JP3136458B2 - How to grow iron-oxidizing bacteria - Google Patents
How to grow iron-oxidizing bacteriaInfo
- Publication number
- JP3136458B2 JP3136458B2 JP06220822A JP22082294A JP3136458B2 JP 3136458 B2 JP3136458 B2 JP 3136458B2 JP 06220822 A JP06220822 A JP 06220822A JP 22082294 A JP22082294 A JP 22082294A JP 3136458 B2 JP3136458 B2 JP 3136458B2
- Authority
- JP
- Japan
- Prior art keywords
- iron
- aeration tank
- oxidizing bacteria
- wastewater
- activated sludge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は排水の生物学的処理、よ
り詳細には、塩素イオンと2価鉄を含む排水の処理に適
した鉄酸化細菌の増殖方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biological treatment of wastewater, and more particularly to a method of growing iron-oxidizing bacteria suitable for treating wastewater containing chloride ions and ferrous iron.
【0002】[0002]
【従来の技術】2価鉄を含む排水は、主として製鉄業、
金属精錬工業、鉱山などから発生する。例えば製鉄業に
おいては、冷延鋼板あるいは亜鉛メッキ、錫メッキなど
により表面処理鋼板を製造する際に大量に発生する。す
なわち、鋼板表面のスケール、汚れ、酸化膜、錆などを
除去するために、硫酸または塩酸により鋼板の洗浄(酸
洗処理)が行われる他、鋼材の清浄化にも酸洗処理が広
く行われている。これらの鉄鋼材料の酸洗処理には、濃
度3〜20%程度の塩酸、硫酸などが用いられることが
多い。そして、これらの酸は、一定期間以上使用し、酸
洗能力が低下すると廃棄される。また、鉄鋼材料は、酸
洗後、鉄鋼材料に付着している塩酸、硫酸などを除去す
るために大量の水によって洗浄されるが、これらの洗浄
水も廃棄される。2. Description of the Related Art Wastewater containing ferrous iron is mainly used in the steel industry,
It is generated from the metal smelting industry and mines. For example, in the steelmaking industry, it is generated in large quantities when manufacturing cold-rolled steel sheets or surface-treated steel sheets by zinc plating, tin plating, or the like. In other words, in order to remove scale, dirt, oxide film, rust, etc. on the steel sheet surface, the steel sheet is washed (pickling treatment) with sulfuric acid or hydrochloric acid, and the pickling treatment is widely used for cleaning steel materials. ing. For pickling treatment of these steel materials, hydrochloric acid, sulfuric acid, etc. having a concentration of about 3 to 20% are often used. These acids are used for a certain period of time or more, and are discarded when the pickling ability decreases. Further, after pickling, the steel material is washed with a large amount of water to remove hydrochloric acid, sulfuric acid and the like adhering to the steel material, and these washing waters are also discarded.
【0003】これらの排水のpHは2〜3と低く、ま
た、大量の2価鉄を含んでおり、このまま公共用水域に
放流することはできない。さらに、亜鉛メッキ、錫メッ
キなどの表面処理鋼板の酸洗排水の場合、2価鉄の他
に、亜鉛、錫、クロムなどの金属イオンを含有してい
る。また、良好なメッキ性を得るために用いられる有機
化合物を含有している場合もある。したがって、これら
の金属イオンやCODによって表示される有機化合物も
2価鉄と同様、公共用水域に放流する前に除去する必要
がある。[0003] The pH of these wastewaters is as low as 2 to 3 and contains a large amount of ferrous iron, so that they cannot be discharged into public water bodies as they are. Furthermore, in the case of pickling drainage of a surface-treated steel sheet such as zinc plating or tin plating, metal ions such as zinc, tin, and chromium are contained in addition to divalent iron. Further, it may contain an organic compound used for obtaining good plating properties. Therefore, these metal ions and organic compounds represented by COD need to be removed before being discharged into public water bodies, like ferric iron.
【0004】このような排水中の2価鉄の除去方法に
は、大きく分けて物理化学的方法と生物学的方法とがあ
る。[0004] Such a method for removing ferrous iron in wastewater is roughly classified into a physicochemical method and a biological method.
【0005】物理化学的方法としては、まず、2価鉄を
3価鉄まで空気酸化し、水酸化第二鉄として除去する方
法がある。しかし、2価鉄から3価鉄への酸化速度は、
pHが4以下では極めて遅く、ほとんど反応は進行しな
い。例えば、150日に反応の5%が進行するのみであ
る(例えば、W・スタム、J・J・モルガン、「一般水
質化学」、共立出版、500〜501頁)。したがっ
て、通常は2価鉄を含む排水に水酸化カルシウム、炭酸
カルシウムなどのアルカリ剤を添加してpHを9〜9.
