JPH01108113A - Production of silanized zeolite - Google Patents

Production of silanized zeolite

Info

Publication number
JPH01108113A
JPH01108113A JP26399287A JP26399287A JPH01108113A JP H01108113 A JPH01108113 A JP H01108113A JP 26399287 A JP26399287 A JP 26399287A JP 26399287 A JP26399287 A JP 26399287A JP H01108113 A JPH01108113 A JP H01108113A
Authority
JP
Japan
Prior art keywords
zeolite
silanized
water
amount
silane compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26399287A
Other languages
Japanese (ja)
Other versions
JPH0674142B2 (en
Inventor
Masayuki Niitsuma
新妻 政之
Kunio Sato
邦男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP26399287A priority Critical patent/JPH0674142B2/en
Publication of JPH01108113A publication Critical patent/JPH01108113A/en
Publication of JPH0674142B2 publication Critical patent/JPH0674142B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:To produce a silanized zeolite having an inlet pore diameter precisely controlled at an arbitrary size, by silanizing a humidified alkali or alkaline-earth metal-type zeolite with a specific organic silane compound diluted with a hydrophobic solvent and calcining the product. CONSTITUTION:An alkali or alkaline-earth metal-type zeolite (e.g. mordenite) is left standing in a room, adsorbed with steam or immersed in water to effect the saturated adsorption of the pore with water and is heated at 50-100 deg.C to dry the outer surface and obtain a zeolite adsorbed with water. The zeolite is silanized by contacting with a hydrophobic solvent (e.g. n-hexane) containing <=10vol.% of an organic silane compound of formula (y is 1-4; X is 1-10C alkyl, aryl, arylalkyl or H; R is 1-10C alkoxy), washed, filtered and calcined at 100-600 deg.C for 2-20hr.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明はシラン化ゼオライトの製造法に関し、さらに詳
しくは、ゼオライトを吸湿させて結晶内の細孔を水で充
満させた後、ゼオライトの結晶外表部を有機シラン化合
物でシラン化することにより、細孔入口径を任意に精密
制御したシラン化ゼオライトを製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing silanized zeolite, and more specifically, after absorbing moisture in zeolite and filling the pores in the crystal with water, the zeolite crystal is The present invention relates to a method for producing a silanized zeolite whose outer surface is silanized with an organic silane compound to arbitrarily precisely control the pore entrance diameter.

[従来技術とその問題点] ゼオライトは多孔性のシリカアルミナの結晶であり、l
)水や有機物をよく吸着する、2)カチオン交換体であ
る、3)均一な細孔を有し、分子篩性能をもつ、という
物理化学的に特徴を有することから、固体触媒や吸着剤
として多くの工業的な用途が知られている。
[Prior art and its problems] Zeolite is a porous silica-alumina crystal.
) It has the physical and chemical characteristics of adsorbing water and organic substances well, 2) it is a cation exchanger, and 3) it has uniform pores and has molecular sieving properties, so it is often used as a solid catalyst or adsorbent. is known for its industrial uses.

固体触媒としての最大の用途は石油のクラブキング触媒
であり、これはゼオライトのカチオン交換性を利用した
ものである。ゼオライトのナトリウムカチオンをプロト
ンやカルシウム等のアルカリ土類金属、ランタン等の希
土類元素に置き換えると、非常に強い固体酸特性を示す
The most common use as a solid catalyst is as a petroleum crab king catalyst, which utilizes the cation exchange properties of zeolite. When zeolite's sodium cations are replaced with protons, alkaline earth metals such as calcium, or rare earth elements such as lanthanum, it exhibits extremely strong solid acid properties.

一方、吸着剤としては、n−1i−パラフィンの分離、
ナフサ分解ガスの乾燥等に用いられており、これらはい
ずれもゼオライトの分子篩作用を利用したものである。
On the other hand, as an adsorbent, separation of n-1i-paraffin,
It is used for drying naphtha decomposition gas, etc., and all of these utilize the molecular sieving action of zeolite.

