JPH01108764A - Formation of insulating film - Google Patents

Formation of insulating film

Info

Publication number
JPH01108764A
JPH01108764A JP26689387A JP26689387A JPH01108764A JP H01108764 A JPH01108764 A JP H01108764A JP 26689387 A JP26689387 A JP 26689387A JP 26689387 A JP26689387 A JP 26689387A JP H01108764 A JPH01108764 A JP H01108764A
Authority
JP
Japan
Prior art keywords
substrate
single crystal
insulating film
ion
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26689387A
Other languages
Japanese (ja)
Other versions
JPH0571186B2 (en
Inventor
Mayumi Nomiyama
野見山 真弓
Hideaki Yamagishi
秀章 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP26689387A priority Critical patent/JPH01108764A/en
Publication of JPH01108764A publication Critical patent/JPH01108764A/en
Publication of JPH0571186B2 publication Critical patent/JPH0571186B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable realizing increase of integration density, high speed operation, decrease of power consumption, and high reliability when transistor and the like are formed, by a method wherein the surface of an Si single crystal substrate is subjected to high concentration ion implantation of the same group element as the substrate, and an insulating layer is formed under the substrate surface, by annealing the substrate in an oxygen or nitrogen atmosphere. CONSTITUTION:In an Si single crystal substrate, Ge ions of the same group are ion-implanted, an amorphous layer of Si+Ge is formed. This ion-implanted Si substrate is subjected to annealing in a nitrogen atmosphere, and turned into a single crystal layer 4 containing Ge. An insulating film 5 is formed at a position 3 of implantation depth. Thereby simplifying the process, and forming the insulating film under the substrate surface without increasing the cost.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は例えばMOS  ICの形成に用いて好適なS
il板に関するものである。
[Detailed Description of the Invention] Industrial Application Fields> The present invention provides an S
This is related to the IL board.

〈従来の技術〉 一般にMOS  IGではトランジスタは基板の表面近
傍のみに存在し、!!板の大部分は機械的強度を保つ為
に必要なだけである。また、基板そのものが半導体であ
るため基板にリーク電流が流れ無効の電力を消費する。
<Prior art> In general, in MOS IG, transistors exist only near the surface of the substrate. ! Most of the plate is only needed to maintain mechanical strength. Furthermore, since the substrate itself is a semiconductor, leakage current flows through the substrate, consuming ineffective power.

この様な無効電力の消費を防止する手段として、!!板
としてサファイアを用いこのサファイアの表面に81を
エピタキシャル成長させたもの(S 08−si l 
I 1con−on−sapphire)があり、この
基板は集積密度の増大、高速化。
As a means to prevent such reactive power consumption! ! Sapphire was used as a plate, and 81 was epitaxially grown on the surface of this sapphire (S08-sil
1con-on-sapphire), and this substrate increases integration density and speeds up.

低消費電力化および高信頼性を実現することが出来る。It is possible to achieve low power consumption and high reliability.

また、Si単結晶基板の表面をS i O2化しこの上
に多結晶ないしアモルファスの3iをエピタキシャル成
長させ、これら多結晶またはアモルファス9iの一端を
81単結晶基板の表面に接触させておきそこを種として
、レーザビームや電子ビーム等で順次単結晶化する( 
S Ol−5i I l 1con−。
In addition, the surface of the Si single crystal substrate is converted to SiO2, polycrystalline or amorphous 3i is epitaxially grown on this, one end of these polycrystalline or amorphous 9i is brought into contact with the surface of the 81 single crystal substrate, and this is used as a seed. , it is sequentially made into a single crystal using a laser beam, an electron beam, etc. (
S Ol-5i I l 1con-.

n−1nstllator )ものや、Sil板中に直
接酸素イオンを大量に注入し5i0211を形成しよう
とする方法(SIMOX)も考えられている。
A method (SIMOX) in which a large amount of oxygen ions are directly implanted into a Sil plate to form 5i0211 is also being considered.

