JPH01108761A - High breakdown strength semiconductor device - Google Patents

High breakdown strength semiconductor device

Info

Publication number
JPH01108761A
JPH01108761A JP62265907A JP26590787A JPH01108761A JP H01108761 A JPH01108761 A JP H01108761A JP 62265907 A JP62265907 A JP 62265907A JP 26590787 A JP26590787 A JP 26590787A JP H01108761 A JPH01108761 A JP H01108761A
Authority
JP
Japan
Prior art keywords
region
dmos
concentration
diffusion
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62265907A
Other languages
Japanese (ja)
Inventor
Yutaka Otowa
音羽 豊
Kenzo Kawano
川野 研三
Koichiro Ko
廣 幸一郎
Yoshihiro Kida
貴田 祥裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62265907A priority Critical patent/JPH01108761A/en
Publication of JPH01108761A publication Critical patent/JPH01108761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To decrease the resistance of base region, improve the breakdown strength, and enable controlling the threshold voltage proper to DMOS, by constituting the base region of a high breakdown strength DMOS transistor of a shallow region of high concentration and a deep region of low concentration. CONSTITUTION:On one main surface of a P-type silicon substrate 23, an N<-> epitaxial layer 14 is grown, and P<+> impurity diffusion layer 15 reaching the P-type silicon substrate 13 and a thick oxide film 16 are formed on an element isolation region. After, by using a diffusion mask, P-type impurity is ion- implanted into the N<->epitaxial layer 14 in the manner of surface concentration, a diffusion region is formed by heat treatment, and turned into a well region 17 of an N-channel transistor of CMOS, and a first base region 18 of DMOS. After a gate oxide film 19 is formed and a gate electrode 20 is formed of polysilicon, P-type impurity is ion-implanted into the first base layer 18 of DMOS, by using the gate electrode 20 and the thick oxide film 16 as masks. Further heat treatment is performed and a diffusion region is formed, which is turned into a second base region 21.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は高耐圧を有する絶縁ゲート型FETに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an insulated gate FET having a high breakdown voltage.

く従来の技術〉 高耐圧を有する半導体素子として、絶縁ゲート型FET
(以下MO5FET)が一般に広く用いられている。該
MO5FETの構造をM4図を参照しながら説明する。
Conventional technology> Insulated gate FETs are used as semiconductor devices with high breakdown voltage.
(hereinafter referred to as MO5FET) is generally widely used. The structure of the MO5FET will be explained with reference to diagram M4.

