JPH01107897A - Biochemical treatment of waste water associated with iron and steel - Google Patents

Biochemical treatment of waste water associated with iron and steel

Info

Publication number
JPH01107897A
JPH01107897A JP62267249A JP26724987A JPH01107897A JP H01107897 A JPH01107897 A JP H01107897A JP 62267249 A JP62267249 A JP 62267249A JP 26724987 A JP26724987 A JP 26724987A JP H01107897 A JPH01107897 A JP H01107897A
Authority
JP
Japan
Prior art keywords
ferrous
aeration tank
wastewater
iron
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62267249A
Other languages
Japanese (ja)
Inventor
Kazuhisa Fukunaga
和久 福永
Masahiro Fujii
正博 藤井
Shigeharu Matsubara
松原 茂晴
Yukihiro Nomura
幸弘 野村
Takehiko Matsumura
松村 武彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62267249A priority Critical patent/JPH01107897A/en
Publication of JPH01107897A publication Critical patent/JPH01107897A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To efficiently oxidize ferrous ions by maintaining the relation between the concn. of the ferrous ion and the load of the ferrous ions in the waste water supplied to an aeration tank under specific conditions and maintaining the oxidation reduction potential of the aeration tank at >=600mV. CONSTITUTION:The waste water is supplied to the aeration tank in such a manner that the relation between the concn. (g/l) of the ferrous ion in the waste water supplied to the aeration tank and the load (kg/m<3>.day) of the ferrous ions satisfies Fe<2+> load<=-3.05Fe<2+> concn.+112.5 at the time of oxidizing the ferrous ions in the waste water which is associated with iron and steel and has <=5000mg/l ferrous ion concn. by using aerobic activated sludge contg. iron oxidizing bacteria. Furthermore, the temp. in the aeration tank is maintained at 13-33 deg.C and the oxidation reduction potential in the aeration tank is maintained at >=600mV. The efficient oxidation treatment of the high- concn. ferrous ions is then enabled and the treatment is executable in a short period of time with the simple treatment stage and small-scale equipment.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋼材の表面処理等の排水中に含まれる第1鉄
イオンを鉄酸化菌を含む好気性活性汚泥を用いて第2鉄
イオンに酸化する方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention converts ferrous ions contained in wastewater from surface treatment of steel materials into ferric ions using aerobic activated sludge containing iron oxidizing bacteria. It relates to a method of oxidizing to

(従来の技術) 製鉄所において、冷延鋼板、あるいは亜鉛メツキ、錫メ
ツキなどにより表面処理鋼板を製造する際に鋼板表面の
スケール、汚れ、酸化膜などを除去するために硫酸また
は塩酸による酸洗処理が行なわれ、また、鋼材の清浄化
にも酸洗処理が多く行なわれている。すなわち、鉄鋼材
料の酸洗は濃度3〜20%程度の塩酸、硫酸などの酸洗
浴を用いて行い、酸洗浴は一定期間以上使用すると酸洗
能力が低下するので廃棄しなければならない、また、鉄
綱材料を酸洗後、残存している酸洗液を除去するため大
量の水によって洗浄を行う。
(Prior art) In steel works, pickling with sulfuric acid or hydrochloric acid is used to remove scale, dirt, oxide films, etc. from the surface of steel sheets when manufacturing cold-rolled steel sheets or surface-treated steel sheets by galvanizing, tin plating, etc. In addition, pickling treatment is often used to clean steel materials. That is, pickling of steel materials is carried out using a pickling bath of hydrochloric acid, sulfuric acid, etc. with a concentration of about 3 to 20%, and if the pickling bath is used for more than a certain period of time, the pickling ability will decrease, so it must be discarded. After pickling the steel steel material, it is washed with a large amount of water to remove the remaining pickling solution.

さらに、製鉄所においては、これらの酸洗排水の他に亜
鉛メツキ鋼板、錫メツキ鋼板その他のメツキ網板の製造
工程からも酸洗工程の排水と類似の排水(メツキ浴のダ
ンプ液、リンズ排水)が排出する。これらの排水には、
鉄イオンの他にメツキ処理に使用されている亜鉛、錫、
クロムなどの金属イオンおよび有機化合物を主成分とす
るメツキ添加剤が含まれている。このメツキ添加剤は良
好なメツキ性を得るためにメツキ浴に添加するもので、
有機化合物を主成分としている。
Furthermore, in addition to these pickling wastewaters, steelworks also use wastewater similar to the pickling process wastewater (dump liquid from plating baths, rinsing wastewater, ) is emitted. These wastewaters include
In addition to iron ions, zinc, tin, and
Contains plating additives whose main ingredients are metal ions such as chromium and organic compounds. This plating additive is added to the plating bath to obtain good plating properties.
The main component is organic compounds.

