FIG. 10 to form one vibrator 1'.

第11図は、2個のコ字状の振動体2を互いに
反対向きとして一体のH形の振動子1″を構成し
た例である。この振動子1″は、例えば第12図
のように用いる。すなわち、磁性体よりなる振動
子1′の中心部に軸31を固定し、軸31は基台
37に固定し、軸受38の装着された円板状の永
久磁石よりなる接触部材36を軸31に嵌めて回
転自在とし、4本の対向辺3の先端を被接触部材
36の外周縁に配置する。そして、各圧電素子部
4により、4本の対向辺3の先端が同じ方向に円
運動するように撓ませることにより、被接触部材
36が回転し、回転型のモータを構成する。その
他は第1の実施例と同様である。
FIG. 11 shows an example in which two U-shaped vibrating bodies 2 are oriented in opposite directions to form an integrated H-shaped vibrator 1''. use That is, a shaft 31 is fixed to the center of a vibrator 1' made of a magnetic material, the shaft 31 is fixed to a base 37, and a contact member 36 made of a disc-shaped permanent magnet on which a bearing 38 is attached is attached to the shaft 31. The tip of the four opposing sides 3 is placed on the outer periphery of the contacted member 36. Then, by bending the ends of the four opposing sides 3 so as to make a circular motion in the same direction by each piezoelectric element portion 4, the contacted member 36 rotates, thereby forming a rotary motor. The rest is the same as the first embodiment.

第13図ないし第15図は、1個のロ字状の振
動部材102からなる振動子101を用いた実施
例を示す。この例では、1次モードの振動とした
場合、対向辺103の中央部の点が円または楕円
運動し、その平面部に被接触部材106を接触さ
せると、中央部の円または楕円運動により、被接
触部材106は移動することになる。被接触部材
106は矢印Q方向に直接的に進退自在に支持し
てリニアモータとすることもでき、また被接触部
材106を回転自在に支持して回転型モータとす
ることもできる。この例の場合、1次モードでは
第15図Aのような振動となり、2次モードおよ
び3次モードではそれぞれ第15図B,Cのよう
な振動となる。121は、基台である。圧電素子
部4の分極方法は前述の同様である。その他の構
成効果は第1の実施例と同様である。
FIGS. 13 to 15 show an embodiment using a vibrator 101 consisting of one square-shaped vibrating member 102. FIG. In this example, when the vibration is in the first mode, the point at the center of the opposing side 103 moves in a circle or an ellipse, and when the contacted member 106 is brought into contact with the plane part, the circular or ellipse movement at the center causes The contacted member 106 will move. The contacted member 106 can be directly supported so as to move forward and backward in the direction of the arrow Q to form a linear motor, or the contacted member 106 can be supported rotatably to form a rotary motor. In this example, the vibrations are as shown in FIG. 15A in the primary mode, and the vibrations as shown in FIGS. 15B and C in the secondary and tertiary modes, respectively. 121 is a base. The method of polarizing the piezoelectric element portion 4 is the same as described above. Other structural effects are the same as in the first embodiment.

第16図および第17図は、ロ字状の磁性体よ
りなる振動子101を、スペーサ105を介して
2枚重合的に配置し、両振動子101の間に永久
磁石よりなる被接触部材106を矢印Q方向に直
線的に進退自在に配置したものである。4本の対
向辺103は第9図の運動をするように圧電素子
部4を取付ける。その他は第1の実施例と同様で
ある。
16 and 17, two rectangular-shaped vibrators 101 made of magnetic material are arranged in a superposed manner with a spacer 105 in between, and a contacted member 106 made of a permanent magnet is placed between both vibrators 101. are arranged so that they can move forward and backward in a straight line in the direction of arrow Q. The piezoelectric element portion 4 is attached to the four opposing sides 103 so as to move as shown in FIG. The rest is the same as the first embodiment.