5に維持し、大量の空気を吹き込んで2価鉄を3価鉄ま
で空気酸化した後、水酸化第二鉄として除去している。
なお、水酸化第二鉄は、pHを4以上にすれば溶解度が
5.6mg/l以下と小さく、また、沈降性も良好なの
で処理水への流出が少ないが、水酸化第一鉄は、pHを
9以上にしなければ溶解度が5.6mg/l以下となら
ず、また、沈降速度も遅いため、ほとんど用いられな
い。さらに、次亜塩素酸ソーダ、過酸化水素などの薬剤
やオゾンなどを用いて排水に含まれている2価鉄を3価
鉄まで酸化し、水酸化第二鉄として処理する方法も広く
知られている。[0005] As a physicochemical method, there is a method in which ferrous iron is first air-oxidized to ferric iron and removed as ferric hydroxide. However, the rate of oxidation of ferrous iron to ferrous iron is
When the pH is 4 or less, the reaction is extremely slow and the reaction hardly proceeds. For example, only 5% of the reaction progresses in 150 days (eg, W. Stam, JJ Morgan, “General Water Chemistry”, Kyoritsu Shuppan, pp. 500-501). Therefore, usually, an alkaline agent such as calcium hydroxide or calcium carbonate is added to waste water containing ferrous iron to adjust the pH to 9 to 9.
The ferrous hydroxide was maintained at 5, and a large amount of air was blown to oxidize ferric iron to ferric iron, and then removed as ferric hydroxide.
The ferric hydroxide has a low solubility of 5.6 mg / l or less when the pH is 4 or more, and has good sedimentation, so that the outflow into the treated water is small. If the pH is not adjusted to 9 or more, the solubility does not become 5.6 mg / l or less, and the sedimentation speed is low, so that it is hardly used. Furthermore, a method of oxidizing ferric iron contained in wastewater to ferric iron using a chemical such as sodium hypochlorite, hydrogen peroxide, or ozone, and treating it as ferric hydroxide is widely known. ing.
【0006】次に、生物学的方法としては、2価鉄を3
価鉄まで酸化する際に発生するエネルギーを用いて増殖
する鉄酸化細菌を用いる方法がある。鉄酸化細菌は中性
・糸状細菌と酸性・非糸状細菌に大別されるが、ここで
用いる細菌は後者の酸性・非糸状細菌であり、化学合成
独立細菌であるチオバチラス・フェロオキシダンス(T
hiobachillus ferrooxidan
s)が代表的な細菌である(例えば、「土壌微生物実験
法」、養賢堂、329〜331頁、1975)。特公昭
47−38981号公報、特公昭55−18559号公
報、特公昭55−22345号公報、特公昭57−44
393号公報などに記載されている排水中の2価鉄を3
価鉄まで鉄酸化細菌によって酸化する生物学的方法の対
象の排水は、鉱山、炭鉱、精錬排水などであり、用いら
れている細菌は、金属鉱山排水などに存在している鉄酸
化細菌である。また、特開昭63−51076号公報に
記載されている鉄酸化細菌を用いる方法は、鉄鋼関連の
酸洗工程とメッキ工程から排出された集水ピットに生息
しているバクテリアの集合体であるスラッジやスライム
の鉄酸化細菌を利用し、2価鉄を3価鉄まで酸化すると
同時に有機物を除去する方法である。[0006] Next, as a biological method, ferrous iron is added to 3
There is a method using an iron-oxidizing bacterium that grows using energy generated when oxidizing iron. Iron-oxidizing bacteria are roughly classified into neutral and filamentous bacteria and acidic and non-filamentous bacteria. The bacteria used here are the latter acidic and non-filamentous bacteria, and are chemically synthesized independent bacteria, Thiobacillus ferrooxidans (T
hibacillus ferrooxidan
s) is a representative bacterium (for example, “Soil microbial experiment method”, Yokendo, pp. 329-331, 1975). JP-B-47-38981, JP-B-55-18559, JP-B-55-22345, and JP-B-57-44
No. 393 in wastewater described in JP-A-393
Wastewater subject to biological methods that oxidize iron by iron-oxidizing bacteria to iron is mine, coal mine, smelting wastewater, etc., and the bacteria used are iron-oxidizing bacteria present in metal mine wastewater. . Further, the method using an iron oxidizing bacterium described in JP-A-63-51076 is an aggregate of bacteria living in a water collecting pit discharged from a pickling process and a plating process related to steel. This is a method that uses iron-oxidizing bacteria in sludge and slime to oxidize ferrous iron to ferric iron and at the same time remove organic matter.
【0007】これら鉄酸化細菌を用いる生物学的方法
は、pHが2〜3で生息あるいは活性のある鉄酸化細菌
により2価鉄を含む排水を処理する場合、pHが低い段
階で2価鉄を3価鉄まで迅速に酸化することができ、し
かも、pHが4程度で水酸化第二鉄として回収すること
が可能である。3価鉄はpHが4程度で水酸化第二鉄と
して沈殿除去できるが、他の亜鉛、錫などの金属は水酸
化物を作らない。したがって、鉄のみを他の金属から分
離して回収することが可能となる利点がある。[0007] In the biological method using these iron-oxidizing bacteria, when treating wastewater containing ferrous iron with an iron-oxidizing bacterium inhabiting or having a pH of 2 to 3, ferrous iron is removed at a low pH stage. It can be quickly oxidized to trivalent iron, and can be recovered as ferric hydroxide at a pH of about 4. Trivalent iron has a pH of about 4 and can be precipitated and removed as ferric hydroxide, but other metals such as zinc and tin do not form hydroxides. Therefore, there is an advantage that only iron can be separated and collected from other metals.