したがって、製鉄所の酸洗、メツキなどの綱材の表面処
理工程あるいはその他の鉄鋼関連工場から排出する排水
はpHが非常に低く、また、鉄イオンの他に亜鉛(亜鉛
メツキの場合)、錫、その他の金属イオンおよび有機化
合物を含有している。
Therefore, the pH of wastewater discharged from steelworks' surface treatment processes such as pickling and plating, or other steel-related factories, is extremely low, and in addition to iron ions, zinc (in the case of galvanized plating) and tin are also present. , other metal ions and organic compounds.

そして、これらの表面処理排水に含まれている鉄イオン
は大部分が第1鉄(Pet′″)イオンである。
Most of the iron ions contained in these surface treatment wastewaters are ferrous (Pet''') ions.

これらの排水を公共水域に排出する場合、鉄、亜鉛、錫
などの金属イオン、CODによって表示される有機化合
物およびpHを環境規制値以下に除去または調整して排
出を行っている。そのための従来の方法は次の通りであ
る。
When these wastewaters are discharged into public waters, metal ions such as iron, zinc, and tin, organic compounds indicated by COD, and pH are removed or adjusted to below environmental regulation values before discharge. The conventional method for this is as follows.

先ず金属イオンの除去には主にアルカリ凝集沈澱法が適
用されている。すなわち、これらの排水はpl+ 2.
0〜3.0程度であり、前述の金属イオンはほぼ完全に
溶解しているので、これらの金属イオンを除去するため
に排水に大量のアルカリ剤を添加し、排水のpHを9〜
10に高めて維持し、金属イオンを水酸化物として沈澱
させ除去している。
First, the alkaline coagulation precipitation method is mainly applied to remove metal ions. That is, these wastewaters are pl+2.
0 to 3.0, and the metal ions mentioned above are almost completely dissolved, so in order to remove these metal ions, a large amount of alkaline agent is added to the wastewater, and the pH of the wastewater is adjusted to 9 to 3.0.
10 to precipitate and remove metal ions as hydroxides.

しかし、第1鉄塩はpl+ 9.5以上にしないと排水
に溶解したまま残存し、またpl+を9.5以上にして
第1鉄塩の水酸化物を生成させても水酸化第1鉄は沈降
速度が遅いので水酸化第1鉄を沈降分離するには大容量
の設備を必要とする。
However, ferrous salts remain dissolved in wastewater unless the pl+ is 9.5 or higher, and even if hydroxides of ferrous salts are produced at pl+ of 9.5 or higher, ferrous hydroxide remains. Since the sedimentation rate of ferrous hydroxide is slow, large-capacity equipment is required to separate the ferrous hydroxide by sedimentation.

そこでこれらの問題点を解決するために第1鉄塩を含む
排水に水酸化カルシウム、炭酸カルシウムなどのアルカ
リ剤を添加してp119〜10に維持し、さらに大量の
空気を長時間吹き込み、水酸化第1鉄を水酸化第2鉄に
酸化している。その理由は、水酸化第2鉄はp115〜
11の範囲において溶解度は0.1+ng/j!以下で
あり、水酸化第1鉄に比べて溶解度が非常に低く、また
このフロックは沈降性が良好なので処理水への流出が少
ないからである。
Therefore, in order to solve these problems, an alkaline agent such as calcium hydroxide or calcium carbonate is added to the wastewater containing ferrous salts to maintain the pH at 119 to 10, and a large amount of air is blown in for a long period of time to oxidize the hydroxide. Ferrous iron is oxidized to ferric hydroxide. The reason is that ferric hydroxide has p115~
The solubility in the range of 11 is 0.1+ng/j! This is because the solubility is very low compared to ferrous hydroxide, and since this floc has good sedimentation properties, there is little flow out into the treated water.

