JPH0533988B2 - - Google Patents

Info

Publication number
JPH0533988B2
JPH0533988B2 JP59090799A JP9079984A JPH0533988B2 JP H0533988 B2 JPH0533988 B2 JP H0533988B2 JP 59090799 A JP59090799 A JP 59090799A JP 9079984 A JP9079984 A JP 9079984A JP H0533988 B2 JPH0533988 B2 JP H0533988B2
Authority
JP
Japan
Prior art keywords
reaction
hydrolysis
pufa
oil
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59090799A
Other languages
Japanese (ja)
Other versions
JPS60234590A (en
Inventor
Yukinobu Murase
Kazuaki Suzuki
Wataru Matsumoto
Eiji Nakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Denka Kogyo KK filed Critical Asahi Denka Kogyo KK
Priority to JP59090799A priority Critical patent/JPS60234590A/en
Publication of JPS60234590A publication Critical patent/JPS60234590A/en
Publication of JPH0533988B2 publication Critical patent/JPH0533988B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は長鎖高度不飽和脂肪酸含有油脂の製造
方法に関する。 なお本発明において長鎖高度不飽和脂肪酸とは
1分子当り20個以上の炭素原子を有し、3個以上
の二重結合を有する脂肪酸を意味し、以下PUFA
と略記する。 〔従来の技術〕 PUFAは、最近人間に対する生理活性と薬理効
果が注目され、その利用について活発な検討がな
されるようになつた。 しかしながらPUFAは沸点が高いため、これを
回収するためには高真空、高温を必要とし、エネ
ルギーコストがかさむほか、高温にさらされるた
め重合などによる蒸留残査が増加し、収率が低下
するとともに二重結合の異性化が起り、好ましく
ない異性体が多量に生成するという問題点が指摘
されていた。 このため、油脂からのPUFAの回収にリパーゼ
を用いて、より温和な条件下で反応を進める方法
が有利な方法として知られている。 〔考案が解決しようとする問題点〕 しかるに、リパーゼは、油脂の加水分解反応だ
けでなく、その逆反応であるエステル合成反応も
触媒する。(Y.Tsujisaka et al,Biochim.
Biophys.Acta 489,415(1977)) 従つて単にリパーゼを用いて加水分解反応を進
めただけでは効率よく反応を進めることができな
い。特に水の少ない系ではその傾向が強い。 上述の問題点に鑑み、本発明は、加水分解反応
を利用し、PUFAを高濃度に含有する油脂の効率
的な製造を実現せしめるプロセスの提供を目的と
する。 〔問題点を解決するための手段〕 本発明のPUFA含有油脂の製造方法は、PUFA
を含有する油脂にリパーゼを加えて反応させる
際、一価アルコールを添加し、加水分解により遊
離したPUFA以外の脂肪酸と、添加した該一価ア
ルコールとのエステル化反応を進行せしめ、
PUFAを高濃度に含有する油脂を得ることを特徴
とする。 〔作用〕 本発明に用いられるPUFA含有油脂としては例
えば魚脂、鯨脂、オキアミ油、海産クロレラ油等
があげられるが、これらの油脂を含む混合油や共
役異性化油又は部分水添油等も用いることができ
る。 上記油脂中には、EPA(エイコサペンタエン
酸)が10%以上、DHA(ドコサヘキサエン酸)が
3%以上含有されていることが好ましい。 本発明において油脂加水分解酸素として用いる
リパーゼとしては、アスペルギルス(Asper−
gillus)属、リゾプス(Rhizopus)属、ムコール
(Mucor)属、ペニシリウム(Penicillium)属、
ジオトリクム(Geotricum)属等の糸状菌リパー
ゼ、クロモバクテリウム(Chromobacterium)
属、シユードモナス(Pseudomoas)属等の細菌
リパーゼ、キヤンデイダ(Candida)属等の酵母
リパーゼなどの微生物起源のリパーゼの他に、動
物起源のすい臓リパーゼ(Pancreatin)等も用
いることができる。 加水分解条件は公知の方法に従い行ねえばよい
が、油脂分解酵素の使用量は油脂加水分解活性を
表わすU(ユニツト)で示すと、反応基質(油)
1gに対して50〜3000U、好ましくは100〜
3000Uである。 水の添加量は油脂に対して0.1〜20%(重量基
準、以下同じ)が好ましく、1〜10%が更に好ま
しい。 水のPHは4.5〜8.5の範囲が好ましく、このPHを
調節するために緩衡液を用いるとさらに効果的
で、PHとして5.5〜8.0が特に望ましい範囲であ
る。さらに、より効果的な反応を行うためには、
乳化剤例えば、ポリビニルアルコール、脂肪酸エ
ステルなどを用いることもでき、また、加水分解
活性を高めるために胆汁酸塩の添加も効果があ
る。加水分解反応は、大気下で行つても良いが、
魚油、鯨油のように長鎖の高度不飽和酸を多量に
含む場合は、不活性ガス下、例えば窒素ガス、炭
酸ガスの雰囲気にしておくと脂肪酸の劣化を防ぐ
ばかりでなく、酵素の失活をも防止できる。ま
た、酸化防止剤、例えばトコフエロール、
TBHQ,BHA,BHTを併用しても良い。 加水分解反応は20〜60℃で行なうのが好まし
い。20℃未満では反応が遅く、60℃を超えると酵
素が失活する。30〜45℃で行うのが更に好まし
い。 また、反応は攪拌した方が、望ましいが、乳化
状態にして静置反応もできる。さらに、反応は一
段反応でも良いが、さらに反応を効率的に早く進
めるために、多段反応でもかまわない。また、連
続反応として、固定化酵素カラムの使用もでき
る。 本発明の方法において加水分解の際に添加され
る一価アルコールとは炭素数1〜28の脂肪族アル
コールで、例えばメタノール、エタノール、プロ
パノール、ブタノール、ヘキサノール、オクタノ
ール、デカノール、ドデカノール、ヘキサデカノ
ール、オクタデカノール、テトラコサノール、ヘ
キサコダノール等であり、とりわけ好ましいもの
はブタノール、オクタノール、デカノール、ドデ
カノール、ヘキサデカノール、オクタデカノール
等である。 上記アルコールの使用量は油脂1モルに対し、
通常0.1〜20モル、好ましくは0.1〜10モルであ
る。 さらに本発明においては、加水分解反応に際
し、不活性有機溶剤を添加して反応を行なわしめ
ることができ、その使用量は、油脂に対し10倍以
下、好ましくは3倍以下である。 本発明の油脂の製造方法において一価アルコー
ルは反応の当初から添加することが好ましいが、
反応によつては、全量を一度に添加することな
く、一部ずつ数度にわたつて添加してもよく、ま
た連続的に系内に供給する方法を用いることもで
きる。 〔発明の効果〕 本発明の油脂の製造方法は、リパーゼによる加
水分解を用い、加水分解の際一価アルコールを添
加するので、加水分解により遊離したPUFA以外
の脂肪酸と、添加した上記一価アルコールとのエ
