JPH01108157A - Production of oxide superconducting material - Google Patents

Production of oxide superconducting material

Info

Publication number
JPH01108157A
JPH01108157A JP62265919A JP26591987A JPH01108157A JP H01108157 A JPH01108157 A JP H01108157A JP 62265919 A JP62265919 A JP 62265919A JP 26591987 A JP26591987 A JP 26591987A JP H01108157 A JPH01108157 A JP H01108157A
Authority
JP
Japan
Prior art keywords
precursor
container
powder
superconducting material
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62265919A
Other languages
Japanese (ja)
Other versions
JP2583533B2 (en
Inventor
Nobuyuki Sadakata
伸行 定方
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Masaru Sugimoto
優 杉本
Shinya Aoki
青木 伸哉
Toshio Usui
俊雄 臼井
Mikio Nakagawa
中川 三紀夫
Atsushi Kume
篤 久米
Kenji Goto
謙次 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62265919A priority Critical patent/JP2583533B2/en
Publication of JPH01108157A publication Critical patent/JPH01108157A/en
Application granted granted Critical
Publication of JP2583533B2 publication Critical patent/JP2583533B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To uniformly and sufficiently feed a small quantity of oxygen and enable production of a stabilized material, by filling a precursor in a hollow vessel and passing an O2-containing gas through the interior thereof in heat- treating the precursor, such as powdery form, providing an oxide superconductor. CONSTITUTION:A powdery, granular or massive precursor 10, containing elements constituting an oxide superconductor expressed by the formula A-B-Cu- O (A is one or more of group IIIa elements, such as Sc, Y, Ce, Yb, Er, Ho and Dy; B is one or more group IIa elements, such as Ca, Sr and Ba) and capable of providing the oxide superconductor by subjecting the precursor to heat treatment is prepared. The precursor 10 is then filled in a hollow vessel 11 having a gas feed port (11a) and a discharge port (11b) and a gas containing O2 is then fed from the feed port (11a) into the vessel 11, passed through interstices between particles of the precursor 10 in the vessel and then discharged from the discharge port (11b). The interior of the vessel 11 is simultaneously heated to heat-treat the precursor 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気浮上列車、核融合炉、単結晶引上装置、
磁気分離装置、医療装置、磁気推進船等に用いられる超
電導マグネット用材料、または、ジョセフソン素子、S
 Q LJ I l) (Supcrconducti
n。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to magnetic levitation trains, nuclear fusion reactors, single crystal pulling devices,
Materials for superconducting magnets used in magnetic separation devices, medical devices, magnetic propulsion ships, etc., or Josephson elements, S
Q LJ I l) (Supcrconducti
n.

Quantum Interference Devi
ce)等の薄膜超電導材料の作製用スパッタリングター
ゲット、プリント基板配線用材料等に用いられる酸化物
超電導材料の’!1m方法に関する。
Quantum Interference Devi
'! of oxide superconducting materials used as sputtering targets for the production of thin film superconducting materials such as ce), materials for printed circuit board wiring, etc. Regarding the 1m method.

〔従来の技術〕′ 最近に至り、液体窒素温度を超える高温で超電導状態を
維持することができる新規な超電導材料として酸化物系
の超電導材料が発見されている。
[Prior Art]' Recently, oxide-based superconducting materials have been discovered as new superconducting materials that can maintain a superconducting state at high temperatures exceeding liquid nitrogen temperatures.

この種の酸化物超電導材料は、一般式A・−B−Cu−
O(ただしAはY、Sc 、La 、Ca 、Yb 。
This type of oxide superconducting material has the general formula A・-B-Cu-
O (However, A is Y, Sc, La, Ca, Yb.

l〜10.Er、DVなどの周期律表[1[a族元素の
1種以上を示し、BはM(1、Ca 、3r 、3aな
どの周期律表IIa族元素の1種以上を承す)で示され
る酸化物である。
l~10. Periodic table such as Er, DV [1 [represents one or more elements of group A, B is represented by M (represents one or more elements of group IIa of the periodic table such as 1, Ca, 3r, 3a)] It is an oxide that is