そして、該処理をした排水を沈泥沈降槽において固液分
離し、上澄水は硫酸、塩酸などによりpl+を規制値に
中和してから排出している。このような処理をなされた
水に含まれる鉄、亜鉛、錫その他の金属イオンはいずれ
も0.1■/l以下であり、規制値を十分に満足するこ
とができる。
The treated wastewater is then subjected to solid-liquid separation in a silt settling tank, and the supernatant water is discharged after neutralizing pl+ to a regulation value with sulfuric acid, hydrochloric acid, or the like. The iron, zinc, tin and other metal ions contained in the water treated in this manner are all 0.1 .mu./l or less, which fully satisfies the regulatory values.

(発明が解決しようとする問題点) しかし、上記処理方法においてもメツキ及び酸洗添加剤
により水酸化第1鉄から水酸化第2鉄への酸化が阻害さ
れる事が多い。このため別途に過酸化水素、次亜塩素酸
塩などによる化学的酸化処理あるいは活性炭吸着法など
の処理を行う必要がある。
(Problems to be Solved by the Invention) However, even in the above treatment method, the oxidation of ferrous hydroxide to ferric hydroxide is often inhibited by the plating and pickling additives. Therefore, it is necessary to separately perform a chemical oxidation treatment using hydrogen peroxide, hypochlorite, etc., or a treatment such as an activated carbon adsorption method.

このように、製鉄所の従来の排水処理は金属イオン沈澱
処理、水酸化第1鉄を水酸化第2鉄に酸化する処理、こ
れらの処理を完全に行わせるための化学的酸化処理等、
処理工程が多く、暖気量、薬品量等ランニングコストも
莫大なものである。
In this way, conventional wastewater treatment at steel plants includes metal ion precipitation treatment, treatment to oxidize ferrous hydroxide to ferric hydroxide, and chemical oxidation treatment to complete these treatments.
There are many processing steps, and running costs such as the amount of heating air and chemicals are also enormous.

また、従来の処理方法における他の問題点は、前記中和
凝集沈澱処理に水酸化カルシウム、炭酸カルシウムなど
のカルシウム化合物を使用するので、大量のカルシウム
化合物と鉄、亜鉛、錫などの金属水酸化物を含有してい
るスラッジが非常に多く発生すること、さらに、該スラ
ッジは各種金属酸化物が混在しているため、有効利用に
多くの制約を受けることである。
Another problem with the conventional treatment method is that calcium compounds such as calcium hydroxide and calcium carbonate are used in the neutralization coagulation and precipitation treatment, so a large amount of calcium compounds and metal hydroxides such as iron, zinc, and tin are used. The problem is that a very large amount of sludge containing substances is generated, and furthermore, since the sludge contains various metal oxides, there are many restrictions on its effective use.

本発明者らは、排水中の第1鉄イオン濃度が5000+
ng/ 1以下において上記問題点を解決する新しい処
理方法を特開昭59−116385号公報で提案した。
The present inventors found that the ferrous ion concentration in wastewater was 5000+
A new processing method for solving the above problems at ng/1 or less was proposed in Japanese Patent Laid-Open No. 116385/1985.

この方法は、酸性排水中の第1鉄イオンを酸化するため
に鉄酸化菌を含む好気性活性汚泥によって処理するに際
して、有機化合物濃度と活性汚泥濃度の関係を特定の条
件に維持すること、さらに加えて活性汚泥処理時の曝気
量を酸化還元電位を指標として管理することに特徴を有
する。
This method involves maintaining the relationship between organic compound concentration and activated sludge concentration under specific conditions when treating acidic wastewater with aerobic activated sludge containing iron oxidizing bacteria to oxidize ferrous ions. In addition, the method is characterized in that the amount of aeration during activated sludge treatment is managed using the redox potential as an index.

しかし、上記方法では排水中の第1鉄イオン濃度が50
00mg/ 12以下の条件があるため、ダンプ液を処
理する場合、希釈倍率が高く水処理設備の規模が大きく
なる。
However, in the above method, the ferrous ion concentration in the wastewater was 50
Since there is a condition of 00 mg/12 or less, when treating dump liquid, the dilution ratio is high and the scale of the water treatment equipment becomes large.