ステル化反応が進行し、これにより、PUFAを高
濃度に含有する油脂を効果的に得ることが可能と
なる。 〔実施例〕 以下本発明を実施例について説明するが、本発
明はこれらの実施例に限定されるものではない。 実施例 1 魚油(IV=178.9,EPA 16.8%,DHA 8%)
500gにリゾプスデルマー20万Uを5gの水と共
に添加し、ヘキサン500g中で35℃1hrかくはんし
加水分解する。その後デシルアルコール100gを
添加し、更に脱水しながら加水分解を続ける。
24hrs後に反応を終了し反応生成物を得た。この
生成物からカラムクロマトグラフイーでトリグリ
セリドを分画し、脂肪酸組成をメチルエステル化
しGLCで分析した結果、EPA 28.0%,DHA17.5
%であつた。 実施例 2 魚油100g(IV 178.9,EPA 16.8%,DHA 8
%)にキヤンデイダ属起源のリパーゼ4万Uを5
gのイオン交換水と共に添加し、これにヘキサン
500gとプチルアルコール10gを添加し加水分解
反応を脱水しながら行なう。24hrs後に反応を停
止し、反応組成物から遠心分離により油層を分離
した。この油層からカラムクロマトグラフイーで
トリグリセリドを分画し、脂肪酸組成をメチルエ
ステル化しGLCで分析した結果EPA 28.8%,
DHA 8.2%となり濃縮されていることがわかる。 比較例 1 実施例−1に於てデシルアルコールを添加しな
い外は同様に加水分解を24時間行なつた。この反
応生成物からカラムクロマトグラフイーでトリグ
リセリドを分画し分析した所EPA 17.5%,DHA
10%であつた。 比較例 2 実施例−2に於てプチアルコールを添加しない
外は同様に加水分解を24時間行なつた。この反応
生成物からカラムクロマトグラフイーでトリグリ
セリドを分画し、分析した結果EPA 19.5%,
DHA 12.0%であつた。 以上の実施例及び比較例で得られたトリグリセ
リドの脂肪酸組成を表−1に示す。 実施例1と比較例1を比べると、リパーゼは
PUFA以外の脂肪酸に作用して加水分解を進める
が、実施例1では、アルコール添加により、加水
分解の結果、遊離した脂肪酸はただちにリパーゼ
の作用によりアルコールエステルが形成される。
このものはリパーゼにとつて難分解性のエステル
であるため、一旦遊離して脂肪酸は再びグリセリ
ドを構成できなくなる。その結果PUFA含有トリ
グリセリドの濃度が高くなり、反応が効率的に進
んでいることがわかる。これに対し比較例1で
は、アルコール無添加のため、再エステル化が進
行し、PUFA含有トリグリセリドの濃度は実施例
1より低い。
[Industrial Field of Application] The present invention relates to a method for producing fats and oils containing long-chain highly unsaturated fatty acids. In the present invention, long-chain highly unsaturated fatty acids mean fatty acids having 20 or more carbon atoms and 3 or more double bonds per molecule, and hereinafter referred to as PUFA.
It is abbreviated as [Prior Art] PUFA has recently attracted attention for its physiological activity and pharmacological effects on humans, and active studies have been conducted on the use of PUFA. However, since PUFA has a high boiling point, high vacuum and high temperatures are required to recover it, which increases energy costs, and exposure to high temperatures increases distillation residue due to polymerization, reducing yield. The problem was pointed out that double bond isomerization occurs and a large amount of undesirable isomers are produced. For this reason, it is known as an advantageous method to use lipase to recover PUFA from fats and oils and proceed with the reaction under milder conditions. [Problems to be solved by the invention] However, lipase catalyzes not only the hydrolysis reaction of fats and oils, but also its reverse reaction, the ester synthesis reaction. (Y. Tsujisaka et al, Biochim.
(Biophys. Acta 489 , 415 (1977)) Therefore, simply proceeding with the hydrolysis reaction using lipase does not allow the reaction to proceed efficiently. This tendency is particularly strong in systems with little water. In view of the above-mentioned problems, an object of the present invention is to provide a process that utilizes a hydrolysis reaction to efficiently produce fats and oils containing a high concentration of PUFA. [Means for solving the problems] The method for producing PUFA-containing fats and oils of the present invention includes
When adding lipase to fats and oils containing PUFA and causing a reaction, a monohydric alcohol is added to proceed with an esterification reaction between fatty acids other than PUFA released by hydrolysis and the added monohydric alcohol,