【0008】[0008]
【発明が解決しようとする課題】しかし、これら従来の
2価鉄を含む排水の処理方法は、以下のような課題を有
している。However, these conventional methods for treating wastewater containing ferrous iron have the following problems.
【0009】まず、物理化学的方法であるが、pHが低
い段階で曝気によって2価鉄を3価鉄まで酸化し、水酸
化第二鉄として回収する方法は、処理速度が極めて遅
く、実用化はほとんど不可能である。2価鉄を含む排水
にアルカリ剤を添加してpHを9〜9.5に維持し、大
量の空気を吹き込んで2価鉄を3価鉄まで空気酸化した
後、水酸化第二鉄として鉄を回収する方法は、鉄以外の
金属も水酸化物として析出してしまうため、鉄のみの分
離回収ができず、また、スラッジ発生量も多く、大量の
カルシウム化合物、鉄、亜鉛、錫などの水酸化物を含有
しているため、スラッジの有効利用がほとんど不可能と
なる問題点がある。さらに、2価鉄を薬剤で酸化する方
法は、酸化剤の添加量の制御が難しく処理水質が安定し
ない。また、2価鉄の濃度が高い場合には処理コストが
極めて高くなる欠点がある。First, as for the physicochemical method, the method of oxidizing ferrous iron to ferric iron by aeration at a low pH stage and recovering it as ferric hydroxide has a very slow processing speed and is not practical. Is almost impossible. An alkaline agent is added to the wastewater containing ferrous iron to maintain the pH at 9 to 9.5, and a large amount of air is blown to air-oxidize the ferric iron to ferric iron. In the method of recovering, metals other than iron also precipitate as hydroxides, so it is not possible to separate and recover only iron, and also a large amount of sludge is generated, and a large amount of calcium compounds, iron, zinc, tin, etc. There is a problem that the effective use of sludge becomes almost impossible because of containing hydroxide. Furthermore, in the method of oxidizing ferrous iron with a chemical, it is difficult to control the amount of the oxidizing agent added, and the quality of treated water is not stable. Further, when the concentration of divalent iron is high, there is a disadvantage that the processing cost becomes extremely high.
【0010】また、従来の鉄酸化細菌を用いる生物学的
方法にも以下のような課題が残されている。[0010] The following problems still remain in conventional biological methods using iron-oxidizing bacteria.
【0011】まず、通常、鉄酸化細菌は金属硫化物の鉱
石、特に黄鉄鉱(FeS2 )を含む鉱山からの排水が生
じる場所や製鉄所の酸洗排水ピットに多く見られる。こ
れらの場所から汚泥やスラッジを採取し、FeSO4 を
中心とした溶液(例えば9K倍地、「土壌微生物実験
法」、養賢堂、394頁)を用いて鉄酸化細菌を増殖さ
せ、その後、排水処理に用いることが多い。しかし、こ
のような鉄酸化細菌を入手できる場所はpHが低く、か
つ2価鉄が存在し、好気的雰囲気が保たれている極めて
特殊な地点に限られている。このため、このような環境
が無い場合には、鉄酸化細菌を増殖させることがかなり
困難である。したがって、鉄酸化細菌を大量に培養する
技術を確立することが実用上重要な課題である。First, usually, iron oxidizing bacteria are often found in places where drainage occurs from mines containing metal sulfide ores, particularly pyrite (FeS 2 ), and in pickling drainage pits in steel mills. Sludge and sludge are collected from these locations, and iron-oxidizing bacteria are grown using a solution centered on FeSO 4 (eg, 9K medium, “Soil microbial experiment method”, Yokendo, p. 394). Often used for wastewater treatment. However, the place where such iron-oxidizing bacteria can be obtained is limited to a very special place where the pH is low, ferrous iron is present, and an aerobic atmosphere is maintained. For this reason, without such an environment, it is very difficult to grow iron-oxidizing bacteria. Therefore, it is a practically important task to establish a technique for culturing iron-oxidizing bacteria in large quantities.
【0012】さらに、このような鉄酸化細菌は、化1の
反応式に見られるように、金属硫化物を含む環境に生息
していることが多い。Further, such an iron-oxidizing bacterium often lives in an environment containing metal sulfides, as shown in the reaction formula (1).
【0013】[0013]
【化1】2FeS2 +2H2 O+7O2 →2FeSO4
+2H2 SO4 2FeSO4 +2H2 SO4 +O2 →2Fe2 (S
O4 )3 +2H2 OEmbedded image 2FeS 2 + 2H 2 O + 7O 2 → 2FeSO 4
+ 2H 2 SO 4 2FeSO 4 + 2H 2 SO 4 + O 2 → 2Fe 2 (S
O 4 ) 3 + 2H 2 O
【0014】このため、従来の鉄酸化細菌は、FeSO
4 は酸化できるが、FeCl2 など塩素イオンが存在す
る場合、塩素イオンの阻害を受けやすい欠点がある。塩
素イオンが硝化細菌などある種の細菌の成育に阻害作用
があることは、広く認められている。鉄鋼排水の場合、
例えばHClを用いる酸洗排水に対してこの鉄酸化細菌
を使用するときは、塩素イオン濃度として3000〜4
000mg/l程度が限界である。これ以上の塩素イオ
ン濃度になると酸化率が急速に低下する。したがって、
塩素イオン耐性の高い鉄酸化細菌を大量かつ迅速に培養
する技術を確立することが極めて重要な課題である。Therefore, the conventional iron oxidizing bacteria are FeSO
4 can be oxidized, but when chlorine ions such as FeCl 2 are present, there is a drawback that chloride ions are easily inhibited. It is widely accepted that chloride ions have an inhibitory effect on the growth of certain bacteria, such as nitrifying bacteria. For steel drainage,
For example, when this iron oxidizing bacterium is used for pickling wastewater using HCl, the chloride ion concentration is 3000 to 4%.