鉄酸化菌による排水処理については有機物を含まない鉱
山排水、工場排水等に関する発明、例えば特公昭47−
38981号公報、特公昭47−44717号公報、特
開昭53−42445号公報等開示のものがあるが、第
1鉄イオン5000mg/β以上の排水を鉄酸化菌によ
りFe”に酸化処理した例はみあたらない。
Regarding wastewater treatment using iron oxidizing bacteria, inventions related to mine wastewater, factory wastewater, etc. that do not contain organic matter, such as the Special Publication Publication No. 1973-
There are some disclosures such as Japanese Patent Publication No. 38981, Japanese Patent Publication No. 47-44717, and Japanese Patent Application Laid-Open No. 53-42445, but there are examples in which wastewater containing 5000 mg/β or more of ferrous ions is oxidized to Fe'' by iron oxidizing bacteria. It doesn't fit.

そこで、発明者らは鉄酸化菌が一定の管理条件の中では
第1鉄イオン5000+ng/ 1以上でも酸化処理可
能であることに着目し、高濃度鉄塩酸化処理方法を発明
した。
Therefore, the inventors focused on the fact that iron-oxidizing bacteria can be oxidized with 5000+ng/1 or more of ferrous ions under certain control conditions, and invented a high-concentration iron salt oxidation treatment method.

(問題点を解決するための手段) 本発明は、第1鉄イオン濃度が少なくとも5000mg
/l以上の水溶性第1鉄塩を含有するpl+≦3の鉄網
関連排水に鉄酸化菌を含む好気性活性汚泥を用いて第1
鉄イオンを第2鉄イオンへ酸化処理する方法において、
曝気槽へ供給される排水の第1鉄イオンの濃度(g#り
と第1鉄イオンの負荷量(kg/+vf・日)との関係
が Fe”負荷量≦−3,05Fe2+112.5を満足す
るように排水を供給し、暉気槽内の温度を13〜33℃
の範囲にし、曝気槽の酸化還元電位を600mV(銀−
塩化銀基準)以上にする事を特徴とする鉄鋼関連排水の
生物化学的処理方法である。
(Means for Solving the Problems) The present invention provides that the ferrous ion concentration is at least 5000 mg.
Using aerobic activated sludge containing iron oxidizing bacteria, the 1
In a method of oxidizing iron ions to ferric ions,
The relationship between the ferrous ion concentration (g#ri) and the ferrous ion load (kg/+vf/day) in the wastewater supplied to the aeration tank satisfies the condition Fe'' load ≦-3,05Fe2+112.5. Supply wastewater so that the temperature inside the aeration tank is 13 to 33℃.
range, and set the redox potential of the aeration tank to 600 mV (silver-
This is a biochemical treatment method for steel-related wastewater that is characterized by a treatment method that exceeds the silver chloride standard (silver chloride standard).

(作 用) 本発明者らは、鉄酸化細菌が酸化処理できる排水のFe
2(■/りの限界はFe”負荷量(曝気槽単位容積当り
処理すべきFe”の量) 、?ILSS(Mixed 
Liquor 5uspended 5olid ;曝
気槽内浮遊物質)濃度と密接な関係があるものと考え、
鋭意研究した結果、下記の事項を明らかにした。
(Function) The present inventors discovered that Fe in wastewater, which can be oxidized by iron-oxidizing bacteria,
2 (■ / liter limit is Fe" loading amount (amount of Fe" to be treated per unit volume of aeration tank), ?ILSS (Mixed
It is thought that there is a close relationship with the concentration of suspended solids in the aeration tank.
As a result of intensive research, the following matters were clarified.

(1)原水Fe”fi度10.000mg/ 1.では
、MLSS濃度75.000mg/ I!、でFe”負
荷l 80 kg/rTf ・日まで処理可能であり、
それ以上MLSSI度を高くしてもPe”負荷量は高く
ならない。
(1) When the raw water Fe"fi degree is 10.000mg/1., the MLSS concentration is 75.000mg/I!, and it is possible to treat the Fe" load up to 80 kg/rTf ・day.
Even if the MLSSI degree is increased further, the Pe'' load amount will not increase.