It is characterized by obtaining oils and fats containing a high concentration of PUFA. [Function] The PUFA-containing fats and oils used in the present invention include, for example, fish fat, whale fat, krill oil, marine chlorella oil, etc., but mixed oils, conjugated isomerized oils, partially hydrogenated oils, etc. containing these fats and oils may also be used. can also be used. It is preferable that the above fats and oils contain 10% or more of EPA (eicosapentaenoic acid) and 3% or more of DHA (docosahexaenoic acid). In the present invention, the lipase used as oxygen for oil and fat hydrolysis is Aspergillus (Asper-
gillus), Rhizopus, Mucor, Penicillium,
Filamentous fungal lipase such as Geotricum, Chromobacterium
In addition to lipases of microbial origin, such as bacterial lipases of the genus Pseudomonas, yeast lipases of the genus Candida, pancreatin lipase of animal origin, etc. can also be used. The hydrolysis conditions may be carried out according to known methods, but the amount of the lipolytic enzyme used is expressed as U (unit), which represents the fat and oil hydrolyzing activity, and the reaction substrate (oil)
50~3000U per 1g, preferably 100~
It is 3000U. The amount of water added is preferably 0.1 to 20% (by weight, the same applies hereinafter), more preferably 1 to 10%, based on the fat or oil. The pH of water is preferably in the range of 4.5 to 8.5, and it is more effective to use a buffer to adjust the pH, with a particularly desirable pH range of 5.5 to 8.0. Furthermore, for a more effective reaction,
Emulsifiers such as polyvinyl alcohol and fatty acid esters can also be used, and addition of bile salts is also effective in increasing hydrolysis activity. The hydrolysis reaction may be carried out in the atmosphere, but
When containing large amounts of long-chain highly unsaturated acids, such as fish oil and whale oil, placing them under an inert gas atmosphere, such as nitrogen gas or carbon dioxide gas, not only prevents deterioration of fatty acids but also deactivates enzymes. can also be prevented. Also, antioxidants, such as tocopherols,
TBHQ, BHA, and BHT may be used together. The hydrolysis reaction is preferably carried out at 20-60°C. Below 20°C, the reaction is slow, and above 60°C, the enzyme is inactivated. It is more preferable to carry out the reaction at a temperature of 30 to 45°C. Although it is preferable to stir the reaction, the reaction can also be carried out in an emulsified state and allowed to stand still. Further, the reaction may be a single-stage reaction, but may also be a multi-stage reaction in order to proceed more efficiently and quickly. An immobilized enzyme column can also be used for continuous reaction. The monohydric alcohol added during hydrolysis in the method of the present invention is an aliphatic alcohol having 1 to 28 carbon atoms, such as methanol, ethanol, propanol, butanol, hexanol, octanol, decanol, dodecanol, hexadecanol, Examples include octadecanol, tetracosanol, hexacodanol, etc., and particularly preferred are butanol, octanol, decanol, dodecanol, hexadecanol, octadecanol, etc. The amount of alcohol used above is per 1 mole of fat or oil,
It is usually 0.1 to 20 mol, preferably 0.1 to 10 mol. Furthermore, in the present invention, an inert organic solvent can be added to carry out the hydrolysis reaction, and the amount used is at most 10 times, preferably at most 3 times, the amount of fat and oil. In the method for producing fats and oils of the present invention, it is preferable to add the monohydric alcohol from the beginning of the reaction, but