The limit is about 000 mg / l. When the chlorine ion concentration exceeds this, the oxidation rate decreases rapidly. Therefore,
It is extremely important to establish a technique for rapidly and cultivating iron oxidizing bacteria having high chloride ion resistance in a large amount.
【0015】[0015]
【課題を解決するための手段】本発明の鉄酸化細菌の増
殖方法は以下の〜の通りである。The method for growing an iron-oxidizing bacterium of the present invention is as follows.
【0016】 有機性排水中の有機物を分解する処理
設備から採取した活性汚泥を曝気槽に投入し、曝気槽に
2価鉄を含む排水を通水するとともに窒素化合物とリン
化合物を添加し、曝気槽のpHを1.0〜3.0に調整
し、曝気槽に酸素含有ガスを吹き込むことにより活性汚
泥中から鉄酸化細菌を増殖させることを特徴とする鉄酸
化細菌の増殖方法。[0016] Activated sludge collected from a treatment facility for decomposing organic matter in organic wastewater is put into an aeration tank, and wastewater containing ferrous iron is passed through the aeration tank, and a nitrogen compound and a phosphorus compound are added. A method for growing iron-oxidizing bacteria, comprising adjusting the pH of a tank to 1.0 to 3.0 and blowing oxygen-containing gas into an aeration tank to cause iron-oxidizing bacteria to grow from activated sludge.
【0017】 有機性排水中の有機物を分解する処理
設備から採取した活性汚泥を曝気槽に投入し、曝気槽に
2価鉄および塩素イオンを含む排水を通水するとともに
窒素化合物とリン化合物を添加し、曝気槽のpHを1.
0〜3.0に調整し、曝気槽に酸素含有ガスを吹き込む
ことにより活性汚泥中から塩素イオン耐性のある鉄酸化
細菌を増殖させることを特徴とする鉄酸化細菌の増殖方
法。[0017] Activated sludge collected from a treatment facility for decomposing organic matter in organic wastewater is put into an aeration tank, a wastewater containing ferrous iron and chloride ions is passed through the aeration tank, and a nitrogen compound and a phosphorus compound are added. Then, adjust the pH of the aeration tank to 1.
A method for growing iron-oxidizing bacteria, characterized in that chloride-resistant iron-oxidizing bacteria are grown from activated sludge by adjusting the oxygen-containing gas to 0 to 3.0 and blowing an oxygen-containing gas into an aeration tank.
【0018】 製鉄所のコークス工場排水を海水希釈
し、海水希釈した排水中の有機物を分解する処理設備か
ら採取した塩素イオン耐性のある活性汚泥を曝気槽に投
入し、曝気槽に2価鉄および塩素イオンを含む排水を通
水するとともに窒素化合物とリン化合物を添加し、曝気
槽のpHを1.0〜3.0に調整し、曝気槽に酸素含有
ガスを吹き込むことにより活性汚泥中から塩素イオン耐
性のある鉄酸化細菌を増殖させることを特徴とする鉄酸
化細菌の増殖方法。[0018] A coke plant wastewater of an ironworks is diluted with seawater, and activated sludge having chlorine ion resistance collected from a treatment facility for decomposing organic matter in the seawater-diluted wastewater is charged into an aeration tank. The wastewater containing chlorine ions is passed through, and a nitrogen compound and a phosphorus compound are added, the pH of the aeration tank is adjusted to 1.0 to 3.0, and oxygen-containing gas is blown into the aeration tank to remove chlorine from the activated sludge. A method for growing iron-oxidizing bacteria, comprising growing iron-oxidizing bacteria having ion resistance.
【0019】 有機性排水中の有機物を分解する処理
設備から採取した活性汚泥を曝気槽に投入し、曝気槽に
チオ硫酸を含む排水を通水するとともに窒素化合物とリ
ン化合物を添加し、曝気槽に酸素含有ガスを吹き込んで
硫黄酸化細菌を増殖させた後に、曝気槽のpHを1.0
〜3.0に調整し、曝気槽に酸素含有ガスを吹き込むこ
とにより硫黄酸化細菌から塩素イオン耐性のある鉄酸化
細菌を増殖させることを特徴とする鉄酸化細菌の増殖方
法。Activated sludge collected from a treatment facility that decomposes organic matter in organic wastewater is put into an aeration tank, effluent containing thiosulfuric acid is passed through the aeration tank, and a nitrogen compound and a phosphorus compound are added. After the oxygen-containing gas is blown into the to grow the sulfur-oxidizing bacteria, the pH of the aeration tank is adjusted to 1.0.