〈発明が解決しようとする問題点〉 しかしながら上記従来の方法において、SOSはサファ
イアとSiの熱膨脂係数の違いによる圧縮歪み、高密度
な格子欠陥、サファイアとSiの界面における遷移領域
の存在、1板からのAl不純物のオートドーピング等の
問題があり、また。
<Problems to be Solved by the Invention> However, in the above conventional method, SOS suffers from compressive strain due to the difference in thermal expansion coefficient between sapphire and Si, high density lattice defects, presence of a transition region at the interface between sapphire and Si, There are also problems such as autodoping of Al impurities from one plate.

SOIはまだ技術的に確立されておらず、さらに。SOI is not yet technically established and furthermore.

SIMOXは絶1IIIII形成の為の多聞のm素イオ
ンをすべてイオン注入により供給するので、大電流(〜
0.IA)イオン注入装置(この電流値は一般の注入装
置に比較して2桁程度高い電流値である)が必要となり
実用的ではないという問題がある。
SIMOX supplies all the m element ions for the formation of 1III by ion implantation, so a large current (~
0. IA) There is a problem in that it requires an ion implantation device (the current value of which is about two orders of magnitude higher than that of a general implantation device) and is not practical.

本発明は上記従来技術の問題点に鑑みて成されたもので
、一般に用いられているイオン注入装置を用いて基板と
同族のイオンをaSr!1に注入し。
The present invention has been made in view of the problems of the prior art described above, and uses a commonly used ion implantation device to implant ions of the same group as the substrate into aSr! Inject into 1.

大気圧程度の酸素(または窒素)雰囲気中でアニールす
ることにより基板の表面下に絶縁層を形成することを目
的とする。
The purpose is to form an insulating layer under the surface of the substrate by annealing in an oxygen (or nitrogen) atmosphere at about atmospheric pressure.

く問題点を解決するための手段〉 上記問題点を解決するための本発明の構成は。Means to solve problems〉 The structure of the present invention for solving the above problems is as follows.

Si単結品基板の表面にこの基板と同族の元素を高濃度
にイオン注入し、この基板を酸素または窒1#雰囲気中
でアニールすることにより基板の表面下に絶縁層を形成
したことを特徴とするものである。
It is characterized by forming an insulating layer under the surface of the substrate by ion-implanting elements of the same group as the substrate into the surface of a Si single-crystalline substrate at a high concentration, and annealing the substrate in an oxygen or nitrogen 1# atmosphere. That is.

く実施例〉 第1図はS1単結晶基板に 族のGeをイオン注入した
状態を示す断面図で、1は単結晶Si基板、2はSi+
G、eの非晶質層であり、3は注入深さの位! (as
 1g1plantationとな−)Tい8゜この実
胞例ではイオンの加速エネルギーを200Kev、 ド
ーズl15X10雷’ a tm/cm2. 注入深さ
0.1μmfy度としている。
Embodiment> Figure 1 is a cross-sectional view showing a state in which Ge group ions are implanted into an S1 single crystal substrate, where 1 is a single crystal Si substrate, 2 is a Si+
It is an amorphous layer of G, e, and 3 is the implantation depth! (as
1g1plantation)T8゜In this example, the ion acceleration energy is 200Kev, and the dose is 15X10' atm/cm2. The implantation depth is set to 0.1 μmfy degree.

第2図は第1の図の様にイオン注入したSi基板1を窒
素雰囲気(1気圧)中で1170’C程度でアニールを
行った状態を示し、第1図で示す非晶質層がGeを含む
単結晶114となり、注入深さの位a (as +g+
pla  に絶縁115が形成された状態を示している
。この絶縁膜は深さ0.1μmの所に形成されたダング
リングボンド(どの原子とも結合していない不安定なポ
ンド)がイオン注入時およびアニール時に入った窒素ま
たは酸素と結合することにより形成される。また、イオ
ン注入により基板の表面には欠陥が生じるがその欠陥は
0゜1μmの位置に形成されたダングリングボンドの部
分に集中するというゲッタリング効果により。
FIG. 2 shows a state in which the Si substrate 1 into which ions have been implanted as shown in FIG. The single crystal 114 containing the implantation depth is a (as +g+
A state in which an insulation 115 is formed on pla is shown. This insulating film is formed when dangling bonds (unstable bonds that are not bonded to any atoms) formed at a depth of 0.1 μm combine with nitrogen or oxygen introduced during ion implantation and annealing. Ru. Also, due to the gettering effect, defects are generated on the surface of the substrate due to ion implantation, but the defects are concentrated at the dangling bond formed at a position of 0.1 μm.

