JPH01108990A - Production of oil and fat - Google Patents

Production of oil and fat

Info

Publication number
JPH01108990A
JPH01108990A JP62262717A JP26271787A JPH01108990A JP H01108990 A JPH01108990 A JP H01108990A JP 62262717 A JP62262717 A JP 62262717A JP 26271787 A JP26271787 A JP 26271787A JP H01108990 A JPH01108990 A JP H01108990A
Authority
JP
Japan
Prior art keywords
acid
carbon dioxide
dioxide gas
supercritical carbon
ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62262717A
Other languages
Japanese (ja)
Inventor
Kenshiro Fujimoto
健四郎 藤本
Kunio Arai
邦夫 新井
Yasuhisa Noguchi
野口 泰久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP62262717A priority Critical patent/JPH01108990A/en
Publication of JPH01108990A publication Critical patent/JPH01108990A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

PURPOSE:To obtain oils and fats by a safe and simple method industrially advantageously, by treating a glyceride and a fatty acid (ester) with lipase in a supercritical carbon dioxide gas and carrying out ester interchange while removing a fatty acid (ester) prepared as a by-product with the supercritical carbon dioxide gas. CONSTITUTION:Oils and fats containing a glyceride (e.g., fish oil) and a fatty acid (e.g., eicosapentaenoic acid) are subjected to alcoholysis with a lower alcohol such as ethanol into a lower alcohol ester thereof, urea is added saturated acids are removed by urea addition reaction and eicosapentaenoic acid is concentrated and purified with a supercritical carbon dioxide gas. Then the eicosapentaenoic acid and the triglyceride are reacted with lipase, the supercritical carbon dioxide gas is introduced, a fatty acid prepared as a by- product or a lower alcohol ester thereof is dissolved in the supercritical carbon dioxide gas and removed to give the triglyceride subjected to ester exchange.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、油脂の製造方法に関し、特に高濃度エイコサ
ペンタエン酸、ドコサヘキサエン酸を含有したグリセリ
ドの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing fats and oils, and particularly to a method for producing glycerides containing high concentrations of eicosapentaenoic acid and docosahexaenoic acid.

〔従来の技術〕[Conventional technology]

油脂を改質する技術としては、ウィンクリング、水素化
反応、エステル交換反応などが代表的技術として知られ
ている。ウィンクリングは油脂中の飽和脂肪酸の多いグ
リセリドを結晶化させて除くもので、油脂の高融点物質
を除去するために用いられている。また、この方法を極
度に実施すれば不飽和度の高い油脂を製造することがで
きる。水素化反応は、適度な融点をもった油脂を製造す
ることができる。例えば、マーガリン、ショートニング
などの製造に用いられており、−a的に硬化油と呼ばれ
る油脂の製造方法として知られている。
Wink ring, hydrogenation reaction, transesterification reaction, etc. are known as typical techniques for modifying fats and oils. Winkling crystallizes and removes glycerides that are rich in saturated fatty acids from fats and oils, and is used to remove high-melting-point substances from fats and oils. Moreover, if this method is carried out to the extreme, fats and oils with a high degree of unsaturation can be produced. The hydrogenation reaction can produce fats and oils with appropriate melting points. For example, it is used in the production of margarine, shortening, etc., and is known as a method for producing fats and oils called hydrogenated oils.

また、牛脂を極度に水素化することにより、オレイン酸
をステアリン酸とし、ステアリン酸製造の原料とするこ
ともできる。エステル交換反応は、油脂とアルコール、
油脂と脂肪酸、油脂と油脂の間で行われ、工業的にはエ
ステルの製造を始めとしてマーガリン、カカオ代用脂等
の食用油脂分野で用いられている。勿論、これらの技術
は複合して用いられることも多い。
Furthermore, by extremely hydrogenating beef tallow, oleic acid can be converted to stearic acid, which can be used as a raw material for the production of stearic acid. Transesterification is a reaction between fats and oils and alcohol,
It is carried out between oils and fatty acids, and between oils and fats, and is used industrially in the field of edible oils and fats such as margarine and cacao substitutes, as well as the production of esters. Of course, these techniques are often used in combination.

エステル交換反応は、触媒として酸やアルカリ金属を用
いて行うことが一般的であるが、アルカリ金属を用いる
方が反応が速く、低温でも反応が進むため有利である。
The transesterification reaction is generally carried out using an acid or an alkali metal as a catalyst, but it is advantageous to use an alkali metal because the reaction is faster and the reaction proceeds even at low temperatures.

しかしながら、水あるいは脂肪酸が存在すると反応が進
みにくい欠点がある。
However, there is a drawback that the reaction is difficult to proceed in the presence of water or fatty acids.

そのため、油脂と脂肪酸のエステル交換を行う場合には
酸触媒が用いられることが多い。
Therefore, acid catalysts are often used when transesterifying fats and oils with fatty acids.

これらの酸、アルカリ触媒の他に、最近リパーゼを用い
たエステル交換反応が知られてきた。
In addition to these acid and alkali catalysts, transesterification using lipase has recently become known.