A method for growing iron-oxidizing bacteria, characterized in that chlorine-resistant iron-oxidizing bacteria are grown from sulfur-oxidizing bacteria by blowing oxygen-containing gas into the aeration tank, the iron-oxidizing bacteria being adjusted to -3.0.
【0020】 酸素含有ガスを曝気槽に吹き込む際
に、曝気槽のAg/AgCl基準の酸化還元電位(OR
P)を+550mV〜+600mVにするとともに、曝
気槽の溶存酸素(DO)を1〜5mg/lにするように
曝気槽に吹き込む酸素含有ガス量を調節することを特徴
とする前記〜のいずれかの鉄酸化細菌の増殖方法。When the oxygen-containing gas is blown into the aeration tank, the oxidation / reduction potential (OR
P) is adjusted to +550 mV to +600 mV, and the amount of oxygen-containing gas blown into the aeration tank is adjusted so that the dissolved oxygen (DO) in the aeration tank is adjusted to 1 to 5 mg / l. How to grow iron-oxidizing bacteria.
【0021】[0021]
【作用】以下、本発明の作用を詳細に説明する。The operation of the present invention will be described below in detail.
【0022】一般的には、チオバチラス・フェロオキシ
ダンスに代表される鉄酸化細菌は、炭素源として有機物
ではなく空気中のCO2 を用いると考えられている。し
かも、このような鉄酸化細菌が生息可能なpHは1〜3
とかなり低いため、通常、都市下水や産業排水の有機物
の処理を行っているpH6〜8の活性汚泥からの増殖は
試みられていない。このため、鉄酸化細菌は、主として
鉱山排水や製鉄所排水のピットなどのpHが1〜3の場
所のスラッジなどから増殖が試みられている。[0022] In general, iron oxidizing bacteria represented by Chiobachirasu-ferrooxidans is believed to use CO 2 in air rather than organic as a carbon source. In addition, the pH at which such iron-oxidizing bacteria can live ranges from 1 to 3.
Therefore, propagation from activated sludge having a pH of 6 to 8, which is generally treating organic matter from municipal sewage or industrial wastewater, has not been attempted. For this reason, iron oxidizing bacteria have been attempted to proliferate mainly from sludge at a pH of 1 to 3, such as pits of mine drainage and steel mill drainage.
【0023】本発明者らは、都市下水や産業排水の有機
物の処理を行っている活性汚泥にも、還元性硫黄化合物
のような無機物を酸化する硫黄酸化細菌が生息している
ことを見出し、増殖に成功している。この硫黄酸化細菌
は塩素イオン耐性があり、チオバチラス属の細菌と考え
られる。また、チオバチラス属の硫黄酸化細菌として
は、チオバチラス・チオオキシダンスなどpHが1〜3
で活性のある種類も知られている。The present inventors have found that activated sludge which treats organic matter from municipal sewage and industrial wastewater also inhabits sulfur-oxidizing bacteria that oxidize inorganic substances such as reducing sulfur compounds. Proliferated successfully. This sulfur-oxidizing bacterium is resistant to chloride ions and is considered to be a bacterium of the genus Thiobacillus. Further, as the sulfur-oxidizing bacteria belonging to the genus Thiobacillus, the pH is 1 to 3 such as Thiobacillus thiooxidans.
The active species are also known.
【0024】このため、都市下水や産業排水の有機物の
処理を行っている活性汚泥中に、同じチオバチラス属に
属してpHが1〜3で2価鉄を酸化するとともに、塩素
イオンに対して耐性がある鉄酸化細菌も生息していると
推定し、都市下水や産業排水の有機物の処理を行ってい
る活性汚泥から容易に増殖できると考えた。For this reason, activated sludge, which treats organic matter from municipal sewage and industrial wastewater, oxidizes ferrous iron belonging to the same genus Thiobacillus at a pH of 1 to 3 and has resistance to chloride ions. It is presumed that some iron-oxidizing bacteria also inhabit, and it could be easily proliferated from activated sludge that treats organic matter in municipal sewage and industrial wastewater.
【0025】また、都市下水や産業排水の有機物の処理
を行っている活性汚泥は、有機物を分解して増殖する従
属栄養細菌が主であるが、塩素イオン耐性がかなりあ
り、馴養操作によって海水程度の塩素イオン濃度約20
000mg/lであっても有機物の処理が可能になると
考えた。Activated sludge that treats organic matter from municipal sewage and industrial wastewater is mainly heterotrophic bacteria that decompose and proliferate organic matter. Chlorine ion concentration of about 20
It was thought that even at 000 mg / l, organic substances could be treated.