基板表面を完全な単結晶に復帰させることが出来る。It is possible to restore the substrate surface to a perfect single crystal.

第3図(a)、(b)、(c)は第4図に示すSil板
の表面0.1μmおよび0.4μmの深さの位置をE 
S CA (electron apectrosco
py f。
Figures 3(a), (b), and (c) show the positions at a depth of 0.1 μm and 0.4 μm on the surface of the Sil plate shown in Figure 4.
S CA (electron apectrosco
py f.

r chemical analysisにより測定し
、Si原子の結合状態を結合エネルギー(横軸)と光電
子数(縦軸)の関係として示している。図によれば0゜
1μmの所にはS(の他絶縁膜としてのS i Ox 
*5fsNaが存在していることが分る。なお、上記実
施例に限ることなく例えばイオン注入前に基板の表面に
予め所望の元素を含む膜を形成しておくことにより、I
I成の変化をl1tXIすることも可能である。この様
なSO[によれば前述のSO8と同様の効果を得ること
ができ、また、熱膨脂係数や界面における遷移領域の存
在もないので、I板の表面にトランジスタなどを形成す
れば、より信頼度の高いものとなる。
The bonding state of Si atoms is measured by r chemical analysis and is shown as the relationship between the binding energy (horizontal axis) and the number of photoelectrons (vertical axis). According to the figure, at 0°1 μm there is S (SiOx as an insulating film).
*5fsNa is found to exist. Note that, without being limited to the above embodiments, for example, by forming a film containing a desired element on the surface of the substrate before ion implantation, I.
It is also possible to modify the change in I. With such SO[, the same effect as the above-mentioned SO8 can be obtained, and since there is no coefficient of thermal expansion or transition region at the interface, if a transistor etc. is formed on the surface of the I plate, It becomes more reliable.

なお1本実施例においては3i単結晶基板にGeを高濃
度にイオン注入し、窒素雰囲気中でアニールしたが、s
ki板に3iおよびその他の 族元素を高濃度にイオン
注入してもよく、酸素雰囲気中でアニールしてもよい。
In this example, Ge was ion-implanted at a high concentration into a 3i single crystal substrate and annealed in a nitrogen atmosphere.
The ki plate may be ion-implanted with 3i and other group elements at a high concentration, or may be annealed in an oxygen atmosphere.

また、加速エネルギーやドーズ量も本実施例に限ること
なく必要に応じて適切に選択することが出来る。
Further, the acceleration energy and dose amount are not limited to those in this embodiment, and can be appropriately selected as necessary.

〈発明の効果〉 以上実施例とともに具体的に説明したように本発明によ
れば、一般に用いられているイオン注入装置を用いて基
板と同族のイオンを高′a度に注入し、大気圧程度の酸
素(または窒素)雰囲気中でアニールすることにより、
プロセスの簡略化および価格の上昇を招くことなく基板
の表面下に絶縁膜を形成することができ、トランジスタ
等を形成した場合集積密度の増大、高速化、低消費電力
化および高信頼性を実現することが出来る。
<Effects of the Invention> As specifically explained above in conjunction with the embodiments, according to the present invention, ions of the same group as the substrate are implanted at a high degree using a commonly used ion implantation device, and the ions are implanted at about atmospheric pressure. By annealing in an oxygen (or nitrogen) atmosphere,
It is possible to form an insulating film under the surface of the substrate without simplifying the process or increasing the price, and when forming transistors etc., it achieves increased integration density, higher speed, lower power consumption, and higher reliability. You can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は基板に同族の元素をイオン注入した状態を示す
断面図、第2図は第1図に示す基板をアニールした状態
を示す断面図、第3図はSi原子の結合状態を示す図、
第4図は第3図における測定対象位置を示す図である。 1・・・単結晶3i基板、2・・・非晶質層、3・・・
注入深さの位置、4・・・Geを含む3i単結晶、絶縁
膜。 園 (c) 10.4J、1m内部) スルギー
Figure 1 is a cross-sectional view showing the state in which the same group of elements is ion-implanted into the substrate, Figure 2 is a cross-sectional view showing the state in which the substrate shown in Figure 1 has been annealed, and Figure 3 is a diagram showing the bonding state of Si atoms. ,
FIG. 4 is a diagram showing the measurement target position in FIG. 3. 1... Single crystal 3i substrate, 2... Amorphous layer, 3...
Position of implantation depth, 4... 3i single crystal containing Ge, insulating film. Garden (c) 10.4J, 1m inside) Surgi