P型シリコン基板lにN−エピタキシャル層2を形成し
、該N−エピタキシャル層2中にMOSFET の基板
(以下ベース)となるP型不純物低濃度拡散領域3を形
成する0該ベース領域3内にN型不純物を高濃度に、注
入してソース領域4を形成し、前記ペース領域8とN−
エピタキシャル層2を介して該N−エピタキシャル層2
にN型不純物を高濃度に添加或いは注入してドレイン領
域5を形成する。該ドレイン領域5と前記ソース領域4
との間のペース領域3上層はチャネルとして働き、該チ
ャネル領域上には絶縁膜を介してゲート電極6が形成さ
れ、またソース領域4、ドレイン領域5上にも夫々電極
7が形成されている〇 二t#I寵匣 この工うな構造のMOSFETは特に極−一→ゆ#に)
4亭闘噂MOSFET (以下DMO5)と呼ばれてい
る。前記ペース領域3への不純物注入はゲート電極6を
マスクとして自己整合的に行なわれるため、注入した不
純物を拡散する長時間の高温熱処理工程が工程上比較的
遅く、同一シリコン基板1上に形成されたCMOS等の
他の半導体素子の信頼性に影響を与え易い。このため、
ペース領域3形成のための熱処理工程は短時間である必
要があり、結果的にペース領域3は比較的浅くなって(
約2μm)、電界集中が起こり易く、非常に高い耐圧を
得るのが困難となる。これを解決し、且つ工程を増やさ
ずに比較的深いペース領域を得る方法として、第5図に
示す如(、CMOSNチャネルトランジスタのウェル領
域8形成時に同時にペース領域9を形成する方法がある
0この時、0MO8Nチャネルトランジスタのウェル領
域8は比較的深く(約5μm)、且つ比較的低濃度(N
 A 10  cm  )である。
An N-epitaxial layer 2 is formed on a P-type silicon substrate 1, and a low-concentration P-type impurity diffusion region 3 is formed in the N-epitaxial layer 2 to become a substrate (hereinafter referred to as base) of the MOSFET. A source region 4 is formed by implanting N-type impurities at a high concentration, and the space region 8 and N-
The N-epitaxial layer 2 via the epitaxial layer 2
A drain region 5 is formed by doping or implanting N-type impurities at a high concentration. the drain region 5 and the source region 4
The upper layer of the space region 3 between the space region 3 acts as a channel, and a gate electrode 6 is formed on the channel region via an insulating film, and electrodes 7 are also formed on the source region 4 and drain region 5, respectively. 〇2t #I The MOSFET with this unstructured structure is especially polar-1 → Yu #)
It is called the 4-tei MOSFET (hereinafter referred to as DMO5). Since the impurity implantation into the pace region 3 is performed in a self-aligned manner using the gate electrode 6 as a mask, the long-time high temperature heat treatment step for diffusing the implanted impurity is relatively slow, and the impurities are formed on the same silicon substrate 1. This tends to affect the reliability of other semiconductor devices such as CMOS. For this reason,
The heat treatment process for forming the pace region 3 needs to be short, and as a result the pace region 3 becomes relatively shallow (
(approximately 2 μm), electric field concentration tends to occur, making it difficult to obtain a very high breakdown voltage. As a method to solve this problem and obtain a relatively deep pace region without increasing the number of steps, there is a method of forming the pace region 9 at the same time as the well region 8 of the CMOSN channel transistor is formed, as shown in FIG. At this time, the well region 8 of the 0MO8N channel transistor is relatively deep (approximately 5 μm) and has a relatively low concentration (N
A 10 cm).

〈発明が解決しょうとする問題点〉 ここで、DMOS内にはN型ソース領域10、P型ベー
ス1N域9、N−エピタキシャル層11及びN型ドレイ
ン領域12にLリラテラルNPNバイポーラトランジス
タ構造が存在し、前述の如くペース領域9の不純物濃度
が比較的高く、バイポーラトランジスタ効果によりドレ
イン−ソース間のON状態での耐圧が低下するという問
題がある。
<Problems to be Solved by the Invention> Here, an L-lateral NPN bipolar transistor structure exists in the N-type source region 10, P-type base 1N region 9, N-epitaxial layer 11, and N-type drain region 12 in the DMOS. However, as described above, the impurity concentration in the pace region 9 is relatively high, and there is a problem that the withstand voltage in the ON state between the drain and the source is lowered due to the bipolar transistor effect.