このように、ゼオライトを吸着剤として用いる場合、細
孔径は重要な因子であり、任意に細孔径を制御する技術
が望まれている。
As described above, when using zeolite as an adsorbent, the pore diameter is an important factor, and a technique for arbitrarily controlling the pore diameter is desired.

一例として、A型ゼオライトをアルカリ金属、アルカリ
土類金属でカチオン交換して、カチオンの大きさの違い
によって、細孔径を変化させる方法が知られているが、
この方法では1人オーダーでしか変化させることができ
ない。
As an example, a method is known in which cations are exchanged in A-type zeolite with alkali metals or alkaline earth metals to change the pore diameter depending on the size of the cations.
With this method, changes can only be made by one person.

他の方法として、ゼオイトに有機シラン化合物を担持し
たり、その担持物を焼成してシリカとする方法が提案さ
れているが、これら従来の方法において、ゼオライトの
細孔内に入ってしまうような分子径の小さなシラン化剤
を用いた場合には、細孔径を制御する以前に細孔内部が
シラン化され、その結果細孔の閉塞をもたらすという不
都合があった。そのため、分子径がある程度大きく、ゼ
オライト細孔に入らないシラン化剤を用いる必要があり
、ホージャサイトX型、Y型およびL型等、細孔径の大
きなゼオライトに対しては、かなり大きな分子径のシラ
ン化剤を使用しなければならず、装置および試薬等の面
で必ずしも経済的でないという問題点があった。
Other methods have been proposed, such as supporting an organic silane compound on zeolite and firing the supported material to form silica. When a silanizing agent with a small molecular diameter is used, the inside of the pore is silanized before the pore diameter can be controlled, resulting in the inconvenience of clogging the pore. Therefore, it is necessary to use a silanizing agent that has a relatively large molecular diameter and does not enter the zeolite pores, and for zeolites with large pore diameters such as faujasite There was a problem that a silanizing agent had to be used, which was not necessarily economical in terms of equipment, reagents, etc.

[発明が解決しようとする問題点] 本発明は、上記の問題点を解決し、ゼオライトの結晶外
表部のみをシラン化して細孔入口径を精密に制御したシ
ラン化ゼオライトを、均一かつ大量に製造する方法を提
供することを目的とする。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned problems and produces silanized zeolite, which is produced by silanizing only the outer surface of the zeolite crystals and precisely controlling the pore entrance diameter, uniformly and in large quantities. The purpose is to provide a method for manufacturing.

[問題点を解決するための手段] 上記の問題点を解決するためにゼオライトの結晶外表部
のみをシラン化することによって細孔入口径を精密に制
御する技術を種々研究した結果、シラン化する前にゼオ
ライトを吸湿させ、その後に液相でシラン化する方法を
採用することによって、上記問題点を解決する本発明を
完成するに至った。
[Means for solving the problems] In order to solve the above problems, we have conducted various research into techniques for precisely controlling the pore entrance diameter by silanizing only the outer surface of the zeolite crystals. By adopting a method in which zeolite is first made to absorb moisture and then silanized in a liquid phase, the present invention has been completed which solves the above-mentioned problems.

すなわち、アルカリまたはアルカリ土類金属イオンタイ
プのゼオライトを吸湿させ、疎水性溶媒で希釈した有機
シラン化合物により液相でシラン化し、その後焼成する
ことを特徴とするシラン化ゼオライトの製造法である。
That is, the method for producing silanized zeolite is characterized in that an alkali or alkaline earth metal ion type zeolite is made to absorb moisture, is silanized in a liquid phase with an organic silane compound diluted with a hydrophobic solvent, and then calcined.

以下、本発明をさらに詳しく説明する。The present invention will be explained in more detail below.