そして、この種の超電導材料を製造する方法の一例とし
て、前記へ元素を含む粉末と萌記B元素を含む粉末と酸
化銅粉末を所定の成分比になるように混合して混合粉末
を作成し、この混合粉末を直接熱処理するか、あるいは
、混合粉末を圧粉して形成した成形体に熱処理を施して
焼結体を437、この焼結体を粉砕して超電導材料を得
る方法が知られている。また、前記へ元素と口元前を含
む溶液から共沈法、ゾルゲル法などの化学的方法により
得られる硝M塩等を粉末化した後に、熱処理により分解
、反応させて酸化物超電導体とする方法が知られている
As an example of a method for manufacturing this type of superconducting material, a mixed powder is prepared by mixing the powder containing the above-mentioned element He, the powder containing the Moeki B element, and the copper oxide powder at a predetermined component ratio. A known method is to directly heat-treat this mixed powder, or heat-treat a compact formed by compacting the mixed powder to form a sintered body, and then crush this sintered body to obtain a superconducting material. ing. In addition, a method of powdering nitrate M salt, etc. obtained from a solution containing the above-mentioned helium elements and a chemical method such as a coprecipitation method or a sol-gel method, and then decomposing and reacting it by heat treatment to form an oxide superconductor. It has been known.

なお、前述の製造方法で得られた超電導材料において、
例えば、Y:Ba :Cu =1 :2:3の割合で混
合したY−Ba −Cu −0系のものにおいて、臨界
温度が90に程度を示すことが知られている。
In addition, in the superconducting material obtained by the above-mentioned manufacturing method,
For example, it is known that a Y-Ba-Cu-0 system mixed in a ratio of Y:Ba:Cu = 1:2:3 has a critical temperature of about 90°C.

また、前記Y−Ba −Cu −0系の超電導材料は、
酸素欠損型ペロプスカイト構造を示し、特に結晶格子の
特定の位置に酸素原子が位置した斜方晶となっている構
造のものの特性が優れているので、前記超電導材料を生
成させる際の熱処理雰囲気は酸素ガスを含む雰囲気を選
択し、熱処理時に十分な酸素を供給できるようにするこ
とで特性の優れた超電導材料を安定製造できることが知
られている。
Furthermore, the Y-Ba-Cu-0 based superconducting material is
The properties of the oxygen-deficient perovskite structure, especially the orthorhombic structure in which oxygen atoms are located at specific positions in the crystal lattice, are excellent, so the heat treatment atmosphere for producing the superconducting material is It is known that superconducting materials with excellent properties can be stably produced by selecting an atmosphere containing oxygen gas and supplying sufficient oxygen during heat treatment.

ところで、従来、前記混合粉末あるいは成形体を熱処理
する際に行っている方法は、第4図と第5図に示すよう
に、原料粉末あるいは成形体などの前駆体1をボート状
の容器2に収納し、容器2を加熱炉3に入れ、加熱炉3
の内部に酸素ガスを吹き込んで加熱するといった方法が
一般的である。
By the way, in the conventional method of heat-treating the mixed powder or molded body, as shown in FIGS. 4 and 5, a precursor 1 such as a raw material powder or a molded body is placed in a boat-shaped container 2. put the container 2 into the heating furnace 3,
A common method is to heat it by blowing oxygen gas into it.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、このような方法ぐ熱処理を行った揚台、酸素
ガスは前駆体1の間の空隙を通過りるよりも容器2と加
熱炉3の炉壁間の空間を通過する方が流動抵抗が小さい
ために、加熱炉の内部で第5図の矢印に示すように主と
して容器2の周囲を流れて排出されてしまい、前駆体1
・・・の間の空隙を十分に流れないことがわかっている
。従って館駆体1の焼結反応に寄与する酸素量が不足し
て特性の優れた超電導体を生成できないばかりか、酸素
の供給最によっては生成された超電導体の特性が部分的
に異なり、製品の品質が低下する問題があった。
However, the flow resistance of the oxygen gas is higher when it passes through the space between the container 2 and the furnace wall of the heating furnace 3 than when it passes through the gap between the precursor 1 and the platform where the heat treatment was performed using this method. Because of its small size, the precursor 1 mainly flows around the container 2 and is discharged as shown by the arrow in FIG. 5 inside the heating furnace.
It is known that it does not flow sufficiently through the gap between... Therefore, not only is the amount of oxygen contributing to the sintering reaction of the building block 1 insufficient, making it impossible to produce a superconductor with excellent properties, but also the properties of the produced superconductor may partially differ depending on the oxygen supply, resulting in There was a problem that the quality of the product deteriorated.