(タンパク質ハイブリッド、稲田祐二編、97頁、A、
R,Macrae; J、^、o、 c、 s、 60
.243A (1983))。
(Protein Hybrid, edited by Yuji Inada, p. 97, A.
R, Macrae; J, ^, o, c, s, 60
.. 243A (1983)).

リパーゼは従来の酸、アルカリ触媒と異なり、常圧、常
温で反応ができる特徴を有し、リパーゼの基質、位置特
異性を生かし、トリグリセリドのエステル結合位置の決
まった位置に目的とする脂肪酸を結合させることができ
る。これらの特徴により特定の性質を持った、例えばカ
カオ脂のような油脂に、植物油を改質することができる
Unlike conventional acid and alkali catalysts, lipase has the characteristic of being able to react at normal pressure and room temperature, and takes advantage of the substrate and position specificity of lipase to bind the target fatty acid to a fixed position of the ester bond of triglyceride. can be done. These characteristics allow vegetable oils to be modified into fats and oils with specific properties, such as cocoa butter.

これらのエステル交換反応は、水の中でも可能であるが
生成物の収率を上げるためには、加水分解側への平衡反
応を抑えなければならず、できるだけ水は少ない方が良
い。また、油脂という水不溶物が反応対象であるので、
ヘキサンのような有機溶剤の使用もこれらの反応に試み
られている。
These transesterification reactions are possible even in water, but in order to increase the yield of the product, it is necessary to suppress the equilibrium reaction on the hydrolysis side, and it is better to use as little water as possible. In addition, since the water-insoluble substances called fats and oils are the target of the reaction,
The use of organic solvents such as hexane has also been attempted in these reactions.

(^、R,MacraeHJ、 A’、 0. C,5
,60,243^(1983))。
(^, R, MacraeHJ, A', 0. C, 5
, 60, 243^ (1983)).

リパーゼによるエステル交換は、上記したように化学的
なランダムなエステル交換反応と異なり、選択性を持っ
た穏やかなエステル交換方法といえる。そのため、二重
結合を多く含んだ高度脂肪酸の含有された油脂などでは
、二重結合への影響が少なく化学的な方法よりも優れた
方法と考えられる。
Transesterification using lipase can be said to be a selective and mild transesterification method, unlike the chemical random transesterification reaction described above. Therefore, for oils and fats containing advanced fatty acids that contain many double bonds, this method is considered to be superior to chemical methods because it has less influence on double bonds.

また、最近ヘキサンのかわりに超臨界炭酸ガス(S、C
,Cot)を用いたリパーゼによるエステル交換反応が
知られてきた。(中村ら、日本農芸化学会、昭和60年
度大会要旨集、659頁(1985)’)超臨界炭酸ガ
スは、臨界温度(31,1℃)および臨界圧力(75,
2kg/aりを超えた状態にある炭酸ガスであり、油脂
を溶解することができ、次のような特徴をもっている。
Recently, supercritical carbon dioxide gas (S, C) has been used instead of hexane.
, Cot) has been known for transesterification using lipase. (Nakamura et al., Japanese Society of Agricultural Chemistry, Abstracts of the 1985 Conference, p. 659 (1985)') Supercritical carbon dioxide gas has a critical temperature (31.1°C) and a critical pressure (75.
It is carbon dioxide gas in a state exceeding 2 kg/a, can dissolve fats and oils, and has the following characteristics.

(1)  同圧力であれば低温の方が油脂を良く溶解す
る。
(1) At the same pressure, lower temperatures dissolve fats and oils better.

(2)  同温であれば高圧の方が油脂を良く溶解する
(2) At the same temperature, higher pressure dissolves fats and oils better.

(3)  温度、圧力をコントロールすることにより種
々の溶解力をもたせることができる。
(3) By controlling temperature and pressure, various dissolving powers can be provided.

(4)無害である。(4) It is harmless.

(5)  無酸素状態で反応できるため、油脂の二重結
合への影響が少ない。
(5) Since the reaction can be performed in an oxygen-free state, there is little effect on the double bonds of fats and oils.

(6)反応生成物に残存しない。すなわち、リパーゼに
よる超臨界炭酸ガス中におけるエステル交換反応は、油
脂を改質するための優れた技術と考えられる。
(6) It does not remain in the reaction product. That is, the transesterification reaction in supercritical carbon dioxide gas using lipase is considered to be an excellent technique for modifying fats and oils.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、ある脂肪酸を多量に含有させた油脂とか
、ある脂肪酸を特定位置に入れた油脂をリパーゼにより
製造する場合には、−船釣に行われる水中でのエステル
交換反応は勿論、ヘキサン中の場合でも、超臨界炭酸ガ
ス中の場合でも、反応が平衡に達すると、それ以上は反
応が進行しない欠点があった。
However, when producing fats and oils containing a large amount of a certain fatty acid or fats and oils containing a certain fatty acid in a specific position using lipase, transesterification in water, which is carried out on boat fishing, is of course, transesterification reaction in hexane, etc. However, even in supercritical carbon dioxide, there was a drawback that once the reaction reached equilibrium, the reaction did not proceed any further.