本発明で用いられるゼオライトとしては、アルカリまた
はアルカリ土類金属イオンタイプのゼオライトであり、
X型ゼオライト、Y型ゼオライト、ZSM−5、ZSM
−41、モルデナイト等が特に好ましい。
The zeolite used in the present invention is an alkali or alkaline earth metal ion type zeolite,
X-type zeolite, Y-type zeolite, ZSM-5, ZSM
-41, mordenite, etc. are particularly preferred.

本発明においては、このゼオライトに水を吸着させるが
、その方法は特に限定されるものではなく、室内に放置
、水蒸気を吸湿または水中で浸漬させる等の方法で最終
的に細孔内を水で飽和吸着させる。この場合、ゼオライ
ト結晶内の細孔が完全に水で充満されていることが必要
である。また結晶外表部に存在する水によってシラン化
剤が無駄に消費されるので外表部を乾燥させて表面付着
水をある程度除去しておくことが好ましい。この乾燥は
通常50〜100℃で行なうのが好ましい。
In the present invention, water is adsorbed on the zeolite, but the method is not particularly limited, and the pores are finally filled with water by leaving the zeolite indoors, absorbing water vapor, or immersing it in water. Adsorb to saturation. In this case, it is necessary that the pores within the zeolite crystals be completely filled with water. Furthermore, since the silanizing agent is wasted due to the water present on the outer surface of the crystal, it is preferable to dry the outer surface to remove some amount of water adhering to the surface. This drying is usually preferably carried out at 50 to 100°C.

こうして水を吸着させたゼオライトと、疎水性溶媒で希
釈したシラン化剤を混合接触させることによりシラン化
を行なう。
Silanization is carried out by bringing the zeolite that has adsorbed water in this way into contact with a silanizing agent diluted with a hydrophobic solvent.

本発明で用いられる疎水性溶媒としては、ヘキサン、ヘ
プタン、オクタン等のパラフィン系炭化水素溶媒、シク
ロヘキサン等のシクロパラフィン系炭化水素溶媒、ベン
ゼン、トルエン等の芳香族炭化水素溶媒が好適に用いら
れる。
As the hydrophobic solvent used in the present invention, paraffinic hydrocarbon solvents such as hexane, heptane, and octane, cycloparaffinic hydrocarbon solvents such as cyclohexane, and aromatic hydrocarbon solvents such as benzene and toluene are preferably used.

本発明でシラン化剤として用いられる有機シラン化合物
としては、 5iRyXa−y [但し、yは1〜4の整数、XはC1〜C1Oのアルキ
ル基、アリール基、アリールアルキル基または水素、R
は01〜CIOのアルコキシ基をそれぞれ示す]で示さ
れる化合物が好ましく、特にテトラメチルオルソシリケ
ートが好適に用いられる。
The organic silane compound used as a silanizing agent in the present invention includes 5iRyXa-y [where y is an integer of 1 to 4, X is a C1 to C1O alkyl group, aryl group, arylalkyl group, or hydrogen, R
represents an alkoxy group of 01 to CIO, respectively], and tetramethyl orthosilicate is particularly preferably used.

この有機シラン化合物は疎水性溶媒で希釈して用いる。This organic silane compound is used after being diluted with a hydrophobic solvent.

その濃度は、かなり高濃度でもよいが、1゜容量%以下
の濃度で用いるのが好ましい。
Although its concentration may be quite high, it is preferably used at a concentration of 1% by volume or less.

ゼオライトとシラン化剤との接触方法は、バッチ式が好
ましく、温度、濃度および接触時間を変えることにより
、シラン化の程度を任意に変化させることができる。
The method of contacting the zeolite with the silanizing agent is preferably a batch method, and the degree of silanization can be arbitrarily changed by changing the temperature, concentration, and contact time.

シラン化を終えた後、洗浄、濾過および焼成を行なう。After finishing the silanization, washing, filtration and calcination are performed.