また、前記反応に寄与する酸系を増加させるために加熱
炉3に供給する酸素ガスの流量を増加すると、酸素ガス
の消費が増加するだけでなく酸素ガスが加熱炉3の内部
の熱を外部に排出してしまうために、加熱炉の熱効率を
低下して燃料コストが1胃する欠点がある。更に、酸素
ガスが前駆体1の間の空隙を通過しやすいように前駆体
1を粗粉砕して粉砕粒子間の空隙を大きくした場合であ
っても、酸素ガスの大部分は容器2と加熱炉3の炉壁の
間を通過して流れてしまうことがわかっている。
Furthermore, if the flow rate of oxygen gas supplied to the heating furnace 3 is increased in order to increase the acid system that contributes to the reaction, not only will the consumption of oxygen gas increase, but also the oxygen gas will transfer the heat inside the heating furnace 3 to the outside. This has the drawback of lowering the thermal efficiency of the heating furnace and increasing fuel costs. Furthermore, even if the precursor 1 is coarsely pulverized to enlarge the pores between the pulverized particles so that the oxygen gas can easily pass through the pores between the precursors 1 and 2, most of the oxygen gas is transferred to the container 2 and heated. It has been found that the liquid flows through the furnace walls of the furnace 3.

本発明は、前記問題点を解決するために、A−B−Cu
 −O(ただしAはSC,Y、Ce、Yb。
In order to solve the above problems, the present invention aims to solve the above problems.
-O (However, A is SC, Y, Ce, Yb.

Er 、Ho 、Dyなどの周期律表11a族元素の1
種以上を示し、BはCa 、3r 、3aなどの周期律
表fla族元素の1種以上を示す)で示される酸化物超
電導体を構成する元素を含み、熱処理を施すことにより
酸化物超電導体となる粉末状または粒状または塊状の前
駆体を用意するとともに、気体の送入[1と排出口を備
えた中空の容器に前駆体を充填し、前記送入口から酸素
を含むガスを容器内に送入し容器内部の前駆体の間の空
隙を通過させた後に排出口から排出させるとともに容器
内部を加熱して前駆体を熱処理するものである。
1 of Group 11a elements of the periodic table such as Er, Ho, Dy, etc.
The oxide superconductor contains the elements constituting the oxide superconductor shown in Table 1 (B represents one or more elements of the fla group of the periodic table, such as Ca, 3r, 3a, etc.), and can be made into an oxide superconductor by heat treatment. A powdered, granular, or lumpy precursor is prepared, and a hollow container equipped with a gas inlet [1] and an outlet is filled with the precursor, and a gas containing oxygen is introduced into the container from the inlet. After passing through the gaps between the precursors inside the feeding container, the precursors are discharged from the outlet and the inside of the container is heated to heat-treat the precursors.

〔作 用〕[For production]

中空容器の内部に前駆体を充填し、容器内部に酸素を含
むガスを通過させるので前駆体の間の空隙を酸素ガスが
確実に通過する。このため熱処理時に前駆体に酸素が均
一に十分供給されて品質の安定した超電導材料が生成さ
れる。
Since the hollow container is filled with a precursor and the oxygen-containing gas is passed through the container, the oxygen gas reliably passes through the gaps between the precursors. Therefore, oxygen is uniformly and sufficiently supplied to the precursor during heat treatment, and a superconducting material with stable quality is produced.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明り法を適用して酸化物超電導材料を製造するには
、最初に原料粉末を調整する。この・原料粉末とじては
、酸化物超電導材料を構成する元素を含むものなどが用
いられ、4体的には周期11!表1ea族元素を含む粉
末と周期律表1a族元素を含む粉末と酸化銅粉末などか
らなる混合粉末、あるいは、この混合粉末を仮焼した粉
末などが用いられる。
To produce an oxide superconducting material by applying the method of the present invention, first, raw material powder is prepared. This raw material powder is one containing elements constituting the oxide superconducting material, and the period is 11! A mixed powder consisting of a powder containing a group 1ea element in Table 1, a powder containing a group 1a element of the periodic table, and a copper oxide powder, or a powder obtained by calcining this mixed powder is used.

ここで用いる周期律表1[a族元素粉末としては、Sc
 、Y、La 、Ce 、Pr 、Nd 、Pm 、S
m 。
Periodic Table 1 used here [As group a element powder, Sc
, Y, La, Ce, Pr, Nd, Pm, S
m.

Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb。Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb.

luの各元素の炭酸塩粉末、酸化物粉末、塩化物粉末、
硫化物粉末、フッ化物粉末などの化合物粉末あるいは合
金粉末などであり、周期律表Ia族元素粉末トシテハ、
Be 、 Ca 、 Ma−、Bo 、 Srの各元素
の炭酸塩粉末、酸化物粉末、塩化物粉末、硫化物粉末、
フッ化物粉末などの化合物粉末あるいは合金粉末などで
ある。また、前記酸化銅粉末としては、CI O,Cu
 20. CO203、Cu403粉末などの酸化銅の
粉末が用いられる。
Carbonate powder, oxide powder, chloride powder of each element of lu,
Compound powders such as sulfide powders and fluoride powders or alloy powders, and powders of Group Ia elements of the periodic table.
Carbonate powder, oxide powder, chloride powder, sulfide powder of each element Be, Ca, Ma-, Bo, Sr,
These include compound powders such as fluoride powders, or alloy powders. Further, as the copper oxide powder, CIO, Cu
20. Copper oxide powders such as CO203 and Cu403 powders are used.

そしてこれらの粉末を用いて原料粉末を調製するが、こ
の原料粉末をal!I!IJするにあたっては、周期律
表1ea族元素粉末と周期律表1[a族元素粉末から各
々1種類選択しても差し支えないし、2種類以上選択し
ても差し支えない。また、このような原料粉末は共沈法
、ゾルゲル法などの方法により精製されても良い。
Then, raw material powder is prepared using these powders, and this raw material powder is used as al! I! For IJ, one type each can be selected from the periodic table 1EA group element powder and the periodic table 1 [a group element powder, or two or more types can be selected. Further, such raw material powder may be purified by a method such as a coprecipitation method or a sol-gel method.

なお、これらの原料粉末中に炭酸塩もしくは炭素分が含
まれている場合には、この原料粉末に仮焼処理を施す。
In addition, when carbonate or carbon content is contained in these raw material powders, the raw material powders are subjected to a calcining treatment.

この仮焼処理は、前記原料粉末中の炭酸塩もしくは炭素
分を熱分解して酸化物とするために行なわれ、通常75
0〜950℃の温度に1〜100時間程度加熱する処理
を必要回数行うことが好ましい。
This calcining treatment is performed to thermally decompose the carbonate or carbon content in the raw material powder into an oxide, and is usually
It is preferable to perform heating treatment at a temperature of 0 to 950° C. for about 1 to 100 hours as many times as necessary.

次に、このようにして、得られた原料粉末を静水圧加圧
などの加圧手段により成形した後に、この成形体を粗粉
砕して粒径数履稈度の粗粒状の第1図に示すような前駆
体10を得る。次にこの前駆体10を第1図に示す容器
11に充填する。
Next, the raw material powder obtained in this manner is molded using a pressure means such as hydrostatic pressing, and then this molded body is coarsely pulverized to form coarse particles with a particle diameter of several culms (Fig. 1). A precursor 10 as shown is obtained. Next, this precursor 10 is filled into a container 11 shown in FIG.

この容器11は、高純度アルミナなどの耐熱材料から構
成された筒状のもので、その底部に前記前駆体10の粒
径より小さな網目の網体12を装着できるようになって
いる。なお、容器11の上部と下部は開口されていて、
下部開口が気体の送入口11aに上部開口が排気口11
bになっている。
The container 11 is cylindrical and made of a heat-resistant material such as high-purity alumina, and a net 12 having a mesh smaller than the particle size of the precursor 10 can be attached to the bottom of the container 11 . Note that the upper and lower parts of the container 11 are open,
The lower opening is the gas inlet 11a and the upper opening is the exhaust port 11.
It has become b.

この容器11の底部に網体12を装着したならば、網体
12の上方に前記前駆体10を充填する。
Once the net 12 is attached to the bottom of the container 11, the precursor 10 is filled above the net 12.

次いでこの容器11を縦型の加熱炉に装入する。Next, this container 11 is placed in a vertical heating furnace.