【0026】これらのことから、本発明者は、都市下水
や産業排水の有機物の処理を行っている活性汚泥からの
鉄酸化細菌や塩素イオン耐性がある鉄酸化細菌の増殖を
試みた。すなわち、pHが6〜8でしかも有機物が大量
にあるという鉄酸化細菌にとっては過酷な環境に生息し
ている鉄酸化細菌は、従来の鉄酸化細菌と比較して耐性
が強い可能性があり、塩素イオンにも耐性が強いと考え
たのである。From the above, the present inventor tried to grow iron-oxidizing bacteria and chloride-resistant iron-oxidizing bacteria from activated sludge which treats organic matter in municipal sewage and industrial wastewater. In other words, iron oxidizing bacteria that have a pH of 6 to 8 and that have a large amount of organic substances and that live in a harsh environment may have stronger resistance than conventional iron oxidizing bacteria, He thought that it was highly resistant to chloride ions.
【0027】まず、都市下水や産業排水の有機物の処理
を行っている活性汚泥処理場の活性汚泥から塩素イオン
耐性がある鉄酸化細菌を馴養、増殖する方法について説
明する。First, a method of acclimating and growing iron oxidizing bacteria having chlorine ion resistance from activated sludge in an activated sludge treatment plant that treats organic matter from municipal sewage and industrial wastewater will be described.
【0028】下水処理場の曝気槽から採取した活性汚泥
を鉄酸化細菌処理装置の曝気槽に投入し、汚泥を沈降さ
せ上澄液を放流する。既に濃縮された返送汚泥を用いる
場合は、そのまま用いてもかまわない。次に、Fe2+濃
度が500〜2000mg/lの硫酸第二鉄水溶液、お
よび微量栄養源として窒素化合物、リン化合物を添加す
る。窒素化合物としてはアンモニア性窒素(NH4 −
N)が望ましく、5〜20mg/lを添加する。リン化
合物としてはリン酸(PO4 −P)が望ましく、1〜1
0mg/lを添加する。なお、リン化合物として米糠や
米糠の上澄液を用いてもよい。Activated sludge collected from the aeration tank of the sewage treatment plant is put into the aeration tank of the iron oxidizing bacteria treatment apparatus, and the sludge is settled and the supernatant is discharged. When the returned sludge that has already been concentrated is used, it may be used as it is. Next, an aqueous solution of ferric sulfate having an Fe 2+ concentration of 500 to 2000 mg / l, and a nitrogen compound and a phosphorus compound as trace nutrients are added. As the nitrogen compound, ammoniacal nitrogen (NH 4 −
N) is desirable, and 5 to 20 mg / l is added. Phosphate (PO 4 -P) is desirable as the phosphorus compound, 1 to 1
Add 0 mg / l. In addition, rice bran or the supernatant of rice bran may be used as the phosphorus compound.
【0029】その後、曝気槽のpHを1〜3に制御しな
がら、酸素含有ガスによるエアレーションを連続して行
い、混合液のFe2+がFe3+まで酸化されることを水質
分析により確認する。この場合、曝気槽のpHは酸また
はアルカリによって鉄酸化細菌に適した1〜3にするた
め、pHが中性で活性のある有機物分解菌はほとんどが
死滅する。なお、ここで酸素含有ガスとは、酸素を20
〜100%含む空気または不活性ガスであり、pH調整
用の酸としては硫酸が、アルカリとしては水酸化ナトリ
ウムが好ましい。Then, while controlling the pH of the aeration tank to 1 to 3, aeration with an oxygen-containing gas is continuously performed, and it is confirmed by water quality analysis that Fe 2+ of the mixed solution is oxidized to Fe 3+. . In this case, since the pH of the aeration tank is adjusted to 1 to 3 suitable for iron oxidizing bacteria with an acid or alkali, most of the organic matter decomposing bacteria having a neutral pH and being active are killed. Here, the oxygen-containing gas means that oxygen is 20
It is air or an inert gas containing up to 100%, and sulfuric acid is preferred as the acid for pH adjustment, and sodium hydroxide is preferred as the alkali.
【0030】曝気槽内でFe2+が90%以上酸化された
ならば、汚泥を沈降させ上澄液を放流し、先に述べた操
作を繰り返す。そして、Fe2+が90%以上酸化される
時間が24時間以内となった段階で鉄酸化細菌がある程
度増殖したとみなし、連続処理に移行する。When Fe 2+ is oxidized by 90% or more in the aeration tank, the sludge is settled, the supernatant is discharged, and the above-mentioned operation is repeated. Then, when the time during which Fe 2+ is oxidized by 90% or more is within 24 hours, it is considered that iron oxidizing bacteria have proliferated to some extent, and the process proceeds to continuous processing.
【0031】曝気槽に吹き込む酸素含有ガスの量は以下
の通り決定する。まず、実験結果から、2価鉄をほぼ完
全に3価鉄まで酸化した状態でのORPは約+550〜
+600mV(Ag/AgCl電極基準)程度というこ
とが明らかになった。したがって、曝気槽のORPを+
550mV〜+600mV(Ag/AgCl電極基準)
に維持するように酸素含有ガスの量を制御すればよい。
曝気槽のORPを+600mV(Ag/AgCl電極基
準)超に維持することは、エアレーション量が過大とな
って不経済となる。また、処理量が多く、曝気槽のOR
Pが+550mV(Ag/AgCl電極基準)まで上昇
しないときには、酸素含有ガスの量を増加させるのでは
なく、酸素含有ガス中の酸素濃度を上昇させるのが有効
である。酸素含有ガス中の酸素濃度を上昇させるために
は、酸素富化膜、PSAなどを用いるとよい。また、純
酸素ガスを用いてもよい。The amount of the oxygen-containing gas blown into the aeration tank is determined as follows. First, from the experimental results, the ORP in the state where ferrous iron was almost completely oxidized to trivalent iron was about +550 to +550.