なお、前記各実施例では、対向辺3,103の
隣り合う2面のみに圧電素子部4を貼り付けた
が、3面に圧電素子部4を貼り付けても、また4
面に貼付けてもよい。3面に貼付けた場合は、残
りの1面に被接触部材6,6′,106を接触さ
せるようにすることが望ましい。4面に貼付けた
場合は、絶縁部材を介して対向辺3と被接触部材
6,6′,106とを接触させることが望ましい。
絶縁部材は6,6′,106側に設けても、対向
辺3側に設けてもよい。
In each of the above embodiments, the piezoelectric element part 4 was attached only to two adjacent sides of the opposing sides 3, 103, but even if the piezoelectric element part 4 was attached to three sides,
You can also paste it on the surface. When pasting on three surfaces, it is desirable that the contacted members 6, 6', and 106 be brought into contact with the remaining one surface. In the case of pasting on four sides, it is desirable that the opposing sides 3 and the contacted members 6, 6', 106 are brought into contact with each other via an insulating member.
The insulating member may be provided on the 6, 6', and 106 sides, or may be provided on the opposing side 3 side.

第18図ないし第20図は、各々振動子401
〜401″を圧電材料で形成し、直接に圧電素子
部404〜404″を形成した実施例を示す。圧
電材料としては、PZT(ジルコンチタン酸鉛磁
器)等の圧電セラミツク、または圧電セラミツク
とプラスチツクとの複合圧電材料等が用いられ
る。なお、これら圧電材料は磁性を有しないが、
プラスチツクと磁性材料との混合物に内電セラミ
ツクスを混合した材料で形成し、振動子401〜
401″の全体に磁性体としての特徴を持たせて
も良い。また、磁性材料を混合する代わりに、振
動子401〜401″に後述のように設ける各電
極を磁性材料で形成し、振動子401〜401″
に磁性体としての効果を持たせても良い。
18 to 20 each show a vibrator 401
401'' is formed of a piezoelectric material, and an embodiment in which piezoelectric element portions 404 to 404'' are directly formed is shown. As the piezoelectric material, a piezoelectric ceramic such as PZT (lead zirconium titanate porcelain) or a composite piezoelectric material of piezoelectric ceramic and plastic is used. Although these piezoelectric materials do not have magnetism,
The vibrators 401-
401'' may have the characteristics of a magnetic material.Also, instead of mixing magnetic materials, each electrode provided on the vibrators 401 to 401'' as described later may be formed of a magnetic material, and the vibrator 401~401″
may have the effect of a magnetic substance.

第18図の例は、振動子401を1個のコ字形
振動部材402からなるものとし、方形断面形状
の対向辺403の隣り合う2面に、1次モードの
縦効果を利用した圧電素子部404を直接に形成
したものである。各圧電素子部404は、対向辺
404の長手方向と垂直な複数本の電極a1,b1
前記長手方向に配列し、これら1本おきの電極
a1,b1どうしを接続部a2,b2で接続して2組の電
極組a,bを形成する。すなわち、電極a1,b1
横方向に交差指状に設ける。これら2組の電極組
a,b間に直流電圧を印加して、分極処理を施
す、図の+,−は分極の極性を示す。このように
分極処理して、第6図の電源装置5と同様な電源
装置により高周波電圧を印加すれば、対向辺40
3は圧電素子部404の主として圧電縦効果によ
る伸縮が生じ、屈曲振動を行う。また、対向辺4
03の隣合う2面の圧電素子部404に位相差を
持つ電圧を印加すれば、対向辺403の先端は円
または楕円運動を行う。なお、各圧電素子部40
4の電極a1,b1は2本だけでもよい。
In the example shown in FIG. 18, the vibrator 401 is made up of one U-shaped vibrating member 402, and piezoelectric elements using the longitudinal effect of the first mode are provided on two adjacent sides of the opposing sides 403 of a rectangular cross-sectional shape. 404 is directly formed. Each piezoelectric element section 404 has a plurality of electrodes a 1 and b 1 arranged perpendicularly to the longitudinal direction of the opposing side 404, and every other electrode
Two electrode sets a and b are formed by connecting a 1 and b 1 to each other at connecting portions a 2 and b 2 . That is, the electrodes a 1 and b 1 are provided in an interdigital pattern in the lateral direction. A DC voltage is applied between these two electrode sets a and b to perform a polarization process. + and - in the figure indicate the polarity of polarization. If polarization is performed in this way and a high frequency voltage is applied by a power supply device similar to the power supply device 5 in FIG.
3, the piezoelectric element portion 404 expands and contracts mainly due to the piezoelectric longitudinal effect, thereby causing bending vibration. Also, the opposite side 4
When voltages having a phase difference are applied to the piezoelectric element portions 404 on two adjacent sides of 03, the tips of the opposing sides 403 perform circular or elliptical motion. Note that each piezoelectric element section 40
Only two electrodes a 1 and b 1 may be provided in No. 4.