Depending on the reaction, the entire amount may not be added at once, but may be added in portions several times, or a method of continuously feeding into the system may also be used. [Effects of the Invention] The method for producing fats and oils of the present invention uses hydrolysis using lipase and adds a monohydric alcohol during the hydrolysis, so fatty acids other than PUFA released by the hydrolysis and the added monohydric alcohol The esterification reaction with PUFA proceeds, making it possible to effectively obtain fats and oils containing a high concentration of PUFA. [Examples] The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples. Example 1 Fish oil (IV=178.9, EPA 16.8%, DHA 8%)
Add 200,000 U of Rhizopus derma together with 5 g of water to 500 g, and stir and hydrolyze in 500 g of hexane at 35°C for 1 hour. Then, 100 g of decyl alcohol is added and hydrolysis is continued while dehydrating.
The reaction was completed after 24 hours and a reaction product was obtained. From this product, triglycerides were fractionated by column chromatography, and the fatty acid composition was methyl esterified and analyzed by GLC. As a result, EPA was 28.0% and DHA was 17.5%.
It was %. Example 2 Fish oil 100g (IV 178.9, EPA 16.8%, DHA 8
%) and 40,000 U of lipase originating from the genus Candeida.
g of ion-exchanged water, and add hexane to this.
Add 500g and 10g of butyl alcohol and carry out the hydrolysis reaction while dehydrating. The reaction was stopped after 24 hours, and the oil layer was separated from the reaction composition by centrifugation. From this oil layer, triglycerides were fractionated by column chromatography, and the fatty acid composition was methyl esterified and analyzed by GLC. As a result, EPA was 28.8%.
It can be seen that DHA is 8.2%, indicating that it is concentrated. Comparative Example 1 Hydrolysis was carried out for 24 hours in the same manner as in Example 1 except that decyl alcohol was not added. Triglycerides were fractionated and analyzed from this reaction product using column chromatography, and the content was 17.5% EPA, DHA.
It was 10%. Comparative Example 2 Hydrolysis was carried out for 24 hours in the same manner as in Example 2 except that petit alcohol was not added. Triglycerides were fractionated from this reaction product using column chromatography, and analysis revealed that EPA was 19.5%.
DHA was 12.0%. Table 1 shows the fatty acid composition of the triglycerides obtained in the above Examples and Comparative Examples. Comparing Example 1 and Comparative Example 1, lipase is
Hydrolysis is promoted by acting on fatty acids other than PUFA, but in Example 1, when alcohol is added, the fatty acids released as a result of hydrolysis are immediately converted into alcohol esters by the action of lipase.
Since this is an ester that is difficult for lipase to decompose, once it is released, the fatty acid cannot form glyceride again. As a result, the concentration of PUFA-containing triglyceride increased, indicating that the reaction was progressing efficiently. On the other hand, in Comparative Example 1, since no alcohol was added, re-esterification progressed and the concentration of PUFA-containing triglyceride was lower than in Example 1.