そして、容器11の送入口11aから酸素ガスを容器1
1の内部に強制的に吹き込み、前駆体10・・・の間の
空隙を介し酸素ガスを通過させて排気口11bから排出
するとともに、縦型炉により容器11内部の前駆体10
・・・を850〜1100℃に1〜100時間程度加熱
するとともに、加熱処理が終了したならば、前駆体10
を空温まで徐冷する。以上の処理によって前駆体10の
内部の各元素が拡散反応して酸化物超電導体が生成され
る。
Then, oxygen gas is supplied to the container 1 from the inlet 11a of the container 11.
The precursor 10 inside the container 11 is forcibly blown into the interior of the container 11 by a vertical furnace, and the oxygen gas is passed through the gap between the precursors 10 and discharged from the exhaust port 11b.
... to 850 to 1100°C for about 1 to 100 hours, and when the heat treatment is completed, the precursor 10
Cool slowly to air temperature. Through the above treatment, each element inside the precursor 10 undergoes a diffusion reaction and an oxide superconductor is produced.

前述の熱処理工程においては、容2S11の内部に吹き
込まれた酸素ガスが網体12を通過した後に前駆体10
の間の空隙を通過し、次いで排気口11bから排出され
るために、前駆体10・・・の間の空隙を酸素ガスが確
実に通過することになり前駆体10は十分な囚の酸素の
元で反応することになる。このため超電導体の生成効率
が向上して均一な品質の超電導材料を得ることができる
とともに、熱処理に要する時間を短縮することが可能に
なって製造コストを削減″Qきる効果がある。また、こ
のように効率良く超電導体を生成できるために、従来の
横型炉を用いた場合に比較して酸素ガスの流量を少なく
することができ、高価な酸素ガスの使用量が少なくなる
ために製造コストを削減できる効果がある。また、酸素
ガスの流ωを少なくできるために、酸素ガスが加熱炉か
ら奪う熱量を減少させることができ、加熱炉の熱効率が
向上する。
In the heat treatment process described above, after the oxygen gas blown into the interior of the container 2S11 passes through the net 12, the precursor 10
Since the oxygen gas passes through the gaps between the precursors 10 and is then exhausted from the exhaust port 11b, the oxygen gas reliably passes through the gaps between the precursors 10 and the precursors 10 have sufficient free oxygen. You will have to react in person. This improves the production efficiency of superconductors, making it possible to obtain superconducting materials of uniform quality, while also making it possible to shorten the time required for heat treatment, which has the effect of reducing manufacturing costs.Also, Because superconductors can be produced efficiently in this way, the flow rate of oxygen gas can be lower than when using a conventional horizontal furnace, which reduces production costs by reducing the amount of expensive oxygen gas used. In addition, since the flow ω of oxygen gas can be reduced, the amount of heat taken from the heating furnace by the oxygen gas can be reduced, and the thermal efficiency of the heating furnace is improved.

な/13 、送入口11aと排気口11bの位冒は逆で
も良く、酸素を下向きに流しても良い。
N/13, the position of the inlet port 11a and the exhaust port 11b may be reversed, and the oxygen may flow downward.

以上のように製造された酸化物超電導材料は、金属管の
内部に充填され又#IA電導線の製造のために、あるい
は、超電導材料を圧粉し更に熱処理するなどの手段を行
って超電導薄膜形成用のスパッタリングターゲット’F
J3!用などのために、あるいは、超電導粉末をベヒク
ル中に分散させて形成した超電導ペーストを基板などに
スクリーン印刷して形成される超電導草根用などのため
に使用される。
The oxide superconducting material produced as described above is filled into a metal tube and used to produce a #IA conductive wire, or to form a superconducting thin film by compressing the superconducting material and subjecting it to heat treatment. Sputtering target for formation
J3! It is also used for superconducting grass roots, etc., which is formed by screen printing a superconducting paste made by dispersing superconducting powder in a vehicle on a substrate or the like.

なJ3、前)ホの例に43いては、前駆体10を充填す
る容器として筒状のものを用いたが、容器11の形状は
筒状に限るものではなく、気体の送入口11aと排気口
11bを備え、前駆体10を充填可能な形状であるなら
ばその形状は問わないものとする。
In the example 43 of J3, previous) E, a cylindrical container was used as the container to be filled with the precursor 10, but the shape of the container 11 is not limited to the cylindrical shape. Any shape may be used as long as it has an opening 11b and can be filled with the precursor 10.