第19図の例は、対向辺403′の隣り合う2
面に、圧電横効果を利用し圧電素子部404′を
形成したものである。この例では、電極c,dは
縦方向の交差指状に設ける。すなわち、各圧電素
子部404′は、対向辺403′の長手方向に沿つ
て2本または多数本の平行な電極c,dからなる
交差指電極を形成する。この電極c,d間に直流
電圧を印加して分極処理を施す。図の+,−は分
極の極性を示す。このように分極処理して電極
c,d間に高周波電圧を印加すれば、対向辺40
3′は圧電素子部404′の圧電横効果による伸縮
を生じ屈曲振動を行う。その他の構成作用は、第
18図の実施例と同様である。
In the example of FIG. 19, two adjacent sides of the opposite side 403'
A piezoelectric element portion 404' is formed on the surface by utilizing a piezoelectric transverse effect. In this example, the electrodes c and d are arranged in a vertically interdigitated manner. That is, each piezoelectric element portion 404' forms an interdigital electrode consisting of two or many parallel electrodes c and d along the longitudinal direction of the opposing side 403'. A DC voltage is applied between the electrodes c and d to perform polarization treatment. + and - in the figure indicate the polarity of polarization. If a high frequency voltage is applied between electrodes c and d after polarization treatment in this way, the opposite side 40
3' causes the piezoelectric element portion 404' to expand and contract due to the piezoelectric transverse effect, thereby performing bending vibration. Other structural functions are similar to the embodiment shown in FIG. 18.

第20図の例は、振動子401″が1個のロ字
状の振動部材402″の2次の屈曲モードを利用
する実施例で、各対向辺403″の隣合う2面の
各々に圧電横効果を利用した圧電素子部404″
を2個づつ形成したものである。すなわち、対向
辺403″に長手方向中央部の両側に位置して、
長手方向に沿う電極e,fを2本ずつ平行に4本
設け、平行な2本ずつ1組としてこの2本の間に
直流電圧を印加して分極処理する、このとき、1
組目の電極e,fと2組目の電極e,fとは極性
を反対にして分極し、同相の高周波電圧を印加す
るかまたは、分極を同一方向とし反対の極性を高
周波電圧を印加する。
The example shown in FIG. 20 is an embodiment in which the vibrator 401'' utilizes the second-order bending mode of one square-shaped vibrating member 402'', and the piezoelectric Piezoelectric element section 404″ using transverse effect
Two pieces each were formed. That is, located on both sides of the central part in the longitudinal direction on the opposing sides 403'',
Four electrodes e and f along the longitudinal direction are provided in parallel, two each, and a set of two parallel electrodes is formed, and a DC voltage is applied between these two electrodes to perform polarization.
The electrodes e, f of the first set and the electrodes e, f of the second set are polarized with opposite polarities and a high frequency voltage of the same phase is applied, or the polarization is set in the same direction and a high frequency voltage of opposite polarity is applied. .