すなわち、次のような平衡反応が成立し、反応をそれ以
上進めることは困難であるという問題点があった。
That is, there was a problem in that the following equilibrium reaction was established and it was difficult to proceed with the reaction any further.

(式中のR+、Rz、R3、R4は脂肪鎖を示す)。(R+, Rz, R3, and R4 in the formula represent fatty chains).

この反応を進めるためには、反応させる脂肪酸量を増す
か、副生脂肪酸を反応系外に除くことが必要であるが、
従来のエステル交換反応では、前者の方法しか取りえな
いと言う問題点があった。
In order to advance this reaction, it is necessary to increase the amount of fatty acids to be reacted or to remove by-product fatty acids from the reaction system.
Conventional transesterification reactions have had the problem that only the former method can be used.

しかもその脂肪酸が高価なものであれば、多くは使えな
いという経済的なデメリットも存在する。
Moreover, if the fatty acids are expensive, there is an economic disadvantage that many cannot be used.

この発明は、以上のような問題点を解決するためのもの
で、超臨界炭酸ガス中でリパーゼを触媒としてエステル
交換を行うときに副生した脂肪酸または脂肪酸低級アル
コールエステルを系外に除きつつ行い、高収率でエステ
ル交換反応を行わせることを目的としており、特にエイ
コサペンタエン酸、ドコサ、ヘキサエン酸に富むグリセ
リドを製造する方法を提供することを目的とする。
This invention is aimed at solving the above-mentioned problems, and involves removing fatty acids or fatty acid lower alcohol esters produced as by-products when transesterifying transesterification in supercritical carbon dioxide using lipase as a catalyst. The purpose of this invention is to perform a transesterification reaction in high yield, and in particular to provide a method for producing glycerides rich in eicosapentaenoic acid, docosa, and hexaenoic acid.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、グリセリドと脂肪酸またはその低級アルコ
ールエステルをリパーゼにより超臨界炭酸ガス中でエス
テル交換させる際に、副生した脂肪酸またはその低級ア
ルコールエステルを超臨界炭酸ガスにより除去しつつエ
ステル交換を行うことを特徴とする油脂の製造方法であ
る。 本発明において、製造の対象として好ましいもの
は、油脂のうち特にエイコサペンタエン酸、ドコサヘキ
サエン酸を多く含んだグリセリドであるが、カカオ代用
脂のように、l、3位にパルミチン酸またはステアリン
酸、2位にオレイン酸の構造を持った油脂を製造するこ
ともできる。
This invention involves transesterifying glycerides and fatty acids or their lower alcohol esters in supercritical carbon dioxide using lipase, while removing by-product fatty acids or their lower alcohol esters using supercritical carbon dioxide. This is a method for producing fats and oils. In the present invention, preferred targets for production are glycerides containing a particularly large amount of eicosapentaenoic acid and docosahexaenoic acid among oils and fats; It is also possible to produce fats and oils having an oleic acid structure at the position.

本発明方法の原料として使われる脂肪酸、例えばエイコ
サペンタエン酸やドコサヘキサエン酸は、魚油に多く含
有され、次のような生理活性が知られている高度不飽和
脂肪酸である。すなわち、血栓の生成阻止効果、血清コ
ステロールの低下作用、血清中性脂肪の低下作用、ガン
の抑制作用、慢性病(喘息等)の抑制作用などである。
The fatty acids used as raw materials in the method of the present invention, such as eicosapentaenoic acid and docosahexaenoic acid, are highly unsaturated fatty acids that are abundantly contained in fish oil and are known to have the following physiological activities. Namely, these include the effect of inhibiting the formation of blood clots, the effect of lowering serum costerol, the effect of lowering serum neutral fat, the effect of suppressing cancer, and the suppressing effect of chronic diseases (such as asthma).

これらは、魚油より次のような工程を経て得ることがで
きる。
These can be obtained from fish oil through the following steps.

まず、魚油をアルコリシスし、魚油の低級アルコールエ
ステルを得、次いで、これを尿素付加反応することによ
り、飽和酸を除き、次いで超臨界炭酸ガスにより、エイ
コサペンタエン酸、ドコサヘキサエン酸を濃縮、精製す
る。この操作により、エイコサペンタエン酸、ドコサヘ
キサエン酸を約80%含有する各々の低級アルコールエ
ステルを得ることができる。次いで、これを分子蒸留に
より、濃縮、精製すると約90%のエイコサペンタエン
酸とドコサヘキサエン酸を含有した各々の低級アルコー
ルエステルを得ることができ、これらを加水分解するこ
とにより脂肪酸が得られる。
First, fish oil is subjected to alcoholysis to obtain a lower alcohol ester of fish oil, which is then subjected to a urea addition reaction to remove the saturated acid, and then eicosapentaenoic acid and docosahexaenoic acid are concentrated and purified using supercritical carbon dioxide gas. By this operation, each lower alcohol ester containing about 80% of eicosapentaenoic acid and docosahexaenoic acid can be obtained. Next, by concentrating and purifying this by molecular distillation, lower alcohol esters containing about 90% of eicosapentaenoic acid and docosahexaenoic acid can be obtained, and by hydrolyzing these, fatty acids can be obtained.