〔実施例1〕 Y2O3粉末と、BaCuz粉末と、CuO粉末をY:
Ba :Cu=1:2:3の比率になるように混合し、
この混合粉末を925℃で12時間加熱する仮焼処理を
施した後に、静水圧加圧法により成形した。次にこの成
形体を粒径が2〜511Il11になるように粗粉砕し
て粗粒とした後に、内径100mrrrのアルミナ製の
磁器製の管体容器に充填した。
[Example 1] Y2O3 powder, BaCuz powder, and CuO powder were mixed into Y:
Mix in a ratio of Ba:Cu=1:2:3,
This mixed powder was calcined by heating at 925° C. for 12 hours, and then molded by an isostatic pressing method. Next, this compact was coarsely pulverized to a particle size of 2 to 511Il11, and then filled into an alumina porcelain tubular container having an inner diameter of 100 mrrr.

この際、管体容器の底部には、白金製の網体を取り付け
、この網体で前記粗粒保持できるようにした。次に前記
網体が下部側に来るように管体容器を立設した状態で縦
型の電気炉に挿入し、電気炉内に毎分5ノの割合でW素
ガスを送り込み、950℃で24時間加熱する熱処理を
行った。加熱終了後、20時間かけて徐冷しで酸化物超
電導材料を得た。
At this time, a platinum net was attached to the bottom of the tubular container so that the coarse particles could be held by this net. Next, the tube container was placed in an upright position so that the net was on the lower side, and inserted into a vertical electric furnace.W gas was fed into the electric furnace at a rate of 5 nozzles per minute, and heated at 950°C. Heat treatment was performed by heating for 24 hours. After the heating was completed, the mixture was slowly cooled for 20 hours to obtain an oxide superconducting material.

この酸化物超電導材料の臨界温度特性を電気抵抗法で測
定したところ、第2図の曲線Aで示すように93にで電
気抵抗がゼロになった。なお、前記前駆体と同等の組成
の前駆体を用い、従来の横型炉でボート状の容器に収納
し、熱処理し−(得られた酸化物超電導材料は、第2図
の破F、lBで示す臨界温度特性を示した。
When the critical temperature characteristics of this oxide superconducting material were measured by an electrical resistance method, the electrical resistance became zero at 93° C. as shown by curve A in FIG. In addition, using a precursor having the same composition as the above precursor, it was stored in a boat-shaped container in a conventional horizontal furnace and heat-treated (the obtained oxide superconducting material was The critical temperature characteristics were shown.

両者の比較で明らかなように、本発明方法で装造された
超電導材料は、従来方法で!11造された超電導材料に
比較してins温度幅が狭く、均質で高特性の超電導材
料であることが明らかとなった。
As is clear from the comparison of the two, the superconducting material fabricated using the method of the present invention is superior to that fabricated using the conventional method! It was revealed that the ins temperature range was narrower than that of the superconducting material produced in No. 11, and that the superconducting material was homogeneous and had high characteristics.

また、前述の酸化物超電導材料の臨界温度特性を交流イ
ンダクタンス法で測定したところ、第3図の曲線Cに示
す結果が得られ、通常の横型炉で同じ熱処理条件で得ら
れた超T1導材料の特性を示す破線1〕に比較して遷移
温度幅の狭い結果が得られ、均質で高特性の超電導材料
が得られたことが判明した。
In addition, when the critical temperature characteristics of the aforementioned oxide superconducting material were measured by the AC inductance method, the results shown in curve C in Figure 3 were obtained, and the super T1 conductive material obtained under the same heat treatment conditions in a normal horizontal furnace was obtained. It was found that a narrower transition temperature width was obtained compared to the broken line 1] indicating the characteristics of the material, and that a homogeneous superconducting material with high characteristics was obtained.

〔実施例2〕 共沈法で作成した超電導体の前駆体粉末を人気中におい
て550℃で仮焼し、更に粉砕し静水圧成形後に再び粗
粉砕して粒径2〜5#11の粒体を得た。
[Example 2] A superconductor precursor powder prepared by a coprecipitation method was calcined at 550°C, further crushed, and after isostatic pressing, coarsely crushed again to obtain particles with a particle size of 2 to 5 #11. I got it.

この粒体を実施例1で使用した縦型炉と同じ縦型炉に入
れて毎分1ノの割合で酸素を流しつつ950℃で20時
間加熱する熱処理を行い、その120時1間かけて冷却
して超電導材料を得た。
This granule was placed in the same vertical furnace as that used in Example 1, and heat-treated at 950°C for 20 hours while flowing oxygen at a rate of 1 minute per minute. A superconducting material was obtained by cooling.