これら第18図ないし第20図の振動子401
〜401″を用いて前記各実施例と同様に接触部
材6,36等と組合せることにより、往復動型ま
たは回転型等の圧電駆動装置が構成される。
The vibrator 401 in FIGS. 18 to 20
401'' and in combination with the contact members 6, 36, etc. in the same manner as in the above embodiments, a reciprocating type or rotary type piezoelectric drive device is constructed.

なお、これら第18図ないし第20図の例の同
様に、第10図、第11図、第16図の例のよう
に振動子が複数個の振動部材からなるものにおい
ても、振動子を圧電材料で形成して直接に電極を
形成することもできる。
Similarly to the examples shown in FIGS. 18 to 20, even in cases where the vibrator is composed of a plurality of vibrating members as in the examples shown in FIGS. 10, 11, and 16, the vibrator is piezoelectric. It is also possible to form the electrode directly by forming the material.

また、貼付けの場合と同様に、対向辺403〜
403″の3面または4面に圧電素子部404〜
404″を設けることもでき、さらに高次モード
で対向辺403〜403″を振動させるように構
成することもできる。
Also, as in the case of pasting, the opposite sides 403 to
Piezoelectric element parts 404~ on 3 or 4 sides of 403''
404'' may also be provided, and it may also be configured to vibrate the opposing sides 403 to 403'' in a higher order mode.

このように、振動子401〜401″に圧電セ
ラミツク等の圧電材料を用いて振動子401〜4
01″に圧素電子部404〜404″を直接に形成
することにより、圧電素子の貼着が省略でき、接
着層がないことから性能の安定が図れる。また、
圧電素子を貼付けたものと異なり、貼付け誤差に
よる特性のばらつきがなく、かつ工数に削減され
生産性が向上する。しかも、形状的にも複雑なも
のが可能となり、コスト面および性能面で有利な
圧電駆動装置が構成できる。
In this way, the vibrators 401 to 401'' are made of piezoelectric material such as piezoelectric ceramic.
By forming the piezoelectric elements 404 to 404'' directly on the piezoelectric elements 404 to 404'', it is possible to omit pasting the piezoelectric elements, and since there is no adhesive layer, the performance can be stabilized. Also,
Unlike those in which piezoelectric elements are pasted, there is no variation in characteristics due to pasting errors, and the number of man-hours is reduced, improving productivity. Furthermore, it is possible to create a piezoelectric drive device that is complex in shape, and is advantageous in terms of cost and performance.

〔発明の効果〕〔Effect of the invention〕

この発明の圧電駆動装置は、振動子をコ字状ま
たはロ字状としてあるので、その両対向辺が互い
に共振し、大きな振幅が得られる。しかも、振動
子と被接触部材との間に永久磁石と磁性体を設け
ているので、一定の接触力が極めて簡易に得ら
れ、さらに磁力による駆動力の増加があり、その
ため、電気的エネルギを効率良く機械的駆動力に
変換できる。
In the piezoelectric drive device of the present invention, since the vibrator is U-shaped or square-shaped, both opposing sides resonate with each other and a large amplitude can be obtained. Moreover, since a permanent magnet and a magnetic body are provided between the vibrator and the contacted member, a constant contact force can be obtained extremely easily, and the driving force is increased by the magnetic force, which reduces electrical energy. It can be efficiently converted into mechanical driving force.