また、第5因に示す如くCMOSNチャネルトランジス
タのウェル領域8とDMOSのペース領域9とを同一工
程にて形成するため、CMOSNチャネルトランジスタ
のスレッショルド電圧とNチャネルDMO5)ランジス
タのスレッショルド電圧が同一であるか、或いはNチャ
ネルDMOS )ランジスタではP型ベース領域9の横
方向拡散領域をチャネル領域として用いられることもあ
ってNチャネルDMO5)ランジスタの方がCMOSN
チャネルトランジスタに比べてスレッショルド電圧が低
く形成される。ところが、−膜内にはNチャネルDMO
5)ランジスタのスレッショルド電圧がCMOSNチャ
ネルトランジスタのスレッショルド電圧エリも高く設定
されるため、6MO8Nチャネル、トランジスタにチャ
ネルドープを行なってCMOSNチャネルトランジスタ
のスレッショルド電圧を低下させなければならないとい
う問題があるO く問題点を解決するための手段〉 本発明は上述する問題点を解決するためになされたもの
で、第1導電型半導体基板に形成されるFETにおいて
、 g1導電型不純物領域にて形成されたソース領域を囲む
、ペース領域は、 前記ペース領域を囲み、比較的浅く形成される第2導電
型不純物高濃度領域と、 該第2導電型不純物高濃度領域を囲み、比較的深く形成
される第2導電型不純物低濃度領域とからなる高耐圧半
導体装置を提供するものである0く作用〉 上述の如く、高耐圧DMO5トランジスタのペース領域
をLり浅い高濃度領域とエリ深い低濃度領域とで構成す
ることにエリ、より深い低濃度領域にてペース領域の電
界集中を緩和でき、同時に工り浅い高濃度領域の存在に
よりペース領域の抵抗を下げることができる0また、本
発明によるDMOS)ランジスタをCMO5等他の半導
体素子と同一基板上に共通の工程を有して形成する場合
であっても、ペース領域が二重の拡散領域工りなるため
、DMO5個有のスレッショルド電圧を制御することが
可能となる。
Furthermore, as shown in the fifth factor, since the well region 8 of the CMOS N-channel transistor and the space region 9 of the DMOS are formed in the same process, the threshold voltage of the CMOS N-channel transistor and the threshold voltage of the N-channel DMO transistor are the same. or N-channel DMOS5) transistors, the lateral diffusion region of the P-type base region 9 is sometimes used as a channel region;
The threshold voltage is lower than that of a channel transistor. However, - there is an N-channel DMO in the film.
5) Since the threshold voltage of the transistor and the threshold voltage of the CMOS N channel transistor are set high, there is a problem that the threshold voltage of the CMOS N channel transistor must be lowered by channel doping of the 6MO8N channel transistor. Means for Solving the Problems> The present invention has been made to solve the above-mentioned problems, and in an FET formed on a first conductivity type semiconductor substrate, a source region formed of a g1 conductivity type impurity region. The pace region surrounds the pace region, and includes: a second conductivity type impurity high concentration region that surrounds the pace region and is formed relatively shallowly; and a second conductivity type impurity high concentration region that surrounds the second conductivity type impurity high concentration region and is formed relatively deeply. As described above, the pace region of the high voltage DMO5 transistor is composed of a shallow high concentration region and a deep low concentration region. In particular, the electric field concentration in the pace region can be alleviated by the deeper low-concentration region, and at the same time, the resistance of the pace region can be lowered by the presence of the shallow high-concentration region. Even when formed using a common process on the same substrate as other semiconductor devices, since the space region is a double diffusion region, it is possible to control the threshold voltage of the five DMOs. becomes.

〈実施例〉 以下、図面を用いて本発明の詳細な説明するが、本発明
はこれに限定されるものではないOMI肉は本発明の一
実施例を示す断面図であり、同一基板上にDMOSとC
MOSとを工程を共有させて形成する0先ず、+000
・mの(+00)P型シリコン基板13の一生面上にI
OΩ・mのN−エピタキシャル414を約20μmの膜
厚に成長させ、素子分離領域に前記P型シリコン基板1
3に達するP+不純物拡散領域15及び厚い酸化膜16
を形成する。次いで拡散マスクを用いて前記N−エピタ
キシャル層■4にP型不純物を表面濃度にしてIX 1
0 m6cm−3程度イオン注入した後、熱処理を行な
って5〜6μmの深さの拡散領域を形成し、CMOSの
Nチャネルトランジスタのウェル領域17及びDMOS
の第1のペース領域18とする。
<Example> Hereinafter, the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto. DMOS and C
0, which is formed by sharing the process with MOS, +000
・I on the whole surface of the (+00) P-type silicon substrate 13 of m
An N-epitaxial film 414 of OΩ·m is grown to a thickness of about 20 μm, and the P-type silicon substrate 1 is grown in the element isolation region.
3 P+ impurity diffusion region 15 and thick oxide film 16
form. Next, using a diffusion mask, the N-epitaxial layer 4 is doped with a P-type impurity at a surface concentration of IX1.
After ion implantation of approximately 0 m6 cm-3, heat treatment is performed to form a diffusion region with a depth of 5 to 6 μm, and the well region 17 of the CMOS N-channel transistor and the DMOS
The first pace area 18 of FIG.