It was found that it was about +600 mV (based on the Ag / AgCl electrode). Therefore, the ORP of the aeration tank is increased by +
550 mV to +600 mV (based on Ag / AgCl electrode)
The amount of the oxygen-containing gas may be controlled so as to maintain the pressure.
Maintaining the ORP of the aeration tank at more than +600 mV (based on the Ag / AgCl electrode) is uneconomical due to an excessive amount of aeration. In addition, the processing amount is large, and the
When P does not increase to +550 mV (based on the Ag / AgCl electrode), it is effective to increase the oxygen concentration in the oxygen-containing gas instead of increasing the amount of the oxygen-containing gas. In order to increase the oxygen concentration in the oxygen-containing gas, an oxygen-enriched film, PSA, or the like may be used. Further, pure oxygen gas may be used.
【0032】連続処理は以下の通り実施する。まず、2
価鉄を含有する排水を処理装置の曝気槽の水理学的滞留
時間(HRT)が12時間になるように供給する。排水
供給当初は曝気槽のORPが+550mV以下(Ag/
AgCl電極基準)であり、+550mV以上に維持す
るのがかなり困難である。したがって、曝気槽のDOを
指標として、曝気槽のDOを1〜5mg/lに維持する
ように運転する。曝気槽にDOが1〜5mg/l程度存
在すれば、鉄酸化細菌がDO不足により阻害を受けるこ
とはない。また、曝気槽のDOを5mg/l以上に維持
することは、酸素含有ガスの量が過大となり、不経済と
なる。鉄酸化細菌が十分に増殖していない段階で曝気槽
のORPを急激に上昇させようとすると、酸素含有ガス
の量が増大するため、鉄酸化細菌のフロックを破壊する
結果を招きやすいので、処理当初は曝気槽のDOを指標
とし、酸素含有ガスの量を制御するのが望ましい。The continuous processing is performed as follows. First, 2
The wastewater containing ferrous iron is supplied such that the hydraulic residence time (HRT) of the aeration tank of the treatment device is 12 hours. At the beginning of wastewater supply, the ORP of the aeration tank is +550 mV or less (Ag /
AgCl electrode reference), and it is very difficult to maintain it at +550 mV or more. Therefore, the operation is performed such that the DO of the aeration tank is maintained at 1 to 5 mg / l using the DO of the aeration tank as an index. If DO is present at about 1 to 5 mg / l in the aeration tank, iron oxidizing bacteria will not be inhibited by DO deficiency. Further, maintaining the DO in the aeration tank at 5 mg / l or more results in an excessive amount of oxygen-containing gas, which is uneconomical. If the ORP in the aeration tank is rapidly increased at a stage where the iron oxidizing bacteria are not sufficiently grown, the amount of oxygen-containing gas increases, which tends to destroy the flocs of the iron oxidizing bacteria. Initially, it is desirable to control the amount of oxygen-containing gas using the DO of the aeration tank as an index.
【0033】排水の供給開始後、鉄酸化細菌の馴養が進
み、Fe2+からFe3+への酸化反応が進行すると曝気槽
のORPが徐々に上昇し、ORPによる酸素含有ガスの
量の調節が可能となる。曝気槽のORPが+550mV
(Ag/AgCl電極基準)以上になると、処理水のF
e2+はほとんど検出されなくなり、また、処理水のCO
Dも著しく低下する。したがって、排水処理として機能
するORPの下限値は+550mVとすることが望まし
い。曝気槽のORPを+550mV以上に維持できる状
態になれば、曝気槽のHRTが12時間の状態で排水の
塩素イオン濃度を7〜10日毎に500〜2000mg
/lずつ増大させ、最終的に排水の塩素イオン濃度とす
る。排水の塩素イオン濃度は、海水程度の塩素イオン濃
度の約20000mg/lまで可能である。After the start of the supply of the wastewater, the fermentation of the iron-oxidizing bacteria progresses, and the oxidation reaction from Fe 2+ to Fe 3+ progresses, the ORP in the aeration tank gradually rises, and the amount of oxygen-containing gas is adjusted by the ORP. Becomes possible. ORP of aeration tank is + 550mV
(Ag / AgCl electrode reference) or more, the F
e 2+ is hardly detected, and CO
D also decreases significantly. Therefore, it is desirable that the lower limit value of the ORP functioning as the wastewater treatment be +550 mV. When the ORP of the aeration tank can be maintained at +550 mV or more, the HRT of the aeration tank is 12 hours, and the chloride ion concentration of the wastewater is 500 to 2000 mg every 7 to 10 days.
/ L, and finally the concentration of chlorine ions in the wastewater. The chlorine ion concentration of the wastewater can be up to about 20,000 mg / l of the chloride ion concentration of seawater.