また、振動子の共振は、2本の対向辺が連続し
た基端部において非振動状態となるように行われ
るので、基端部を支持部とすることにより、支持
によつて振動を妨げることがなく、このことから
も高効率が得られる。また、このように振動子に
振動しない箇所があることから、振動子と被接触
部材のいずれかを固定側としても可動側としても
用いることができる。さらに、振動子は2本の対
向辺を有し、この部分で被接触部材に接するの
で、接触点が多点化される。そのため、摩耗が軽
減され、かつ安定した駆動が可能となるという効
果がある。
In addition, since the resonance of the vibrator occurs in a non-vibrating state at the base end where two opposing sides are continuous, by using the base end as a support part, vibration can be prevented by the support. This also results in high efficiency. Furthermore, since the vibrator has a portion that does not vibrate, either the vibrator or the contacted member can be used as either a fixed side or a movable side. Furthermore, since the vibrator has two opposing sides and contacts the contacted member at these portions, the number of contact points is multiplied. This has the effect of reducing wear and enabling stable driving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の斜視図、第2図
はその破断側面図、第3図は同じくその振動モー
ドの説明図、第4図Aは同じくその振動子の平面
図、第4図Bは同じくその正面図、第5図は同じ
くその動作説明図、第6図ば同じくその電源装置
のブロツク図、第7図A,Bはそれぞれ他の実施
例の平面図および破断側面図、第8図Aはさらに
他の実施例の平面図、第8図Bはその正面図、第
9図は同じくその動作説明図、第10図はさらに
他の実施例の振動子の斜視図、第11図はさらに
他の実施例の振動子の斜視図、第12図A,Bは
それぞれその全体の破断平面図および縦断側面
図、第13図はさらに他の実施例の斜視図、第1
4図はその破断側面図、第15図は同じくその振
動モードの説明図、第16図はさらに他の実施例
の振動子の斜視図、第17図はその全体の斜視
図、第18図ないし第20図はそれぞれ互いに異
なるさらに他の実施例における振動子の斜視図で
ある。 1,1′,1″,101,401〜401″……
振動子、2,102,402,402′,40
2″……振動部材、3,103,303,30
3′,303″……対向辺、4,41〜44,40
4,404′,404″……圧電素子部、5……電
源装置置、6,6′,16,106,206,3
06……被接触部材、7……永久磁石。
FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is a cutaway side view thereof, FIG. 3 is an explanatory diagram of its vibration mode, FIG. Figure B is a front view of the same, Figure 5 is an explanatory diagram of its operation, Figure 6 is a block diagram of the power supply device, Figures 7A and B are a plan view and a cutaway side view of other embodiments, respectively. FIG. 8A is a plan view of yet another embodiment, FIG. 8B is a front view thereof, FIG. 9 is an explanatory diagram of its operation, and FIG. 11 is a perspective view of a vibrator according to another embodiment, FIGS. 12A and 12B are a cutaway plan view and a longitudinal side view of the entire vibrator, respectively, and FIG. 13 is a perspective view of still another embodiment.
FIG. 4 is a cutaway side view of the same, FIG. 15 is an explanatory diagram of its vibration mode, FIG. 16 is a perspective view of a vibrator of another embodiment, FIG. 17 is a perspective view of the entire vibrator, and FIGS. FIG. 20 is a perspective view of a vibrator in still another embodiment different from each other. 1,1',1'',101,401~401''...
Vibrator, 2, 102, 402, 402', 40
2″……Vibration member, 3,103,303,30
3', 303''...opposite side, 4, 4 1 to 4 4, 40
4,404',404''...Piezoelectric element section, 5...Power supply unit, 6,6',16,106,206,3
06... Contacted member, 7... Permanent magnet.

Claims (1)