次にゲート酸化膜19を形成し、ゲート電極20をポリ
シリコンで形成した後、該ゲート電極20及び厚い酸化
膜16をマスクとして0MO5の前記第1のペース領域
18にP型不純物を表面濃度にして5X10”t−In
−3程度イオン注入し、更に熱処理を行なって2μmの
深さの拡散領域を形成し、DMO8の第2のペース領域
21とする。続いて、従来公知の技術を用いて0MO5
のソース領域22、ドレイン領域23、CMO5Nチャ
ネルトランジスタのソース、ドレイン領域24、CMO
5Pチャネルトランジスタのソース、ドレイン領域25
を形成し、更にソース、ドレイン電極26等を形成して
トランジスタを完成させる。
Next, a gate oxide film 19 is formed, and a gate electrode 20 is formed of polysilicon. Using the gate electrode 20 and the thick oxide film 16 as a mask, a P-type impurity is added to the surface concentration of the first space region 18 of 0MO5. 5X10”t-In
-3 ion implantation and further heat treatment to form a diffusion region with a depth of 2 μm, which will be used as the second pace region 21 of the DMO 8. Subsequently, using a conventionally known technique, 0MO5
Source region 22, drain region 23, CMO5N channel transistor source, drain region 24, CMO
Source and drain regions 25 of 5P channel transistor
, and further form source and drain electrodes 26 and the like to complete the transistor.

この工うに0MO5)ランジスタのペース領域を工り浅
い高濃度領域と工り深い低濃度領域とで構成することに
エリ、工り深い領域で電界集中を緩和でき、高濃度であ
るためペース領域の抵抗は低い。また、DMOSのペー
ス領域とCMO5Nチャネルトランジスタのウェル領域
は工程を共有して形成されるが、0MO5のベース領域
は2層からなり、DMOSのスレッショルド電圧を左右
する第2のベース領域とCMO8Nチャネルトランジス
タのスレッショルド電圧を左右するウェル領域とは夫々
別の工程にて形成されるtめ、0MO5のスレッシ。
It is advantageous to configure the pace region of this transistor with a shallow high-concentration region and a deep low-concentration region. resistance is low. In addition, the DMOS pace region and the well region of the CMO5N channel transistor are formed in a common process, but the base region of the 0MO5 is made up of two layers, and the second base region, which controls the threshold voltage of the DMOS, and the CMO8N channel transistor are formed in the same process. The 0MO5 threshold is formed in a separate process from the well regions that affect the threshold voltage of the gate.

ルド電圧とCMO5Nチャネルトランジスタのスレッシ
ョルド電圧を個々に制御できる。
The field voltage and the threshold voltage of the CMO5N channel transistor can be controlled individually.

上記本実施例において、本発明の0MO5を横型のトラ
ンジスタに適用したが、本発明はこれに限定されるもの
ではなく、第2図の如くミP型シリコン基板13にアン
チモン等のN型の不純物を注入してN十埋込層27を形
成し、またN−エピタキシャル層14に前記N+極■2
7に到達する鹸ドレイン領域28を形成する縦型のトラ
ンジスタで構成されたものであっても工い。
In the above embodiment, the OMO5 of the present invention was applied to a horizontal transistor, but the present invention is not limited thereto.As shown in FIG. The N+ electrode 2 is implanted into the N+ epitaxial layer 14 to form the N+ buried layer 27.
It is also possible to use a vertical transistor forming the drain region 28 reaching the drain region 7.

また、上記本実施例において、0MO5をCMOSと同
一基板に形成したが、本発明はこれに限定されるもので
はなく、バイポーラトランジスタと同一基板に形成した
り、或いは第3図の如く、CMO5等他の素子と工程を
共有させずN型半導体基板29主面にソース301ゲー
ト31、及びペース32を有し、裏面にドレイン33を
有するパワートランジスタであっても工い。
Further, in the above embodiment, the OMO5 is formed on the same substrate as the CMOS, but the present invention is not limited to this, and it may be formed on the same substrate as the bipolar transistor, or as shown in FIG. A power transistor having a source 301, gate 31, and space 32 on the main surface of the N-type semiconductor substrate 29 and a drain 33 on the back surface can be fabricated without sharing the process with other elements.