得られた超電導材料は、臨界温度として93Kを示した
。なお、この臨界温度は、前記と同等の前駆体を従来の
横型炉で毎分5Jの酸素を流しつつ同じ条性で熱処理し
て得られた超電導材料の臨界温度と同じ値である。従つ
【本発明方法を実施することにより、熱処理時に供給す
る酸素ガスの11を少なくすることがでさることが判明
した。
The obtained superconducting material exhibited a critical temperature of 93K. Note that this critical temperature is the same value as the critical temperature of a superconducting material obtained by heat-treating the same precursor as above in a conventional horizontal furnace under the same condition while flowing 5 J/min of oxygen. Therefore, it has been found that by carrying out the method of the present invention, it is possible to reduce the amount of oxygen gas supplied during heat treatment.

〔実施例3〕 Y20g粉末と、3a CO3粉末と、CuO粉末をY
:Ba :Cu=1:2:3の割合で混合した粉末を静
水圧成形し、粗粉砕して2〜5alの粗粒を得た。この
粗粒を実施例1と同じ縦型炉に入れ、毎分2」の酸素を
流しつつ950℃で24時間加熱する熱処理を施し、2
0時間かけて冷却し、酸化物超電導材料を得た。
[Example 3] 20g Y powder, 3a CO3 powder, and CuO powder
:Ba:Cu=1:2:3 mixed powder was subjected to isostatic pressing and coarsely pulverized to obtain coarse particles of 2 to 5 al. The coarse particles were placed in the same vertical furnace as in Example 1, and heat-treated at 950°C for 24 hours while flowing oxygen at a rate of 2'' per minute.
After cooling for 0 hours, an oxide superconducting material was obtained.

この例で製造された酸化物超電導材料は、従来の横型炉
で同等の熱処理を3回繰り返1ノで製造された超電導材
料と同等の臨界温度特性を示した。
The oxide superconducting material produced in this example showed the same critical temperature characteristics as the superconducting material produced by repeating the same heat treatment three times in a conventional horizontal furnace.

即ち本発明の方法を実施することにより、従来方法に比
較して効率良く超電導材料を製造できることが明らかに
なった。
That is, it has been revealed that by implementing the method of the present invention, superconducting materials can be produced more efficiently than conventional methods.

(発明の効果〕 以上説明したように本発明は、酸化物超電導体の粉末状
または粒状または塊状の前駆体を中空容器に充填し、容
器の送入口から酸素を含むガスを送入して前駆体の間の
空隙を通過させつつ熱処理する方法であるために、十分
な吊の酸素のもので前駆体内部の元素を効率良く反応さ
せることができ、均質な酸化物超電導材料を製造できる
効果がある。また、前駆体の間の空隙に酸素を含むガス
を強制的に通過させるために、従来の方法に比較すると
、熱処理時に使用するM素置を少なくすることができる
とともに熱処理時間も短縮することができ、酸化物超電
導材料の製造コストを削減できる効果がある。
(Effects of the Invention) As explained above, the present invention is characterized in that a powdered, granular or lumpy precursor of an oxide superconductor is filled into a hollow container, and a gas containing oxygen is introduced from the inlet of the container to form the precursor. Since this is a method of heat treatment while passing through the voids between the precursors, the elements inside the precursor can be efficiently reacted with sufficient oxygen, making it possible to produce homogeneous oxide superconducting materials. In addition, since the oxygen-containing gas is forced to pass through the gaps between the precursors, the number of M devices used during heat treatment can be reduced and the heat treatment time can be shortened compared to conventional methods. This has the effect of reducing the manufacturing cost of oxide superconducting materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するために使用づる容器の一例を
示す断面図、第2図は実施例1で製造された酸化物超電
導材料の電気抵抗法による臨界温度特性を示す線図、第
3図は実施例1で製造された酸化物超電導材料のインダ
クタンス法による臨界温度特性を示す図、第4図と第5
図は従来方法において加熱炉の内部に前駆体を設置した
状態を示ザもので、第4図は横断面図、第5図は縦断面
図である。 10・・・・・・前駆体、   11・・・・・・容器
、11a・・・・・・送入口、  11b・・・・・・
排出口、12・・・・・・網体。
FIG. 1 is a cross-sectional view showing an example of a container used to carry out the present invention, FIG. Figure 3 shows the critical temperature characteristics of the oxide superconducting material produced in Example 1 measured by the inductance method, and Figures 4 and 5
The figures show the state in which a precursor is installed inside a heating furnace in a conventional method, with FIG. 4 being a cross-sectional view and FIG. 5 being a longitudinal cross-sectional view. 10... Precursor, 11... Container, 11a... Inlet port, 11b...
Outlet, 12... Net body.