【表】 脂肪酸表示において、最初の数字は炭素数を次の数
字は不飽和結合の数を示す。
ω(オメガ)は、末端メチル基から数えてどこの位置
に最初の二重結合があるかを示す数字である。
従つて例えばC20:5ω3は、炭素数20の脂肪酸
で二重結合は5個あり、そのうち最初の二重結合
は末端メチル基から数えて3コ目にある脂肪酸で
あることを示す。
[Table] In fatty acid display, the first number indicates the number of carbon atoms and the second number indicates the number of unsaturated bonds.
ω (omega) is a number that indicates where the first double bond is located, counting from the terminal methyl group.
Therefore, for example, C20:5ω3 indicates a fatty acid with 20 carbon atoms and five double bonds, of which the first double bond is the third fatty acid counting from the terminal methyl group.

Claims (1)

【特許請求の範囲】[Claims] 1 長鎖高度不飽和脂肪酸を含有する油脂をリパ
ーゼと反応させる際、一価アルコールを添加し、
加水分解により遊離した長鎖高度不飽和脂肪酸以
外の脂肪酸と添加した一価アルコールのエステル
化反応を進行させ、長鎖高度不飽和脂肪酸を高濃
度に含有する油脂を得ることを特徴とする油脂の
製造方法。
1. When reacting fats and oils containing long-chain highly unsaturated fatty acids with lipase, monohydric alcohol is added,
An oil or fat characterized by proceeding with an esterification reaction between a fatty acid other than the long-chain polyunsaturated fatty acid liberated by hydrolysis and an added monohydric alcohol to obtain an oil or fat containing a high concentration of long-chain polyunsaturated fatty acids. Production method.
JP59090799A 1984-05-07 1984-05-07 Hydrolysis of oil or fat Granted JPS60234590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59090799A JPS60234590A (en) 1984-05-07 1984-05-07 Hydrolysis of oil or fat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59090799A JPS60234590A (en) 1984-05-07 1984-05-07 Hydrolysis of oil or fat