この焼成は、通常用いられる電気炉で空気雰囲気中60
0℃以下で焼成するのが好ましく、さらには100〜6
00℃の温度範囲で焼成するのが好ましい。また、焼成
時間としては、2時間以上焼成するのが好ましく、さら
には2〜20時間焼成するのが好ましい。
This firing is carried out in an air atmosphere for 60 minutes in a commonly used electric furnace.
It is preferable to bake at a temperature of 0°C or lower, and more preferably a temperature of 100 to 6
Preferably, the firing is carried out in a temperature range of 00°C. Further, the firing time is preferably 2 hours or more, and more preferably 2 to 20 hours.

本発明では、このようにゼオライト結晶内の細孔を水で
完全に充満させておくことによって、シラン化剤が細孔
内に侵入するのが抑制され、一方、ゼオライト結晶外表
部に存在する水はシラン化剤の加水分解剤として働く。
In the present invention, by completely filling the pores in the zeolite crystal with water, the silanizing agent is prevented from entering the pores, while the water present on the outer surface of the zeolite crystal is suppressed. acts as a hydrolyzing agent for the silanizing agent.

また、疎水性溶媒で希釈したシラン化剤を用いることに
より、水とシラン化剤の界面(すなわちゼオライトの外
表部)でシラン化反応が起る。かかるシラン化反応およ
びその後の焼成により、ゼオライト外表部に形成される
シリカ層によって細孔入口径が制御され、形状選択性が
発現する。
Further, by using a silanizing agent diluted with a hydrophobic solvent, a silanizing reaction occurs at the interface between water and the silanizing agent (ie, the outer surface of the zeolite). Through this silanization reaction and subsequent calcination, the pore entrance diameter is controlled by the silica layer formed on the outer surface of the zeolite, and shape selectivity is developed.

[実施例] 以下、本発明を実施例および比較例に基づいてさらに具
体的に説明する。
[Examples] Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples.

実施例I NaタイプY型ゼオライト(Na−Y)を室内で放置し
て、大気中の水分により飽和吸湿させ、その後50℃で
約−昼夜乾燥した。こうして得られたサンプルの一部を
500℃で焼成し、焼成による重量損失を測定すること
によって水の吸湿量を求めたところ、0.30 (g−
H20/ g−dryゼオライト)であった。
Example I Na-type Y zeolite (Na-Y) was left indoors to absorb moisture in the atmosphere to saturation, and then dried at 50° C. for about two days and nights. A portion of the sample thus obtained was fired at 500°C and the weight loss due to firing was measured to determine the amount of water absorbed, which was 0.30 (g-
H20/g-dry zeolite).

次にテトラメチルオルソシリケート(以下TMO8とい
う)をn−ヘキサンで1−10容量%に希釈したものを
シラン化剤として用い、前記吸湿ゼオライト Igに対
して前記シラン化剤を5mJの割合で加え、室温下で浸
漬させることによって液相シラン化を行なった。次に、
濾過によってゼオライ、トを回収し、80℃で乾燥させ
た後、空気中500℃で約5時間焼成した。
Next, tetramethyl orthosilicate (hereinafter referred to as TMO8) diluted to 1-10% by volume with n-hexane was used as a silanizing agent, and the silanizing agent was added at a ratio of 5 mJ to the hygroscopic zeolite Ig, Liquid phase silanization was performed by immersion at room temperature. next,
The zeolite was collected by filtration, dried at 80°C, and then calcined in air at 500°C for about 5 hours.

ここにおいてTMO5濃度およびシラン化反応時間を種
々変化させ、ゼオライト 1gあたりに反応させた7M
O8の量(添着量)が異なる 6個のシラン化ゼオライ
トを調製した。
Here, the TMO5 concentration and silanization reaction time were varied, and 7M was reacted per 1 g of zeolite.
Six silanized zeolites with different amounts of O8 (loaded amount) were prepared.