また、もう一方の原料であるグリセリドは、普通の植物
油、動物油でよいが、副生脂肪酸またはその低級アルコ
ールエステルを除去するためには、炭素数が小さいもの
が好ましく、特に炭素数12以下のものが好ましい。ま
た、このグリセリドに魚油を用いると、−i高濃度のエ
イコサペンタエン酸、ドコサヘキサエン酸を含有した改
質魚油を得ることができる。
The other raw material, glyceride, may be any ordinary vegetable oil or animal oil, but in order to remove by-product fatty acids or their lower alcohol esters, it is preferable to use one with a small number of carbon atoms, especially one with 12 or less carbon atoms. is preferred. Furthermore, when fish oil is used as the glyceride, a modified fish oil containing -i high concentrations of eicosapentaenoic acid and docosahexaenoic acid can be obtained.

リパーゼは、動物起源、微生物起源など各種あるが、目
的とする脂肪酸あるいは、それらがエステル交換により
結合する位置に対して、その機能が発現し易いものが好
ましいが、経済性等を考えると市販の微生物起源のもの
が好ましい。例えば、アスペルギルス属、ペニシリウム
属、リゾープス属、ムコール属、キャンディダ属、ゲオ
トリカム属、シュードモナス属、クロモバクテリウム属
などからのものがある。使用量は仕込みの脂肪酸または
その低級アルコールエステルとグリセリド類に対して、
0.1〜5%程度でよい。また、仕込みの脂肪酸または
その低級アルコールエステルとグリセリド類の比は、3
〜9モル対1モルの比であればよい。これらの原料のほ
かに、反応の際に重要な酵素活性剤として、グリセリン
または水を用いることができる。使用量としては仕込み
の脂肪酸またはその低級アルコールエステルとグリセリ
ド類に対して1〜20%あればよく、好ましくはグリセ
リンを1〜lO%使用する。
There are various types of lipases, including those of animal origin and microbial origin, but it is preferable to use one that can easily express its function on the target fatty acid or the position where these are bound by transesterification. Those of microbial origin are preferred. Examples include those from the genera Aspergillus, Penicillium, Rhizopus, Mucor, Candida, Geotrichum, Pseudomonas, Chromobacterium, and the like. The amount used is based on the fatty acid or its lower alcohol ester and glyceride.
It may be about 0.1 to 5%. In addition, the ratio of fatty acids or their lower alcohol esters and glycerides in the preparation is 3.
A ratio of ~9 moles to 1 mole is sufficient. In addition to these raw materials, glycerin or water can be used as an important enzyme activator during the reaction. The amount to be used is 1 to 20% based on the fatty acid or its lower alcohol ester and glyceride, and preferably 1 to 10% of glycerin is used.

この反応に用いられる耐圧反応容器は、−船釣に攪拌器
の付いた超臨界流体用の装置でもよいが、還流部をもつ
精密装置を付属した装置がこのましい。
The pressure-resistant reaction vessel used in this reaction may be a supercritical fluid device equipped with a stirrer, but preferably a device equipped with a precision device having a reflux section.

本発明におけるエステル交換反応は、具体的には次のよ
うに行う。すなわち、以上のようにして得られたエイコ
サペンタエン酸、ドコサヘキサエン酸を代表とする脂肪
酸またはその低級アルコールエステルとグリセリド類お
よびリパーゼとグリセリンまたは水を所定量、攪拌機付
の反応器に仕込み、温度を30〜70℃に設定し、超臨
界炭酸ガスを導入し、攪拌しつつ、80〜300kg/
cdに保つ。
Specifically, the transesterification reaction in the present invention is carried out as follows. That is, a predetermined amount of fatty acids, typically eicosapentaenoic acid and docosahexaenoic acid, or their lower alcohol esters, glycerides, lipase, and glycerin or water obtained as described above were charged into a reactor equipped with a stirrer, and the temperature was adjusted to 30°C. Set the temperature to ~70℃, introduce supercritical carbon dioxide gas, and while stirring, 80~300kg/
Keep it on CD.