Publications (2)

Publication Number Publication Date
JPS60234590A JPS60234590A (en) 1985-11-21
JPH0533988B2 true JPH0533988B2 (en) 1993-05-20

Family

ID=14008631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59090799A Granted JPS60234590A (en) 1984-05-07 1984-05-07 Hydrolysis of oil or fat

Country Status (1)

Country Link
JP (1) JPS60234590A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2571587B2 (en) * 1987-12-22 1997-01-16 旭電化工業株式会社 Method of transesterifying fats and oils
US5316927A (en) * 1988-10-04 1994-05-31 Opta Food Ingredients, Inc. Production of monoglycerides by enzymatic transesterification
FR2652588A1 (en) * 1989-10-04 1991-04-05 Medgenix Group Sa PROCESS FOR PRODUCING A MIXTURE OF GLYCERIDES ENRICHED WITH FATTY ACIDS
US5116745A (en) * 1990-04-19 1992-05-26 The Procter & Gamble Company Process for preparing 2-acylglycerides or 1,2-diacyl diglycerides or 2,3-diacyl diglycerides
US5149642A (en) * 1990-04-20 1992-09-22 The Procter & Gamble Company Process for preparing 2-acylglycerides or 1,2 or 2,3-diacylglycerides
US5137660A (en) * 1991-03-15 1992-08-11 The Procter & Gamble Company Regioselective synthesis of 1,3-disubstituted glycerides
JP5237627B2 (en) * 2007-12-27 2013-07-17 株式会社マルハニチロ水産 Method for concentrating highly unsaturated fatty acids
JP5852972B2 (en) * 2013-02-13 2016-02-03 マルハニチロ株式会社 Method for concentrating highly unsaturated fatty acids

Also Published As

Publication number Publication date
JPS60234590A (en) 1985-11-21

Similar Documents

Publication Publication Date Title
RU2151788C1 (en) Refining of oil composition
EP0274798B1 (en) Process for the preparation of esters
KR930009511B1 (en) Process for producing gliceride in presense of lipases
US6261812B1 (en) Process for producing diglycerides
JP4530311B2 (en) Method for producing glyceride using lipase
EP0307154B2 (en) Preparation of diglycerides
RU96118495A (en) REFINING OIL COMPOSITIONS
Briand et al. Enzymatic fatty esters synthesis in aqueous medium with lipase from Candida parapsilosis (Ashford) Langeron and Talice
US20030130533A1 (en) Conjugated fatty acid containing monoglycerides and process for producing them
JPH0533988B2 (en)
JPH0529433B2 (en)
JP4079516B2 (en) Method for producing triglyceride
JP3840459B2 (en) Glyceride and method for producing the same
EP1582595A1 (en) Enzymatic process for the preparation of triglycerides on the basis of polyunsaturated fatty acid esters
JP2007070486A (en) Glyceride and method for producing the same
Kojima et al. Different specificity of two types of Pseudomonas lipases for C20 fatty acids with a Δ5 unsaturated double bond and their application for selective concentration of fatty acids
JPH07268382A (en) Production of fats and oils containing long-chain highly unsaturated fatty acid
JPH06116585A (en) Method for purifying fat and oil
JPH11123097A (en) Production of diglyceride
JP2002088392A (en) Method for ester interchange of oils or fats
JPH0533987B2 (en)
JPH0412114B2 (en)
JPH09238693A (en) Purification of highly unsaturated fatty acid
JP2006288404A (en) Method for producing diglyceride
JP3100752B2 (en) Method for producing fatty acids