このようにして得られたシラン化ゼオライトについて、
各種芳香族成分の単成分吸着量を測定し、TMO3添着
量と各吸着量との関係を第1図に示した。
Regarding the silanized zeolite obtained in this way,
The amount of single component adsorption of various aromatic components was measured, and the relationship between the amount of TMO3 impregnated and each adsorption amount is shown in FIG.

芳香族成分としてベンゼン(B Z) 、1.:(,5
−トリメチルベンゼン(TMB) 、1.L5−)リイ
ソブロピルベンゼン(TIPB)を用いた。
Benzene (BZ) as an aromatic component, 1. :(,5
-trimethylbenzene (TMB), 1. L5-)lyisopropylbenzene (TIPB) was used.

T M OS IAM 量が増加するにつれて分子径の
大きい成分から順に吸着量が低下している。
As the amount of T M OS IAM increases, the amount of adsorption decreases in the order of components with larger molecular diameters.

ここで各成分の吸着量はTMO8添着量が増加するにつ
れて徐々に低下するのではなく、それぞれあるTMO8
添着量を境にして、急激に低下している。この急激な低
下は、細孔入口径が比較的均一に制御されていることを
示していると考えられる。
Here, the adsorption amount of each component does not gradually decrease as the amount of TMO8 impregnated increases;
It decreases rapidly after reaching the adhesion level. This rapid decrease is considered to indicate that the pore entrance diameter is controlled relatively uniformly.

以上のことより、TMO8添着量が増加するにつれて細
孔入口径が次第に狭められて行くのがわかる。
From the above, it can be seen that as the amount of TMO8 impregnated increases, the pore entrance diameter becomes gradually narrower.

実施例2 実施例1で調製したシラン化ゼオライトについて、分子
径が異なる芳香族成分の2成分系競争吸着実験を行ない
、TMO3添着量と各芳香族の吸着割合との関係を第2
図(a)〜(c)に示した。
Example 2 For the silanized zeolite prepared in Example 1, a two-component system competitive adsorption experiment of aromatic components with different molecular diameters was conducted, and the relationship between the amount of TMO3 impregnated and the adsorption ratio of each aromatic was determined in a second manner.
Shown in Figures (a) to (c).

ここにおいて、2成分系芳香族として、l)m −キシ
レン(mX) 〜BZ系、2)mX−TMB系、8)T
MB−T I P B系の以上3種の溶液を用いて評価
を行なった。
Here, as binary aromatics, l) m-xylene (mX) ~BZ system, 2) mX-TMB system, 8) T
Evaluation was performed using the above three types of MB-TIPB-based solutions.

これらの結果から、いずれの系においてもTMO8添着
量が増加するにつれて、分子径が小さい成分の吸着割合
が増加してゆき、すなわち次第に形状選択性が発現して
くるのがわかる。
These results show that in any system, as the amount of TMO8 impregnated increases, the adsorption ratio of components with small molecular diameters increases, that is, shape selectivity gradually appears.

比較例1 500℃焼成によって乾燥させたNa−Yを、吸湿させ
ないでTM01によって実施例1と同様にして液相シラ
ン化を行なった。
Comparative Example 1 Na-Y dried by calcination at 500°C was subjected to liquid phase silanization using TM01 in the same manner as in Example 1 without absorbing moisture.

ここにおいてTMO8添着量が異なる3種類のシラン化
ゼオライトを調製した。
Here, three types of silanized zeolites with different amounts of TMO8 impregnated were prepared.

こうして得られたサンプルについてmX−TMB2成分
系の競争吸着実験を行ない、TMO8添若量添合量香族
の吸着割合との関係を第3図に示した。
Competitive adsorption experiments of the mX-TMB two-component system were conducted on the samples thus obtained, and the relationship between the amount of TMO8 added and the adsorption ratio of aromatics is shown in FIG.