次いで、超臨界炭酸ガスを一定速度で流通させ、抽出さ
れてくる副生成物である脂肪酸またはその低級アルコー
ルエステルを除去しつつ、エステル交換反応を進行させ
る。反応経過は、抽出副生物を回収し、Ii量を測定し
、ガスクロマトグラフィあるいは液体クロマトグラフィ
ーでチエツクすることにより測定する0反応終了後、適
当な圧力、温度、超臨界炭酸ガスの流通速度を設定し、
未反応の脂肪酸またはその低級アルコールエステルを流
出させる。次いで、再び条件を変化させ、溶解度を増し
、反応生成物であるグリセリドを回収する。以上の工程
を行うことにより、用途に応じて所望の脂肪酸種をもっ
たグリセリドを製造することができる。
Next, supercritical carbon dioxide gas is caused to flow at a constant rate, and the transesterification reaction proceeds while removing fatty acids or lower alcohol esters thereof, which are extracted byproducts. The reaction progress is measured by collecting the extraction by-products, measuring the amount of Ii, and checking with gas chromatography or liquid chromatography. After the reaction is complete, set the appropriate pressure, temperature, and flow rate of supercritical carbon dioxide gas. death,
Flush out unreacted fatty acids or their lower alcohol esters. Then, the conditions are changed again to increase solubility and the reaction product, glyceride, is recovered. By performing the above steps, it is possible to produce glyceride having desired fatty acid species depending on the intended use.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、グリセリドと脂肪酸またはその低級ア
ルコールエステルを、リパーゼにより超臨界炭酸ガス中
で、副生脂肪酸またはその低級アルコールエステルを除
去しつつエステル交tA 反応するので、エステル交換
反応を十分に進行させることが可能となり、安全で前車
な工程により、高収率、低コストで改質された有用な所
望の油脂を製造することができる。
According to the present invention, glyceride and fatty acid or its lower alcohol ester are transesterified using lipase in supercritical carbon dioxide gas while removing the by-product fatty acid or its lower alcohol ester, so that the transesterification reaction is sufficiently carried out. This makes it possible to produce the desired useful modified oils and fats in high yield and at low cost through a safe and fast process.

〔実施例〕〔Example〕

□以下、実施例により本発明をさらに具体的に説明する
。なお、文中の%は、重量%を示す。
□Hereinafter, the present invention will be explained in more detail with reference to Examples. Note that % in the text indicates weight %.

実施例1 魚油3 kgおよびカセイソーダ30gをガラス製の還
流装置のついた攪拌機付反応器に仕込み、還流下で1.
5時間反応させた。反応終了後、15%塩酸水溶液80
0gおよび温水で中和、水洗し、粗エチルエステルを得
た0次いで粗エチルエステルをヘキサン201に溶解し
、尿素11ksr、メタノール0.5iを加え、2時間
、室温下で尿素付加反応を行い、飽和酸およびモノエン
脂肪酸部を結晶として濾別し除去した。得られたエイコ
サペンタエン酸、ドコサヘキサエン酸濃縮エチルエステ
ルは、エイコサペンタエン酸41,8%、ドコサヘキサ
エンM24.1%であり、その他の成分としてパルミト
オレイン酸、リノール酸、オクタデカテトラエン酸、エ
イコサテトラエン酸、ドコサペンクエン酸などが含まれ
ていた。回収量は、脱ヘキサン後に1 、1 kgであ
った。
Example 1 3 kg of fish oil and 30 g of caustic soda were charged into a stirrer reactor equipped with a glass reflux device, and heated under reflux for 1.
The reaction was allowed to proceed for 5 hours. After the reaction is complete, 15% hydrochloric acid aqueous solution 80
Neutralize and wash with 0 g and warm water to obtain crude ethyl ester. Next, dissolve the crude ethyl ester in 201 hexane, add 11 ksr of urea and 0.5 i of methanol, and perform a urea addition reaction at room temperature for 2 hours. The saturated acid and monoene fatty acid moieties were separated and removed as crystals by filtration. The obtained concentrated ethyl ester of eicosapentaenoic acid and docosahexaenoic acid contains 41.8% eicosapentaenoic acid and 24.1% docosahexaenoic acid, and other components include palmitooleic acid, linoleic acid, octadecatetraenoic acid, and eicosapentaenoic acid. It contained tetraenoic acid, docosapene citric acid, etc. The amount recovered was 1.1 kg after dehexanization.

このエチルエステルを還流部をもった超臨界流体精留塔
で超臨界炭酸ガスにより、濃縮、晴製した。条件は、ボ
トム温度35℃、トップ温度50℃、圧力120 kg
/−であった。得られたエステルはエイコサペンタエン
酸81.6%、ドコサヘキサエン酸10.8%を含有し
たちの390gと、エイコサペンタエン酸19.6%、
ドコサヘキサエン酸70.4%含有したもの100gで
あった。この各々を3 X 10−3mmHgで分子蒸
留し、エイコサペンタエン酸90.9%、ドコサヘキサ
エン酸4.5%の両分265gおよび、エイコサペンタ
エン酸7.4%、ドコサヘキサエン酸90.2%の両分
110gを得た。
This ethyl ester was concentrated and purified using supercritical carbon dioxide gas in a supercritical fluid rectification tower having a reflux section. Conditions are bottom temperature 35℃, top temperature 50℃, pressure 120kg.
It was /-. The obtained ester contained 390 g of eicosapentaenoic acid 81.6%, docosahexaenoic acid 10.8%, and eicosapentaenoic acid 19.6%,
It was 100 g containing 70.4% docosahexaenoic acid. Each of these was subjected to molecular distillation at 3 x 10-3 mmHg to obtain 265 g of 90.9% eicosapentaenoic acid and 4.5% docosahexaenoic acid, and 265 g of 7.4% eicosapentaenoic acid and 90.2% docosahexaenoic acid. 110 g was obtained.