(2)原水Fe215.OOO+ng/ lでは、ML
SS濃度100.000 +ng/ 1でFe”+負荷
170kg/fff’日、?ILSS:a度125,0
00 m#でFe”負荷1180kg/ITf・日まで
処理可能であるが、それ以上phLssB度を高くして
もFe”負荷量は高くならない。
(2) Raw water Fe215. In OOO+ng/l, ML
SS concentration 100.000 + ng/ 1 and Fe" + load 170 kg/fff' day, ?ILSS: a degree 125.0
At 00 m#, it is possible to process up to a Fe'' load of 1180 kg/ITf·day, but even if the phLssB degree is increased beyond that, the Fe'' load does not increase.

(3)原水Fe220,000mg/j2では、r+t
、ss6度125,000 rng/ I!でFe”負
荷ff150kg/rri’−日、MLSSfi度15
0.000 mg/ lでFe”負荷ff180kg/
m・日まで処理可能であるが、それ以上?ILSSW度
を高くしてもFe”負荷量は高くならない。
(3) For raw water Fe220,000mg/j2, r+t
, ss6 degree 125,000 rng/I! Fe'' load ff150kg/rri'-day, MLSSfi degree 15
Fe” load ff180kg/ at 0.000 mg/l
It is possible to process up to m days, but beyond that? Even if the ILSSW degree is increased, the amount of Fe'' load does not increase.

また、肚SS濃度100,000 mg/ 1一定にし
て、原水Fe2とFe”負荷量との関係を検討した結果
、原水Fe24濃度7.500〜20,000mg/ 
1の範囲では第1図に示すような関係が得られ、Fe2
が高くなるにつれてFez′″負荷量は低下し、その関
係はつぎの式で示される。
In addition, as a result of examining the relationship between raw water Fe2 and Fe'' loading amount while keeping the abdominal SS concentration constant at 100,000 mg/1, we found that the raw water Fe24 concentration was 7.500 to 20,000 mg/1.
In the range of 1, the relationship shown in Figure 1 is obtained, and Fe2
As Fez''' becomes higher, the load amount of Fez''' decreases, and the relationship is expressed by the following equation.

Fe”°負荷量(kg/rrf ・日)≦3.05 F
e2(g/ 1 ) +112.5これらの結果より、
高濃度の第1鉄イオンを含む排水を鉄酸化菌活性汚泥法
で処理するためにはMLSS濃度とFe”負荷量をうま
くバランスさせなければならない。例えば、MLSSf
i度を100,000 mg/!と一定にすれば、Fe
”1度は20.000mg / 1以下において前述の
式を満足する様にFe”負荷■をとる事により処理可能
である。
Fe”°load amount (kg/rrf・day)≦3.05F
e2 (g/ 1) +112.5 From these results,
In order to treat wastewater containing high concentrations of ferrous ions using the iron oxidizing bacteria activated sludge method, the MLSS concentration and Fe'' loading must be well balanced.For example, MLSSf
100,000 mg/! If it is kept constant, Fe
It can be treated by setting the "Fe" load so that the above-mentioned formula is satisfied when "1 degree is 20.000 mg/1 or less".

又、このときの曝気槽の水温は13“C未満では酸化反
応が遅く、33℃を超えると鉄酸化菌が生息しにくくな
る。したがって曝気槽の水温は13〜33゛Cに管理し
、ORPは第2図に示すように600mV(tj!−塩
化銀基準)以上になると安定して処理水中の第1鉄イオ
ン濃度が低くなるので、600mV以上になる様に制御
しなければならない。
Also, if the water temperature in the aeration tank at this time is less than 13"C, the oxidation reaction will be slow, and if it exceeds 33"C, it will be difficult for iron oxidizing bacteria to inhabit. As shown in FIG. 2, when the voltage exceeds 600 mV (tj! - silver chloride standard), the ferrous ion concentration in the treated water stably decreases, so it must be controlled to be 600 mV or above.

又、原水pHは3以下にしないと鉄酸化菌が生息しにく
くなるので原水pHは3以下、好ましくは2.1〜2.
5の範囲に制御する。
Also, if the pH of the raw water is not 3 or less, it will be difficult for iron oxidizing bacteria to inhabit, so the pH of the raw water should be 3 or less, preferably 2.1 to 2.
Control within the range of 5.

又、栄養源として、窒素化合物(N)およびリン化合物
(P)を原水に対して各3mg//!供給し、他に亜鉛
イオンを1 tng / n以上添加することが好まし
い。
Also, as a nutrient source, nitrogen compounds (N) and phosphorus compounds (P) are each added at 3 mg// per raw water! It is preferable to supply zinc ions and add 1 tng/n or more of zinc ions.