第3図から明らかなように、吸湿処理をしない場合、T
MO8添@量が増大しても形状選択性が全く発現しない
ことがわかる。
As is clear from Figure 3, when moisture absorption treatment is not performed, T
It can be seen that even when the amount of MO8 added increases, no shape selectivity is expressed at all.

比較例2 HタイプY型ゼオライト(H−Y)を実施例1と同一の
操作を経てTM01でシラン化を行なった。
Comparative Example 2 H-type Y-type zeolite (H-Y) was silanized with TM01 through the same operation as in Example 1.

ここにおいてTMO8添着量が異なる3種類のシラン化
ゼオライトを調製した。こうして得られたサンプルにつ
いてmX〜TMB2成分系の競争吸着実験を行ない、T
MO8添着量と各芳香族の吸着割合との関係を第4図に
示した。
Here, three types of silanized zeolites with different amounts of TMO8 impregnated were prepared. Competitive adsorption experiments of mX~TMB two-component system were conducted on the sample obtained in this way, and T
FIG. 4 shows the relationship between the amount of MO8 impregnated and the adsorption ratio of each aromatic group.

第4図から明らかなように、H−Yでは7MO8を添着
させても形状選択性が全く発現しないことがわかる。
As is clear from FIG. 4, it can be seen that HY does not exhibit shape selectivity at all even when 7MO8 is attached.

実施例3および比較例3 吸湿させたNa−Y型(吸湿量−o、ao g−H20
) 、および500℃焼成により乾燥させたNa−Y型
の各資料を、実施例1と同じシラン化剤によってシラン
化し、はぼ同量10.25d/g )の7MO8を添着
させた。
Example 3 and Comparative Example 3 Moisture absorbed Na-Y type (moisture absorption amount -o, ao g-H20
) and Na-Y type materials dried by 500° C. calcination were silanized using the same silanizing agent as in Example 1, and approximately the same amount of 7MO8 (10.25 d/g) was impregnated.

これら2種類のシラン化ゼオライトについてX線光電子
分光法(XPS)による測定を行ない、結晶外表部に形
成されたシリカ層厚さを求めたところ、次の第1表に示
すような結果が得られた。
When these two types of silanized zeolite were measured using X-ray photoelectron spectroscopy (XPS) and the thickness of the silica layer formed on the outer surface of the crystal was determined, the results shown in Table 1 below were obtained. Ta.

第  1  表 これらの結果から、吸湿処理を行なうことによって、よ
り結晶外表部に近い部位でシラン化が起ることがわかる
Table 1 From these results, it can be seen that silanization occurs closer to the outer surface of the crystal by performing the moisture absorption treatment.

[発明の効果] 以上説明したように、本発明によるシラン化ゼオライト
の製造法によれば、以下のような効果が得られる。
[Effects of the Invention] As explained above, according to the method for producing silanized zeolite according to the present invention, the following effects can be obtained.

■ゼオライトの結晶外表部のみをシラン化することがで
きることによって、細孔入口径が狭められ、形状選択性
が発現する。また、シラン化の度合を変化させることに
よって、細孔入口径を任意に精密制御することができる
■By being able to silanize only the outer surface of the zeolite crystal, the pore entrance diameter is narrowed and shape selectivity is developed. Furthermore, by changing the degree of silanization, the pore entrance diameter can be precisely controlled as desired.

従って、本発明によって調製されたゼオライトは、形状
選択性を利用する反応および吸着に適用できる。
Therefore, the zeolite prepared according to the present invention can be applied to reactions and adsorptions that utilize shape selectivity.