以上の方法で得られたエイコサペンタエン酸が90.9
%のエステル50gをカセイソーダで加水分解し、塩酸
で脂肪酸に戻して、39gのエイコサペンタエン酸を得
た。このエイコサペンタエン酸39gとトリラウリン1
2g、およびムコール属起源のリパーゼ(リパーゼNo
vo :ノボ社製) 1.5gおよびグリセリン2.5
gを還流部をもった撹拌機付の超臨界流体精密基型の反
応装置に仕込んだ。次いで、超臨界炭酸ガスを導入し、
圧力150kg/cJ、温度60℃で30分間攪拌した
。その後、超臨界炭酸ガスを流通させつつ副生してきた
ラウリン酸を炭酸ガスに溶解して系外に除き、反応を進
行させた。そのとき還流部の温度は70℃に保った。1
5時間反応後、温度を反応器40℃、還流部50℃、圧
力を180 kg/−にして、未反応のエイコサペンタ
エン酸を系外に除去した。次いで、圧力を200 kg
 / cIa、還流部温度を40℃に設定し、エステル
交換されたグリセリドを回収した。回収グリセリド量は
17gであり、その脂肪酸組成は、エイコサペンタエン
酸71.4%、ドコサヘキサエン酸2.5%、ラウリン
酸22.8%であった。
The eicosapentaenoic acid obtained by the above method is 90.9
% ester was hydrolyzed with caustic soda and converted back to fatty acid with hydrochloric acid to obtain 39 g of eicosapentaenoic acid. This eicosapentaenoic acid 39g and trilaurin 1
2g, and lipase originating from the genus Mucor (lipase No.
vo: manufactured by Novo) 1.5g and glycerin 2.5g
g was charged into a supercritical fluid precision model reactor equipped with a stirrer and a reflux section. Next, supercritical carbon dioxide gas is introduced,
The mixture was stirred for 30 minutes at a pressure of 150 kg/cJ and a temperature of 60°C. Thereafter, while flowing supercritical carbon dioxide gas, by-produced lauric acid was dissolved in carbon dioxide gas and removed from the system to allow the reaction to proceed. At that time, the temperature of the reflux section was maintained at 70°C. 1
After 5 hours of reaction, the temperature in the reactor was set at 40°C, the reflux section was set at 50°C, and the pressure was set at 180 kg/- to remove unreacted eicosapentaenoic acid from the system. Then increase the pressure to 200 kg
/cIa, the reflux section temperature was set at 40°C, and the transesterified glyceride was collected. The amount of glyceride recovered was 17 g, and its fatty acid composition was 71.4% eicosapentaenoic acid, 2.5% docosahexaenoic acid, and 22.8% lauric acid.

実施例2 実施例1で得られたエイコサペンタエン酸エチル90.
9%品50g、トリカプリン15g、ムコール属起源の
リパーゼ(リパーゼNovo :ノボ社製)2gおよび
グリセリン3.5gを、還流部をもった攪拌機付の超臨
界流体精留塔型反応装置に仕込んだ。次いで、超臨界炭
酸ガスを導入し、圧力100kg/cJ、温度60℃で
30分間攪拌した。その後、超臨界炭酸ガスを流通させ
つつ副生じてきたカプリン酸エチルを炭酸ガスに溶解し
て系外に除き、反応を進行させた。そのとき還流部の温
度は70℃に保った。
Example 2 Ethyl eicosapentaenoate obtained in Example 1 90.
50 g of 9% product, 15 g of tricaprin, 2 g of lipase originating from the genus Mucor (Lipase Novo, manufactured by Novo), and 3.5 g of glycerin were charged into a supercritical fluid rectification tower type reactor equipped with a stirrer and a reflux section. Next, supercritical carbon dioxide gas was introduced, and the mixture was stirred at a pressure of 100 kg/cJ and a temperature of 60° C. for 30 minutes. Thereafter, while flowing supercritical carbon dioxide gas, the by-produced ethyl caprate was dissolved in carbon dioxide gas and removed from the system to allow the reaction to proceed. At that time, the temperature of the reflux section was maintained at 70°C.

15時間反応後、温度を反応器40℃、還流部50℃、
圧力を130 kg/cdに設定し、未反応のエイコサ
ペンタエン酸エチルを系外に除去した。次いで、圧力を
2001g/c+J、還流部温度を40℃に設定し、エ
ステル交換されたグリセリドを回収した。回収グリセリ
、ド量は19gであり、その脂肪酸組成は、エイコサペ
ンタエン酸70.1%、ドコサヘキサエン酸2.5%、
カプリン酸24.2%であった。
After 15 hours of reaction, the temperature was changed to 40°C in the reactor, 50°C in the reflux section,
The pressure was set at 130 kg/cd, and unreacted ethyl eicosapentaenoate was removed from the system. Next, the pressure was set to 2001 g/c+J, the reflux section temperature was set to 40°C, and the transesterified glyceride was recovered. The amount of recovered glycerin was 19 g, and its fatty acid composition was 70.1% eicosapentaenoic acid, 2.5% docosahexaenoic acid,
Capric acid was 24.2%.