更に上記本実施例において、DMOSトランジスタをN
チャネルトランジスタを用いて説明したが、本発明はこ
れに限定されるものではなく、Pチャネルトランジスタ
であっても工い。
Furthermore, in this embodiment, the DMOS transistor is
Although the description has been made using a channel transistor, the present invention is not limited thereto, and may be applied to a P-channel transistor.

〈発明の効果〉 DMO,S構造のトランジスタでは、ドレイン−ソース
間に高電圧を印加する場合、第1導電型半導 。
<Effects of the Invention> In a DMO or S structure transistor, when a high voltage is applied between the drain and the source, the transistor becomes a first conductivity type semiconductor.

体基板と第2導電型ペース領域との接合部に電圧のほと
んどが印加され、それに伴って空乏領域は第1導電型半
導体基板と第2導電型ベース領域の不純物濃度比に近似
的に反比例して拡がる0したがって本発明の如く、ペー
ス領域を比較的高濃度で浅い拡散領域と比較的低濃度で
深い拡散領域の二重構造に形成することに工り、ドレイ
ン−ソース間電圧によるベース領域への空乏領域の拡が
りを比較的低濃度で深いペース領域中へ十分広く拡ける
ことができて高耐圧化に効果があり、また比較的高濃度
で浅いベース領域の存在に工っで前記ペース領域中への
空乏領域の拡がりを制限できてソースへのパンチスルー
を防止できる効果がある。
Most of the voltage is applied to the junction between the body substrate and the second conductivity type base region, and the depletion region is approximately inversely proportional to the impurity concentration ratio between the first conductivity type semiconductor substrate and the second conductivity type base region. Therefore, according to the present invention, the pace region is formed into a double structure of a shallow diffusion region with a relatively high concentration and a deep diffusion region with a relatively low concentration, so that the drain-source voltage spreads to the base region. It is possible to spread the depletion region sufficiently widely into the deep pace region with a relatively low concentration, which is effective in increasing the withstand voltage. This has the effect of restricting the spread of the depletion region inward and preventing punch-through to the source.

また、比較的高濃度で浅いペース領域の存在にLす、ベ
ース領域の抵抗が低下してDMOS F ETのON状
態におけるバイポーラトランジスタ構造による耐圧の低
下を改善できる。
Furthermore, the presence of the shallow pace region with a relatively high concentration reduces the resistance of the base region, thereby improving the reduction in breakdown voltage caused by the bipolar transistor structure in the ON state of the DMOS FET.

したがうて本発明は性能の高い高耐圧 DMOSFETの製造に寄与するものである。Therefore, the present invention has high performance and high voltage resistance. This contributes to the manufacture of DMOSFETs.

【図面の簡単な説明】[Brief explanation of the drawing]