■また、本発明によって、吸着容量を低下させることな
く均一にかつ大量に製造することが可能となる。
(2) Furthermore, according to the present invention, it becomes possible to produce uniformly and in large quantities without reducing the adsorption capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1に係るTMO8添着量に対する各吸
着量との関係を示す図、 第2図(a) 〜(c)は、実施例2に係るTMO8添
着量に対する各成分の吸着割合を示す図、第3図は、比
較例1に係るTMO8添着量に対する各成分の吸着割合
を示す図、 第4図は、比較例2に係るTMO8添着量に対する各成
分の吸着割合を示す図である。
Figure 1 is a diagram showing the relationship between the adsorption amount of each component and the amount of TMO8 impregnated in Example 1, and Figures 2 (a) to (c) are the adsorption ratios of each component with respect to the amount of TMO8 impregnated in Example 2. Figure 3 is a diagram showing the adsorption ratio of each component to the amount of TMO8 impregnated in Comparative Example 1, and Figure 4 is a diagram showing the adsorption ratio of each component to the amount of TMO8 impregnated in Comparative Example 2. be.

Claims (1)

【特許請求の範囲】 1、アルカリまたはアルカリ土類金属イオンタイプのゼ
オライトを吸湿させ、疎水性溶媒で希釈した有機シラン
化合物により液相でシラン化し、その後焼成することを
特徴とするシラン化ゼオライトの製造法。 2、前記有機シラン化合物が、 SiR_yX_4_−_y [但し、yは1〜4の整数、XはC_1〜C_1_0の
アルキル基、アリール基、アリールアルキル基または水
素、RはC_1〜C_1_0のアルコキシ基をそれぞれ
示す] で示される化合物である特許請求の範囲第1項に記載の
シラン化ゼオライトの製造法。 3、前記焼成が100〜600℃で行なわれる特許請求
の範囲第1項または第2項に記載のシラン化ゼオライト
の製造法。
[Claims] 1. A silanized zeolite characterized by absorbing moisture from an alkali or alkaline earth metal ion type zeolite, silanizing it in a liquid phase with an organic silane compound diluted with a hydrophobic solvent, and then calcining it. Manufacturing method. 2. The organic silane compound is SiR_yX_4_-_y [where y is an integer of 1 to 4, X is an alkyl group of C_1 to C_1_0, an aryl group, an arylalkyl group, or hydrogen, and R is an alkoxy group of C_1 to C_1_0, respectively. The method for producing a silanized zeolite according to claim 1, which is a compound represented by the following. 3. The method for producing a silanized zeolite according to claim 1 or 2, wherein the calcination is performed at a temperature of 100 to 600°C.
JP26399287A 1987-10-21 1987-10-21 Method for producing silanized zeolite Expired - Lifetime JPH0674142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26399287A JPH0674142B2 (en) 1987-10-21 1987-10-21 Method for producing silanized zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26399287A JPH0674142B2 (en) 1987-10-21 1987-10-21 Method for producing silanized zeolite

Publications (2)

Publication Number Publication Date
JPH01108113A true JPH01108113A (en) 1989-04-25
JPH0674142B2 JPH0674142B2 (en) 1994-09-21

Family

ID=17397040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26399287A Expired - Lifetime JPH0674142B2 (en) 1987-10-21 1987-10-21 Method for producing silanized zeolite

Country Status (1)

Country Link
JP (1) JPH0674142B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994029408A1 (en) * 1993-06-03 1994-12-22 Mobil Oil Corporation Process for preparing an alumina bound zeolite catalyst
JPH072740A (en) * 1993-04-23 1995-01-06 Mitsui Toatsu Chem Inc Production of methylamine
KR100315281B1 (en) * 1999-08-14 2001-11-26 허경수 The Process for Manufacturing Zeolite with Hydrophobic Function Radical and Removing Method of Organism by use of Zeolite Obtained Therefrom
US6683592B1 (en) 1999-08-20 2004-01-27 Seiko Epson Corporation Electro-optical device
JP2009269767A (en) * 2008-04-30 2009-11-19 Kao Corp Production method of mesoporous silica particle
JP2013523582A (en) * 2010-03-30 2013-06-17 ユーオーピー エルエルシー Surface-modified zeolite and preparation method thereof
CN110867624A (en) * 2019-10-15 2020-03-06 湖南博信新能源科技有限公司 Method for recycling lithium battery electrolyte