実施例3 カツオ油(脂肪酸組成ニドコサヘキサエン酸25.7%
:エイコサペンタエン酸7.8%)15g、実施例1で
得られたドコサヘキサエン酸エチルエステル90.2%
品35g、キャンディダ属起源のリパーゼ(リパーゼO
F、東洋醸造社製)2gおよびグリセリン5gを、還流
部を持った撹拌機付の超臨界流体精留塔型反応装置に仕
込んだ。次いで、超臨界炭酸ガスを導入し、圧力110
kg/col、温度40℃で30分間攪拌した。その後
、超臨界炭酸ガスを流通させつつ副生じてきた炭素数2
0以下の脂肪酸エチルエステルを炭酸ガスに溶解して系
外に除き、反応を進行させた。そのときの還流部の温度
は50℃に保った。24時間反応後、圧力140kg/
cfflに設定し、未反応のドコサヘキサエン酸エチル
エステルを系外に除去した0次いで、圧力を200 k
g / cti、還流部温度40℃に設定し、エステル
交換されたグリセリドを回収した。回収グリセリド量は
、15.5gであり、その脂肪酸組成はドコサヘキサエ
ン酸63.3%、エイコサペンタエン酸6.5%、その
他バルミチン酸、オレイン酸等であった。
Example 3 Bonito oil (Fatty acid composition Nidocosahexaenoic acid 25.7%
: eicosapentaenoic acid 7.8%) 15g, docosahexaenoic acid ethyl ester obtained in Example 1 90.2%
35g of product, lipase originating from the genus Candida (Lipase O
F, manufactured by Toyo Jozo Co., Ltd.) and 5 g of glycerin were charged into a supercritical fluid rectification tower type reactor equipped with a stirrer and a reflux section. Next, supercritical carbon dioxide gas is introduced and the pressure is increased to 110
kg/col and stirred for 30 minutes at a temperature of 40°C. After that, while circulating supercritical carbon dioxide gas, carbon number 2 was generated as a by-product.
0 or less fatty acid ethyl ester was dissolved in carbon dioxide gas and removed from the system to allow the reaction to proceed. The temperature of the reflux section at that time was maintained at 50°C. After 24 hours of reaction, the pressure was 140 kg/
cffl to remove unreacted docosahexaenoic acid ethyl ester from the system.Then, the pressure was increased to 200 k.
g/cti, the reflux section temperature was set at 40°C, and the transesterified glyceride was recovered. The amount of recovered glyceride was 15.5 g, and its fatty acid composition was 63.3% docosahexaenoic acid, 6.5% eicosapentaenoic acid, and other components such as valmitic acid and oleic acid.

比較例 実施例1と同様にエステル交換反応を副生ラウリン酸を
系外に除去せず行った。すなわち、エイコサペンタエン
1139g、l−リラウリン12g、リパーゼ(リパー
ゼNovo :ノボ社製)1.5gおよびグリセリン2
.5gを、還流部をもった攪拌機付の超臨界流体精留塔
型反応装置に仕込んだ。次いで超臨界炭酸ガスを導入し
、圧力150 kg / ctA、温度60℃で15.
5時間攪拌しつつ、超臨界炭酸ガスを流通させずに反応
させた。次いで、減圧バルブを徐々に開き、圧力を下げ
て常圧に戻した。グリセリド部を分取TLCによりクロ
ロホルム対アセトンが96対4の溶媒を用いて分取し、
その脂肪酸組成を分析したところ、エイコサペンタエン
酸26.3%、ドコサヘキサエン酸0.7%、ラウリン
酸69.1%であり、実施例1と比較して、交換率が低
かった。
Comparative Example Similar to Example 1, the transesterification reaction was carried out without removing the by-product lauric acid from the system. That is, 1139 g of eicosapentaene, 12 g of l-lilaurin, 1.5 g of lipase (Lipase Novo: manufactured by Novo), and 2 g of glycerin.
.. 5 g was charged into a supercritical fluid rectification tower type reactor equipped with a stirrer and a reflux section. Next, supercritical carbon dioxide gas was introduced, and the temperature was 15.
The reaction was carried out while stirring for 5 hours without flowing supercritical carbon dioxide gas. Next, the pressure reducing valve was gradually opened to lower the pressure and return it to normal pressure. The glyceride portion was separated by preparative TLC using a solvent with a ratio of chloroform to acetone of 96 to 4,
When the fatty acid composition was analyzed, it was found to be 26.3% eicosapentaenoic acid, 0.7% docosahexaenoic acid, and 69.1% lauric acid, and the exchange rate was lower than in Example 1.