【特許請求の範囲】 1 振動子1と、電源装置5と、被接触部材6と
を有する圧電駆動装置であつて、 前記振動子1は弾性を有する材料によりコ字状
および口の字状のいずれかの形状に形成され、か
つ一対の対向辺3の断面形状が各々ほぼ方形に形
成され、それぞれ少なくとも隣合う2面に圧電素
子部4を有してなり、 前記電源装置5は前記各対向辺3の隣合う圧電
素子部4に位相差を持たせて高周波電圧を印加す
ることにより前記各対向辺3の最大振幅部を円ま
たは楕円運動させるものであり、 前記被接触部材6は前記振動子1の対向辺3と
接触するものであり、 前記振動子1の前記対向辺3の最大振幅部と前
記被接続部材6の前記対向辺3と接触する部分の
少なくとも一部とのいずれか一方を永久磁石7と
し、地方を磁性体とし、 さらに前記被接触部材6または振動子1のいず
れかが移動可能である圧電駆動装置。 2 前記圧電素子部は、前記振動子に圧電素子を
貼着して形成される特許請求の範囲第1項記載の
圧電駆動装置。 3 前記振動子は圧電セラミツクで構成し、前記
圧電素子部はこの圧電セラミツクに駆動用電極を
直接形成してなる特許請求の範囲第1項記載の圧
電駆動装置。 4 前記振動子は、1個の振動部材からなる特許
請求の範囲第2項または第3項記載の圧電駆動装
置。 5 前記振動子は、2個の振動部材からなる特許
請求の範囲第2項または第3項記載の圧電駆動装
置。 6 前記2個の振動子は、所定の間隔を介在させ
て重合的に配設され、前記被接触部材が前記振動
子の2対の対向辺に接触される特許請求の範囲第
5項記載の圧電駆動装置。 7 前記2個の振動子は、個々の前記振動部材が
コ字状をなすものであつてH型に配設され、前記
被接触部材が前記振動子の2対の対向辺に接触さ
れている特許請求の範囲第5項記載の圧電駆動装
置。 8 前記被接触部材は平板状に形成され、前記被
接触部材または前記振動子のいずれかが直線的に
駆動される特許請求の範囲第2項または第3項記
載の圧電駆動装置。 9 前記被接触部材は、円板状に形成され、前記
被接触部材または前記振動子のいずれかが回転的
に駆動される特許請求の範囲第2項または第3項
記載の圧電駆動装置。 10 前記振動子の材質は磁性体である特許請求
の範囲第1項ないし第9項のいずれかに記載の圧
電駆動装置。 11 前記振動子は永久磁石でない磁性体よりな
り、前記被接触部材の前記対向辺と接触する部分
が永久磁石よりなる特許請求の範囲第1項ないし
第9項のいずれかに記載の圧電駆動装置。
[Scope of Claims] 1. A piezoelectric drive device including a vibrator 1, a power supply device 5, and a contacted member 6, wherein the vibrator 1 is made of an elastic material and has a U-shape and an open-shape shape. The power supply device 5 is formed in any shape, and each of the pair of opposing sides 3 has a substantially rectangular cross-sectional shape, and each has a piezoelectric element portion 4 on at least two adjacent sides, and the power supply device 5 By applying a high frequency voltage to adjacent piezoelectric element portions 4 of sides 3 with a phase difference, the maximum amplitude portion of each of the opposing sides 3 is caused to move in a circular or elliptical manner, and the contacted member 6 is caused to move in a circular or elliptical manner. one of the maximum amplitude part of the opposing side 3 of the vibrator 1 and at least a part of the part of the connected member 6 that comes into contact with the opposing side 3; A piezoelectric drive device in which a permanent magnet 7 is used, a magnetic material is used, and either the contacted member 6 or the vibrator 1 is movable. 2. The piezoelectric drive device according to claim 1, wherein the piezoelectric element portion is formed by adhering a piezoelectric element to the vibrator. 3. The piezoelectric drive device according to claim 1, wherein the vibrator is made of piezoelectric ceramic, and the piezoelectric element portion has drive electrodes formed directly on the piezoelectric ceramic. 4. The piezoelectric drive device according to claim 2 or 3, wherein the vibrator includes one vibrating member. 5. The piezoelectric drive device according to claim 2 or 3, wherein the vibrator includes two vibrating members. 6. The method according to claim 5, wherein the two vibrators are arranged in a superimposed manner with a predetermined interval therebetween, and the contacted member is contacted with two pairs of opposing sides of the vibrator. Piezoelectric drive device. 7. The two vibrator members each have a U-shape and are arranged in an H shape, and the contacted member is in contact with two pairs of opposing sides of the vibrator. A piezoelectric drive device according to claim 5. 8. The piezoelectric drive device according to claim 2 or 3, wherein the contacted member is formed into a flat plate shape, and either the contacted member or the vibrator is linearly driven. 9. The piezoelectric drive device according to claim 2 or 3, wherein the contacted member is formed in a disk shape, and either the contacted member or the vibrator is rotationally driven. 10. The piezoelectric drive device according to any one of claims 1 to 9, wherein the vibrator is made of a magnetic material. 11. The piezoelectric drive device according to any one of claims 1 to 9, wherein the vibrator is made of a magnetic material that is not a permanent magnet, and the portion that contacts the opposing side of the contacted member is made of a permanent magnet. .
JP62130314A 1987-05-25 1987-05-25 Piezoelectric driving device Granted JPS63294279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62130314A JPS63294279A (en) 1987-05-25 1987-05-25 Piezoelectric driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62130314A JPS63294279A (en) 1987-05-25 1987-05-25 Piezoelectric driving device