Claims (1)

【特許請求の範囲】[Claims]  A−B−Cu−O(ただしAはSc,Y,Cc,Yb
,Er,Ho,Dyなどの周期律表IIIa族元素の1種
以上を示し、BはCa,Sr,Baなどの周期律表IIa
族元素の1種以上を示す)で示される酸化物超電導体を
構成する元素を含み、熱処理を施すことにより酸化物超
電導体となる粉末状または粒状または塊状の前駆体を用
意するとともに、気体の送入口と排出口を備えた中空の
容器に前駆体を充填し、前記送入口から酸素を含むガス
を容器内に送入し容器内部の前駆体の間の空隙を通過さ
せた後に排出口から排出させるとともに容器内部を加熱
して前駆体を熱処理することを特徴とする酸化物超電導
材料の製造方法。
A-B-Cu-O (where A is Sc, Y, Cc, Yb
, Er, Ho, Dy, etc., and B represents one or more elements of Group IIa of the periodic table, such as Ca, Sr, Ba, etc.
A powdered, granular, or lumpy precursor containing an element constituting an oxide superconductor represented by one or more of group elements) and which becomes an oxide superconductor by heat treatment is prepared, and a gaseous precursor is prepared. A hollow container equipped with an inlet and an outlet is filled with a precursor, and a gas containing oxygen is introduced into the container from the inlet and passes through the gap between the precursors inside the container, and then from the outlet. A method for producing an oxide superconducting material, which comprises discharging the precursor and heat-treating the precursor by heating the inside of the container.
JP62265919A 1987-10-21 1987-10-21 Manufacturing method of oxide superconducting material Expired - Lifetime JP2583533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62265919A JP2583533B2 (en) 1987-10-21 1987-10-21 Manufacturing method of oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62265919A JP2583533B2 (en) 1987-10-21 1987-10-21 Manufacturing method of oxide superconducting material

Publications (2)

Publication Number Publication Date
JPH01108157A true JPH01108157A (en) 1989-04-25
JP2583533B2 JP2583533B2 (en) 1997-02-19

Family

ID=17423918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62265919A Expired - Lifetime JP2583533B2 (en) 1987-10-21 1987-10-21 Manufacturing method of oxide superconducting material

Country Status (1)

Country Link
JP (1) JP2583533B2 (en)

Also Published As

Publication number Publication date
JP2583533B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
EP0368895A4 (en) Improved process for making 90 k superconductors
JPH02503787A (en) Improved method for manufacturing superconductors
US5510323A (en) Tl1 (Ba1-x Sr8)2 Ca2 Cu3 Oy oxide superconductor and method of producing the same
US4861753A (en) Process for making superconductors using barium nitrate
KR100633671B1 (en) A pb-bi-sr-ca-cu-oxide powder mix with enhanced reactivity and process for its manufacture
JPH01108157A (en) Production of oxide superconducting material
EP0366721A4 (en) Improved process for making 90 k superconductors
JPS63285812A (en) Manufacture of oxide superconductive wire material
JPH03109207A (en) Production of oxide superconducting powder occluding oxygen or gaseous ozone
JPS63274027A (en) Manufacture of superconductive material
JPS63279512A (en) Superconductor wire rod and its manufacture
JPH02229722A (en) Method for synthesizing oxide fine particle by spray drying
JP2597579B2 (en) Superconductor manufacturing method
JPH0818910B2 (en) Method for producing oxide superconducting single crystal
JPH03131560A (en) Production of mixed powder
Vajpei et al. Preparation of Powders
JPH0524828A (en) Rare earth-based oxide superconductor, production thereof and raw material mixed powder
JPS63303851A (en) Sintered body of superconducting ceramic
JPH01179722A (en) Production of oxide superconductor
JPH02120234A (en) Production of oxide superconductor
JPH0446015A (en) Oxide superconducting material and its production
JPH02196022A (en) Production of oxide-based superconducting powder
JPS63303814A (en) Oxide superconductor
JPS63282167A (en) Production of superconductor
EP0436723A1 (en) Oxide superconductor and method of producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term