Claims (1)

【特許請求の範囲】[Claims]  Si単結晶基板の表面にこの基板と同族の元素を高濃
度にイオン注入し、この基板を酸素または窒素雰囲気中
でアニールすることにより基板の表面下に絶縁膜を形成
したことを特徴とする絶縁膜形成方法。
An insulator characterized by forming an insulating film under the surface of a Si single crystal substrate by ion-implanting elements of the same group as the substrate at a high concentration into the surface of the substrate and annealing the substrate in an oxygen or nitrogen atmosphere. Film formation method.
JP26689387A 1987-10-22 1987-10-22 Formation of insulating film Granted JPH01108764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26689387A JPH01108764A (en) 1987-10-22 1987-10-22 Formation of insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26689387A JPH01108764A (en) 1987-10-22 1987-10-22 Formation of insulating film

Publications (2)

Publication Number Publication Date
JPH01108764A true JPH01108764A (en) 1989-04-26
JPH0571186B2 JPH0571186B2 (en) 1993-10-06

Family

ID=17437117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26689387A Granted JPH01108764A (en) 1987-10-22 1987-10-22 Formation of insulating film

Country Status (1)

Country Link
JP (1) JPH01108764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332059A (en) * 1989-06-29 1991-02-12 Nec Corp Semiconductor photodetector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332059A (en) * 1989-06-29 1991-02-12 Nec Corp Semiconductor photodetector

Also Published As

Publication number Publication date
JPH0571186B2 (en) 1993-10-06

Similar Documents

Publication Publication Date Title
US6737670B2 (en) Semiconductor substrate structure
US6992025B2 (en) Strained silicon on insulator from film transfer and relaxation by hydrogen implantation
US7067386B2 (en) Creation of high mobility channels in thin-body SOI devices
US7253080B1 (en) Silicon-on-insulator semiconductor wafer
JPH02290045A (en) Method of forming insulating layer from non-silicon semicondutor layer
KR20090042712A (en) Soi substrates with a fine buried insulating layer
CN101286442B (en) Method for manufacturing an soi substrate
JPH01108764A (en) Formation of insulating film
Serre et al. β-SiC on SiO2 formed by ion implantation and bonding for micromechanics applications
JP2009016637A (en) Method of manufacturing semiconductor substrate
JPS5860556A (en) Preparation of semiconductor device
US10170356B2 (en) SOI substrate and manufacturing method thereof
JPH04115511A (en) Manufacture of soi substrate
US6037198A (en) Method of fabricating SOI wafer
US20210305097A1 (en) Low-temperature method for transfer and healing of a semiconductor layer
KR20170103652A (en) Soi substrate and manufacturing method thereof
JP2755653B2 (en) Method of forming SOI structure
JPS63250812A (en) Manufacture of semiconductor substrate
JPH01239867A (en) Formation of semiconductor on insulating film
JPH02228061A (en) Manufacture of soi substrate
JPH04242958A (en) Manufacture of semiconductor device
JPS61180447A (en) Manufacture of semiconductor device
JPH0396223A (en) Forming method for soi structure
JPS62108516A (en) Solid growth method for polycrystalline semiconductor film
KR20070071995A (en) Method of fabricating germanium-on-insulator substrate using a soi substrate