Claims (5)

【特許請求の範囲】[Claims] (1)グリセリドと脂肪酸またはその低級アルコールエ
ステルをリパーゼにより超臨界炭酸ガス中でエステル交
換させる際に、副生した脂肪酸またはその低級アルコー
ルエステルを超臨界炭酸ガスにより除去しつつエステル
交換を行うことを特徴とする油脂の製造方法。
(1) When transesterifying glyceride and fatty acids or their lower alcohol esters in supercritical carbon dioxide gas using lipase, transesterification is performed while removing by-product fatty acids or their lower alcohol esters using supercritical carbon dioxide gas. Characteristic method for producing fats and oils.
(2)脂肪酸またはその低級アルコールエステルがエイ
コサペンタエン酸またはドコサヘキサエン酸またはそれ
らの低級アルコールエステルである特許請求の範囲第1
項記載の製造方法。
(2) Claim 1 in which the fatty acid or its lower alcohol ester is eicosapentaenoic acid or docosahexaenoic acid or their lower alcohol ester.
Manufacturing method described in section.
(3)グリセリドが炭素数12以下の脂肪酸とグリセリ
ンのエステルである特許請求の範囲第1項記載または第
2項記載の方法。
(3) The method according to claim 1 or 2, wherein the glyceride is an ester of a fatty acid having 12 or less carbon atoms and glycerin.
(4)グリセリドが魚油である特許請求の範囲第1項記
載または第2項記載の方法。
(4) The method according to claim 1 or 2, wherein the glyceride is fish oil.
(5)リパーゼ活性化剤としてグリセリンを用いる特許
請求の範囲第1項乃至第4項のいずれか1項記載の方法
(5) The method according to any one of claims 1 to 4, in which glycerin is used as a lipase activator.
JP62262717A 1987-10-20 1987-10-20 Production of oil and fat Pending JPH01108990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62262717A JPH01108990A (en) 1987-10-20 1987-10-20 Production of oil and fat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62262717A JPH01108990A (en) 1987-10-20 1987-10-20 Production of oil and fat

Publications (1)

Publication Number Publication Date
JPH01108990A true JPH01108990A (en) 1989-04-26

Family

ID=17379616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62262717A Pending JPH01108990A (en) 1987-10-20 1987-10-20 Production of oil and fat

Country Status (1)

Country Link
JP (1) JPH01108990A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013443A (en) * 1989-01-23 1991-05-07 Nihon Bunko Kogyo Kabushiki Kaisha Extraction and separation method and apparatus using supercritical fluid
WO1991008676A1 (en) * 1989-12-18 1991-06-27 Kraft General Foods, Inc. Low-saturate edible oils and transesterification methods for production thereof
WO1991016443A1 (en) * 1990-04-18 1991-10-31 Novo Nordisk A/S Process for preparation of triglyceride and triglyceride composition
WO2012127217A1 (en) * 2011-03-21 2012-09-27 United Arab Emirates University Biodiesel production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013443A (en) * 1989-01-23 1991-05-07 Nihon Bunko Kogyo Kabushiki Kaisha Extraction and separation method and apparatus using supercritical fluid
WO1991008676A1 (en) * 1989-12-18 1991-06-27 Kraft General Foods, Inc. Low-saturate edible oils and transesterification methods for production thereof
WO1991016443A1 (en) * 1990-04-18 1991-10-31 Novo Nordisk A/S Process for preparation of triglyceride and triglyceride composition
WO2012127217A1 (en) * 2011-03-21 2012-09-27 United Arab Emirates University Biodiesel production
US9399740B2 (en) 2011-03-21 2016-07-26 United Arab Emirates University Biodiesel production

Similar Documents

Publication Publication Date Title
EP0093602B2 (en) Interesterification with a lipase enzyme as an interesterification catalyst
JP3720194B2 (en) Method for producing partial glycerides
AU686348B2 (en) Refining oil compositions
JPH0412112B2 (en)
JP2003500082A (en) Concentration and purification of polyunsaturated fatty acid esters by a combination of distillation-enzymatic transesterification
JP2002537442A (en) Lipase-catalyzed esterification of marine oil
JPH03262492A (en) Preparation of monoglyceride
US5897994A (en) Fatty acid fractionation for polyunsaturated fatty acid fraction enrichment
JPS6261589A (en) Processing of glyceride fat or oil
JP4079516B2 (en) Method for producing triglyceride
EP1582595A1 (en) Enzymatic process for the preparation of triglycerides on the basis of polyunsaturated fatty acid esters
JPS63287492A (en) Method for ester interchange reaction of fats or oils
JP3840459B2 (en) Glyceride and method for producing the same
JPH01108990A (en) Production of oil and fat
JP3340182B2 (en) Method for producing triglyceride containing docosahexaenoic acid
JP4310387B2 (en) Omega-3 highly unsaturated fatty acid-containing partial glyceride composition and method for producing the same
JPH0533988B2 (en)
JPS62228290A (en) Substitute fat for cacao butter
TWI233448B (en) A method for producing a fatty acid
JP3510422B2 (en) Method for producing glycerin fatty acid ester
JPH0665310B2 (en) Method for producing diglyceride
JP3764793B2 (en) Method for producing diglycerides
JP2005528919A (en) Method for producing conjugated linoleic acid
JP3734905B2 (en) Method for purifying omega-3 polyunsaturated fatty acids
JPS60251891A (en) Method of ester interchange reaction of fat and oil