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072740A (en) * 1993-04-23 1995-01-06 Mitsui Toatsu Chem Inc Production of methylamine
WO1994029408A1 (en) * 1993-06-03 1994-12-22 Mobil Oil Corporation Process for preparing an alumina bound zeolite catalyst
US5378671A (en) * 1993-06-03 1995-01-03 Mobil Oil Corp. Method for preparing catalysts comprising zeolites
US5500109A (en) * 1993-06-03 1996-03-19 Mobil Oil Corp. Method for preparing catalysts comprising zeolites extruded with an alumina binder
KR100315281B1 (en) * 1999-08-14 2001-11-26 허경수 The Process for Manufacturing Zeolite with Hydrophobic Function Radical and Removing Method of Organism by use of Zeolite Obtained Therefrom
US6683592B1 (en) 1999-08-20 2004-01-27 Seiko Epson Corporation Electro-optical device
US7064735B2 (en) 1999-08-20 2006-06-20 Seiko Epson Corporation Electro-optical device
JP2009269767A (en) * 2008-04-30 2009-11-19 Kao Corp Production method of mesoporous silica particle
JP2013523582A (en) * 2010-03-30 2013-06-17 ユーオーピー エルエルシー Surface-modified zeolite and preparation method thereof
CN110867624A (en) * 2019-10-15 2020-03-06 湖南博信新能源科技有限公司 Method for recycling lithium battery electrolyte

Also Published As

Publication number Publication date
JPH0674142B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
Ng et al. Nanoporous materials with enhanced hydrophilicity and high water sorption capacity
CN104492383B (en) A kind of metal organic frame adsorbent and its preparation method and application
JPH05501849A (en) Zeolite aggregates and catalysts
JP2012167006A (en) Aggrlomerated zeolite-based adsorbent, method for producing the same, and method for adsorbing p-xylene from aromatic c8 fraction
US5302770A (en) Catalyst with a mordenite base containing at least one metal of groups IIa, IVb, IIb or IVa and its use in isomerization of a C8 aromatic cut
CA2347832A1 (en) Method for selective adsorption of dienes
US4252688A (en) Manufacture of bifunctional catalysts for the conversion of hydrocarbons
JPH01108113A (en) Production of silanized zeolite
US5132479A (en) Mordenite-based catalyst containing at least one metal from group viii and its use for isomerizing a c8 aromatic fraction
JP4609961B2 (en) Method for removing sulfur compounds
JPH06126165A (en) Adsorbent for purification of hydrocarbon in exhaust gas
JP2708212B2 (en) Method for modifying molecular sieve
US3158579A (en) Molecular sieve sorbents bonded with ion-exchanged clay
WO2021015129A1 (en) Hydrophobic zeolite, method for producing same and use of same
KR19990018318A (en) Method for producing a medium-porous molecular sieve material in which a metal element is substituted in a skeletal structure using a metal adhesion method and the molecular sieve material
EP0490037B1 (en) Adsorbent and cleaning method of waste gas containing ketonic organic solvents
JPH062575B2 (en) Clinoptilolite-type zeolite and method for producing the same
KR100969638B1 (en) Heterogeneous adsorbent and the use thereof for diffusion separation methods
Kollmer et al. (NH4) 2SiF6-modified ZSM-5 as catalysts for direct hydroxylation of benzene with N2O: 2. A comparative study with ferrisilicalite and dealuminated and iron-exchanged ZSM-5
JP2965347B2 (en) Activated carbon for deodorization
JPS63230515A (en) Method for precisely controlling pore diameter of zeolite
JPS63166432A (en) Production of adsorbent
JP2021020211A (en) Hydrophobic zeolite, and method for producing the same
RU2200586C2 (en) Method of preparing sorbent for removal of atherogenic lipoproteins from blood (versions)
US5256385A (en) Adsorbent and cleaning method of waste gas containing ketonic organic solvents