i@1図は本発明の第1の実施例を示す断面図、第2図
は本発明の第2の実施例を示す断面図、第3図は本発明
の第3の実施例を示す断面図、第4図%5図は従来例を
示す断面図である01BIP型シリコン基板 14:N
−エピタキシャル層 15:P+不純物拡散領域 I6
:厚い酸化膜 17:ウェル領域 18:ilのベース
領域 19:ゲート酸化膜 20:ゲート電極21:第
2のペース領域 22:ソース領域(DMO3)  2
 a ニドレイン領域(DMO8)24 。 ソース、ドレイン領域(CMO5Nチャネルトランジス
タ)  25ニア−x、トレイン領域(CMOSP チ
ャネルトランジスタ) 26:電極 27N+埋込層 
28:N+ドレイン領域 29:N型半導体基板 3o
:ソース 3夏:ゲート 32:ベース 33ニドレイ
ン 代理人 弁理士 杉 山 毅 至 (他1名)第1図 第2図
i@1 Figure is a sectional view showing the first embodiment of the invention, Figure 2 is a sectional view showing the second embodiment of the invention, and Figure 3 is a sectional view showing the third embodiment of the invention. 01BIP type silicon substrate 14:N
-Epitaxial layer 15: P+ impurity diffusion region I6
: Thick oxide film 17: Well region 18: Base region of il 19: Gate oxide film 20: Gate electrode 21: Second space region 22: Source region (DMO3) 2
a Nidorain region (DMO8) 24. Source, drain region (CMO5N channel transistor) 25 near-x, train region (CMOSP channel transistor) 26: Electrode 27N+buried layer
28: N+ drain region 29: N-type semiconductor substrate 3o
: Source 3 Summer: Gate 32: Base 33 Nidrain agent Patent attorney Takeshi Sugiyama (1 other person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、第1導電型半導体基板に形成されるFET(Fie
ldEffectTransistor)において、 第1導電型不純物領域で形成されたソース領域を囲む、
ベース領域は、 前記ソース領域を囲み、比較的浅く形成される第2導電
型不純物高濃度領域と、 該第2導電型不純物高濃度領域を囲み、比較的深く形成
される第2導電型不純物低濃度領域とからなることを特
徴とする高耐圧半導体装置。
[Claims] 1. FET formed on a first conductivity type semiconductor substrate
ldEffectTransistor), surrounding the source region formed by the first conductivity type impurity region,
The base region includes a second conductivity type impurity high concentration region that surrounds the source region and is formed relatively shallowly, and a second conductivity type impurity low concentration region that surrounds the second conductivity type impurity high concentration region and is formed relatively deeply. A high voltage semiconductor device characterized by comprising a concentration region.
JP62265907A 1987-10-21 1987-10-21 High breakdown strength semiconductor device Pending JPH01108761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62265907A JPH01108761A (en) 1987-10-21 1987-10-21 High breakdown strength semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62265907A JPH01108761A (en) 1987-10-21 1987-10-21 High breakdown strength semiconductor device

Publications (1)

Publication Number Publication Date
JPH01108761A true JPH01108761A (en) 1989-04-26

Family

ID=17423757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62265907A Pending JPH01108761A (en) 1987-10-21 1987-10-21 High breakdown strength semiconductor device

Country Status (1)

Country Link
JP (1) JPH01108761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259897A (en) * 2008-04-14 2009-11-05 Denso Corp Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186068A (en) * 1985-01-31 1985-09-21 Hitachi Ltd Insulated gate field effect transistor
JPS61174666A (en) * 1985-01-29 1986-08-06 Yokogawa Electric Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174666A (en) * 1985-01-29 1986-08-06 Yokogawa Electric Corp Semiconductor device
JPS60186068A (en) * 1985-01-31 1985-09-21 Hitachi Ltd Insulated gate field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259897A (en) * 2008-04-14 2009-11-05 Denso Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JP2604777B2 (en) Manufacturing method of double diffusion type field effect semiconductor device.
JPH0897411A (en) Lateral trench mos fet having high withstanding voltage and its manufacture
JP2001077363A (en) Silicon carbide semiconductor device and its manufacturing method
JPS60202967A (en) Vertical mosfet device
JP2009515332A (en) Manufacturing method of semiconductor device
JP2000188391A (en) Manufacture of semiconductor integrated circuit device
JPH0783119B2 (en) Field effect transistor
JP2001077354A (en) Vertical insulating gate semiconductor device
JP2850852B2 (en) Semiconductor device
JPH03129767A (en) Complementary field effect transistor
JPH09129868A (en) Semiconductor device and its manufacture
JPH0237777A (en) Vertical type field-effect transistor
JP3642768B2 (en) Horizontal high voltage semiconductor device
JPS58175872A (en) Insulated gate field effect transistor
JPS6384067A (en) Semiconductor device and manufacture thereof
JPH01272163A (en) Manufacture of semiconductor device
JPH01108761A (en) High breakdown strength semiconductor device
JP2730088B2 (en) High voltage semiconductor device
JP3193984B2 (en) High voltage MOS transistor
JP2643966B2 (en) Manufacturing method of double diffusion type field effect semiconductor device.
JPH11186402A (en) Semiconductor device and manufacture of semiconductor
JPH01287966A (en) Vertical mos field effect transistor
JP2925161B2 (en) Insulated gate field effect transistor
JP3300238B2 (en) Semiconductor device and manufacturing method thereof
JPS62222676A (en) High withstanding-voltage mos transistor