次に、鉄酸化菌をFe”5000mg/l以上含む排水
に馴養させる方法について説明する。
Next, a method for acclimating iron-oxidizing bacteria to wastewater containing 5000 mg/l or more of Fe will be explained.

本発明者らは、特開昭59−116385号公報、特開
昭60−25589号公報、特開昭60−25590号
公報において製鉄所の酸洗、メツキ排水ピットのスラッ
ジに生息している鉄酸化細菌を培養、増殖してFe”を
含む排水の連続酸化処理を可能にした。
In JP-A-59-116385, JP-A-60-25589, and JP-A-60-25590, the present inventors discovered that iron inhabiting the sludge of the pickling and Metsuki drainage pits of ironworks. By culturing and multiplying oxidizing bacteria, continuous oxidation treatment of wastewater containing "Fe" was made possible.

この酸洗、メツキ排水ピットのスラッジに生息している
鉄酸化菌をFe”5000mg/ 1以上含む排水の処
理に適用するための馴養方法は、このスラッジを活性汚
泥処理設備の曝気槽に入れ、これにFe21500〜2
000mg/ l T:pH2〜2.5の排水を入れて
回分式曝気を行い、曝気槽のORPが560mV以上、
また上澄液のFe”が10mg/i、以下になったら曝
気を中止して汚泥を沈降させて上澄液を放流する。また
、再度、Fe21500〜2000mg/ lでp11
2〜2.5の排水を入れて曝気を行い、同じ操作を行う
。このような回分式による操作を繰り返し、8時間程度
でORPの上昇、Fe”の酸化が完了するようになった
ら連続処理に移行する。
The acclimatization method for applying this pickling to the treatment of wastewater that contains iron oxidizing bacteria living in the sludge of the Metsuki drainage pit is to put this sludge into the aeration tank of the activated sludge treatment equipment, For this, Fe21500~2
000mg/l T: Perform batch aeration using wastewater with a pH of 2 to 2.5, and ORP of the aeration tank is 560mV or more.
In addition, when Fe in the supernatant liquid becomes 10 mg/i or less, aeration is stopped, the sludge is allowed to settle, and the supernatant liquid is discharged.
Add 2 to 2.5 liters of waste water, aerate, and repeat the same operation. This batchwise operation is repeated, and when the ORP increases and the oxidation of Fe'' is completed in about 8 hours, the continuous treatment is started.

する。do.

連続処理はFe”1500vg/ 12からスタートし
、211rの処理で処理水のFe”が5mg/f以下に
なるようになれば供給原水のFe”°濃度を1000〜
2500■/!ずつ上げていく。
Continuous treatment starts with Fe" 1500vg/12, and if the Fe" of the treated water becomes 5mg/f or less after 211r treatment, the Fe" concentration of the supplied raw water is increased from 1000 to 1000.
2500■/! Raise it step by step.

上記方法により、製鉄所の酸洗、メツキ排水ピット内ス
ラッジに生息している鉄酸化細菌を培養、増殖させてp
 e 2 +を5000〜20000 mg/ l含む
排水の連続化処理が可能になる。
By the above method, iron oxidizing bacteria living in the pickling and sludge in the drainage pit of the steelworks are cultured and proliferated.
It becomes possible to continuously treat wastewater containing 5,000 to 20,000 mg/l of e2+.

なお、鉄酸化細菌の培養、馴養、或いは処理する排水に
は、鉄酸化細菌の栄養としてリン、窒素を各々3 tn
g / I!以上、亜鉛イオンを1 mg / 1以上
添加しておく。
In addition, 3 tn each of phosphorus and nitrogen are added to the wastewater used for culturing, acclimating, or treating iron-oxidizing bacteria as nutrients for iron-oxidizing bacteria.
g/I! Above, 1 mg/1 or more of zinc ions are added.