Publications (2)

Publication Number Publication Date
JPS63294279A JPS63294279A (en) 1988-11-30
JPH0470876B2 true JPH0470876B2 (en) 1992-11-12

Family

ID=15031360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62130314A Granted JPS63294279A (en) 1987-05-25 1987-05-25 Piezoelectric driving device

Country Status (1)

Country Link
JP (1) JPS63294279A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101218152A (en) * 2005-02-19 2008-07-09 通用汽车环球科技运作公司 Active material node based reconfigurable structures
JP4756916B2 (en) * 2005-05-31 2011-08-24 キヤノン株式会社 Vibration wave motor
EP3468028A1 (en) * 2017-10-04 2019-04-10 miniswys SA Piezoelectric drive unit
EP3537591B1 (en) * 2018-03-09 2020-11-18 ETA SA Manufacture Horlogère Suisse Rotary piezoelectric motor with axial pre-stressing
EP3787178A1 (en) 2019-08-30 2021-03-03 Miniswys Sa Piezoelectric drive unit
JP2023043037A (en) * 2021-09-15 2023-03-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド ultrasonic motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62277079A (en) * 1986-02-06 1987-12-01 Hiroshi Shimizu Piezoelectric driving device
JPS6356181A (en) * 1986-08-26 1988-03-10 Matsushita Electric Works Ltd Piezo-electric motor
JPS63140675A (en) * 1986-12-01 1988-06-13 Canon Inc Motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149992U (en) * 1985-03-08 1986-09-16

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62277079A (en) * 1986-02-06 1987-12-01 Hiroshi Shimizu Piezoelectric driving device
JPS6356181A (en) * 1986-08-26 1988-03-10 Matsushita Electric Works Ltd Piezo-electric motor
JPS63140675A (en) * 1986-12-01 1988-06-13 Canon Inc Motor

Also Published As

Publication number Publication date
JPS63294279A (en) 1988-11-30

Similar Documents

Publication Publication Date Title
US4742260A (en) Piezoelectrically driving device
CN111464070B (en) Linear ultrasonic motor stator and electric excitation method thereof
JPH0458273B2 (en)
JP2007195389A (en) Ultrasonic motor
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
JPH0470876B2 (en)
JPS62259485A (en) Piezoelectric driving apparatus
JPH0773428B2 (en) Piezoelectric drive
JP2847758B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JPH0470875B2 (en)
JPS63110973A (en) Piezoelectric driver
JPH05137359A (en) Ultrasonic vibrator and ultrasonic driving apparatus
JPH0552137B2 (en)
JPH0458272B2 (en)
JPS63110972A (en) Piezoelectric device
JP2538033B2 (en) Planar ultrasonic actuator
JPH05316756A (en) Ultrasonic oscillator and driver employing thereof
JPH07256207A (en) Ultrasonic oscillator
JPS6356181A (en) Piezo-electric motor
JPH05115846A (en) Ultrasonic vibrator and driver having the same
JPS5989583A (en) Driving device using piezoelectric vibrator
Koc et al. Design of a piezoelectric ultrasonic motor for micro-robotic application
JPH0724956Y2 (en) Ultrasonic linear motor
JPH01308172A (en) Ultrasonic wave driver
JP2538026B2 (en) Planar ultrasonic actuator