本発明者らは、鉄酸化細菌の栄養成分としてリン、窒素
の他に亜鉛が好ましいことを見出している。即ち、亜鉛
イオンを含まない排水、例えば熱延鋼板の酸洗工程から
発生ずる排水はFe”以外の重金属イオンをほとんど含
有していない。この酸洗工程の排水を鉄酸化細菌により
Fe”の酸化処理を行う場合、長期間処理を行っている
とFe”°の酸化率が低下する。しかし、この排水にZ
n”を1 mg/l以上添加するとre”の酸化率が低
下することなく、安定した処理が可能になる。
The present inventors have discovered that, in addition to phosphorus and nitrogen, zinc is preferable as a nutritional component for iron-oxidizing bacteria. In other words, wastewater that does not contain zinc ions, for example, wastewater generated from the pickling process of hot-rolled steel sheets, contains almost no heavy metal ions other than Fe''. When treatment is carried out, the oxidation rate of Fe"° decreases if the treatment is carried out for a long period of time. However, Z
When n'' is added in an amount of 1 mg/l or more, stable processing is possible without reducing the oxidation rate of re''.

(実施例) 電気亜鉛メツキ工場から排出される第1鉄イオン濃度工
帆000Il1g/l含む排水を曝気槽内をMLSSl
oo、000 K/I!、水温28℃,ORP600m
Vに管理し、Fe24負荷60kg/日ボ、返送汚泥率
を100%とする条件で4時間で処理した。なお、原水
pHは2.5、P、Nは3 tag/ 425Zn2+
は5■/l添加した。このとき処理水中の第1鉄イオン
濃度は5■/l以下であった。
(Example) Wastewater containing ferrous ion concentration 1g/l of 000Il discharged from an electric galvanizing factory was collected in an aeration tank using MLSS1.
oo, 000 K/I! , water temperature 28℃, ORP 600m
The treatment was carried out for 4 hours under the conditions of a Fe24 load of 60 kg/day and a return sludge rate of 100%. In addition, raw water pH is 2.5, P and N are 3 tag/425Zn2+
was added at 5 μ/l. At this time, the ferrous ion concentration in the treated water was 5 .mu./l or less.

又、沈澱したスラッジを水洗し、800″Cで焼成する
ことによりFeOの純度が99%以上の酸化鉄をつくる
ことができた。
Further, by washing the precipitated sludge with water and calcining it at 800''C, iron oxide with FeO purity of 99% or more could be produced.

(発明の効果) このように、本発明の方法によれば鉄鋼関連排水から高
濃度の第1鉄イオンを効率的に酸化処理する事ができ、
従来方法に比べて処理工程が簡単で、小規模な設備で短
時間に処理できる。又、薬品量、エアー■も少なくラン
ニングコストの削減が可能である。又、第2鉄イオンの
みのスラッジが生成できるので、該スラッジを有効に利
用できる。例えば、生成スラッジを水洗・焼成すれば、
フェライト原料、弁柄、凝集剤等の用途に活用可能であ
る。
(Effects of the Invention) As described above, according to the method of the present invention, highly concentrated ferrous ions can be efficiently oxidized from steel-related wastewater,
The treatment process is simpler than conventional methods and can be done in a short time using small-scale equipment. In addition, the amount of chemicals and air (2) are also small, making it possible to reduce running costs. Furthermore, since sludge containing only ferric ions can be generated, the sludge can be used effectively. For example, if the generated sludge is washed with water and fired,
It can be used as a ferrite raw material, valve stem, flocculant, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はFe2と曝気槽負荷量との関係を示す図、 第2図は酸化還元電位とFe!″濃度との関係を示す図
である。 代理人 弁理士 秋 沢 政 光 他1名
Figure 1 shows the relationship between Fe2 and aeration tank load, Figure 2 shows the oxidation-reduction potential and Fe! ``This is a diagram showing the relationship with concentration. Agent: Patent attorney Masamitsu Akizawa and one other person.

Claims (2)

【特許請求の範囲】[Claims] (1)第1鉄イオン濃度が少なくとも5000mg/l
以上の水溶性第1鉄塩を含有するpH≦3の鉄鋼関連排
水に鉄酸化菌を含む好気性活性汚泥を用いて第1鉄イオ
ンを第2鉄イオンへ酸化処理する生物化学的処理方法に
おいて、曝気槽へ供給される排水の第1鉄イオンの濃度
(g/l)と第1鉄イオンの負荷量(kg/m^2・日
)との関係が Fe^2^+負荷量≦−3.05Fe^2^+濃度+1
12.5を満足するように排水を供給し、曝気槽内の温
度を13〜33℃の範囲にし、曝気槽の酸化還元電位を
600mV(銀−塩化銀基準)以上にする事を特徴とす
る鉄鋼関連排水の生物化学的処理方法。
(1) Ferrous ion concentration is at least 5000 mg/l
In a biochemical treatment method for oxidizing ferrous ions to ferric ions using aerobic activated sludge containing iron-oxidizing bacteria in steel-related wastewater containing water-soluble ferrous salts and having a pH≦3. , the relationship between the concentration of ferrous ions (g/l) in the wastewater supplied to the aeration tank and the loading amount of ferrous ions (kg/m^2・day) is Fe^2^ + Loading amount ≦- 3.05Fe^2^+concentration+1
12.5, the temperature in the aeration tank is in the range of 13 to 33°C, and the redox potential of the aeration tank is 600 mV or more (silver-silver chloride standard). Biochemical treatment method for steel-related wastewater.
(2)前記排水にリン化合物および窒素化合物を各々3
mg/l以上(P、Nとして)、ならびに亜鉛イオンを
1mg/l以上添加する特許請求の範囲第1項記載の鉄
鋼関連排水の生物化学的処理方法。
(2) Add 3 liters each of phosphorus compounds and nitrogen compounds to the wastewater.
2. The biochemical treatment method for steel-related wastewater according to claim 1, wherein zinc ions are added in an amount of 1 mg/l or more (as P and N) and 1 mg/l or more.
JP62267249A 1987-10-22 1987-10-22 Biochemical treatment of waste water associated with iron and steel Pending JPH01107897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62267249A JPH01107897A (en) 1987-10-22 1987-10-22 Biochemical treatment of waste water associated with iron and steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62267249A JPH01107897A (en) 1987-10-22 1987-10-22 Biochemical treatment of waste water associated with iron and steel

Publications (1)

Publication Number Publication Date
JPH01107897A true JPH01107897A (en) 1989-04-25

Family

ID=17442208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62267249A Pending JPH01107897A (en) 1987-10-22 1987-10-22 Biochemical treatment of waste water associated with iron and steel

Country Status (1)

Country Link
JP (1) JPH01107897A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033837A1 (en) * 1996-03-14 1997-09-18 Chengdu Institute Of Biology, Chinese Academy Of Sciences A compound functional bacteria for treating various waste water from electroplating process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033837A1 (en) * 1996-03-14 1997-09-18 Chengdu Institute Of Biology, Chinese Academy Of Sciences A compound functional bacteria for treating various waste water from electroplating process

Similar Documents

Publication Publication Date Title
US4321143A (en) Treating effluent with peroxide and iron
US5051191A (en) Method to detoxify sewage sludge
US20060000784A1 (en) Water treatment
KR101543551B1 (en) Wastewater treatment system using electrolysis
JPH04349997A (en) Treatment of organic waste water
JP2002011495A (en) Method for removing nitrogen and phosphor from wastewater
JPH01107897A (en) Biochemical treatment of waste water associated with iron and steel
JPH10118664A (en) Treatment of waste water containing cyan compound and organic matter
Elkarrach et al. Combination of chemical and biological processes for the treatment of tannery effluent of Fez city in Morocco
JPH09206790A (en) Treatment of waste water of steel product pickling containing nitrate nitrogen
KR100470350B1 (en) Method for disposing of livestock waste water
JPH0679715B2 (en) Biological treatment method of organic wastewater
JP4527896B2 (en) Wastewater treatment equipment
JPH08173990A (en) Treatment method for drainage containing divalent iron
JP3136458B2 (en) How to grow iron-oxidizing bacteria
JPS61161197A (en) Treatment of organic waste water
JP2618164B2 (en) Conditioning and propagation of sulfur oxidizing bacteria by addition of inorganic coagulant and biological treatment of wastewater containing reducing sulfur compounds
JPS59209700A (en) Treatment of conc. waste water containing heavy metal using iron-oxidizing bacteria
KR100315434B1 (en) Wastewater Disposal Process
JPS63278592A (en) Treatment of waste water containing ferrous sulfate
JPH0679713B2 (en) Biological treatment method of organic wastewater
JPS591118B2 (en) How to treat organic wastewater
WO2023070557A1 (en) Method for advanced treatment of rainwater in smelting plant area
JPH0331120B2 (en)
JPS59116385A (en) Biochemical treatment of waste water produced in treating surface of steel material