【0034】さらに、その後、曝気槽のHRTが12時
間→8時間→6時間→4時間→3時間→2時間→1時間
となるように7〜10日毎に排水の供給量を増加させ、
処理性能を検討し、排水のFe2+濃度に応じたHRTを
決定する。このようにして、塩素イオンに耐性がある鉄
酸化細菌を容易に増殖させることが可能である。排水の
塩素イオン濃度が20000mg/l程度に上昇して
も、2価鉄の3価鉄への酸化率99%以上を保つことが
できる。また、この場合、塩素イオンとして海水を希釈
液に使用することもできる。Further, thereafter, the supply amount of drainage is increased every 7 to 10 days so that the HRT of the aeration tank becomes 12 hours → 8 hours → 6 hours → 4 hours → 3 hours → 2 hours → 1 hour,
The HRT according to the Fe 2+ concentration of the wastewater is determined by examining the treatment performance. In this way, it is possible to easily grow iron oxidizing bacteria that are resistant to chloride ions. Even if the chloride ion concentration in the wastewater increases to about 20,000 mg / l, the oxidation rate of ferrous iron to ferric iron can be maintained at 99% or more. Further, in this case, seawater can be used as the diluent as chlorine ions.
【0035】このようにして、都市下水処理場の主とし
て有機物を分解している活性汚泥から、無機物であるF
e2+を酸化するとともに、塩素イオンに耐性がある鉄酸
化細菌を大量かつ安価に増殖させることが可能となる。In this way, the activated sludge of the municipal sewage treatment plant, which mainly decomposes organic matter, is converted into inorganic F
In addition to oxidizing e 2+ , iron-oxidizing bacteria resistant to chloride ions can be grown in large quantities at low cost.
【0036】さらに、塩素イオン耐性がある鉄酸化細菌
の増殖期間を短縮するためには、製鉄所コークス工場排
水(安水)処理場の活性汚泥を用いることが望ましい。
すなわち、この活性汚泥は、コークス工場排水が海水に
より3〜5倍に希釈されて用いられているため、塩素イ
オン耐性がすでに海水並の20000mg/lに達して
いる。したがって、最初から海水並の塩素イオン濃度で
鉄酸化細菌を増殖させることが可能となる。この場合、
塩素イオン耐性のある鉄酸化細菌の増殖期間を3〜5カ
月短縮することができる。Furthermore, in order to reduce the growth period of iron oxidizing bacteria having chloride ion resistance, it is desirable to use activated sludge from a wastewater treatment plant (aqueous water) at a steelworks coke plant.
That is, since the activated sludge is used after the coke plant wastewater is diluted 3 to 5 times with seawater, the chlorine ion resistance has already reached 20,000 mg / l, which is equivalent to seawater. Therefore, it becomes possible to grow iron-oxidizing bacteria at the same chloride ion concentration as seawater from the beginning. in this case,
It is possible to shorten the growth period of chloride-resistant iron-oxidizing bacteria by 3 to 5 months.
【0037】さらに、都市下水処理場や製鉄所コークス
工場排水処理場などの活性汚泥からチオ硫酸を用いて増
殖させた硫黄酸化細菌により、塩素イオン耐性のある鉄
酸化細菌の増殖を行うことも可能である。この場合、増
殖している硫黄酸化細菌は塩素イオン耐性がすでに50
00〜6000mg/l程度あるため、やはり塩素イオ
ン耐性のある鉄酸化細菌の増殖期間を1〜2カ月短縮す
ることが可能となる。[0037] Further, it is also possible to grow iron oxidizing bacteria resistant to chloride ions by using sulfur oxidizing bacteria grown from activated sludge in municipal sewage treatment plants and ironworks coke plant wastewater treatment plants using thiosulfuric acid. It is. In this case, the growing sulfur oxidizing bacteria are already resistant to chloride ions by 50.
Since it is about 00 to 6000 mg / l, it is possible to shorten the growth period of the iron oxidizing bacteria also having chloride ion resistance by 1 to 2 months.
【0038】[0038]
【実施例1】本発明の方法を、製鉄所から発生する表面
処理鋼板排水を処理する鉄酸化細菌の増殖に実施した。
処理排水はpHが2〜3、Fe2+濃度が500〜200
0mg/l、Cl- 濃度が1000〜15000mg/
lと高く、また、Cl- 濃度の変動幅が大きいので、従
来の鉄酸化細菌による処理方法をそのまま用いることが
できない。また、亜鉛イオンを2000〜3000mg
/l、錫イオンを50〜100mg/l、3価クロムイ
オンを50〜100mg/l程度含有している。排水の
水温は10〜35℃である。EXAMPLE 1 The method of the present invention was applied to the growth of iron-oxidizing bacteria for treating surface treated steel plate wastewater generated from an ironworks.
The treated wastewater has a pH of 2 to 3 and an Fe 2+ concentration of 500 to 200.
0 mg / l, Cl - concentration of 1000-15000 mg /
1 and the fluctuation range of the Cl - concentration is large, so that the conventional treatment method using iron oxidizing bacteria cannot be used as it is. In addition, 2000-3000mg of zinc ions
/ L, 50 to 100 mg / l of tin ion and about 50 to 100 mg / l of trivalent chromium ion. The water temperature of the waste water is 10 to 35 ° C.
【0039】図1に鉄酸化細菌を増殖させる装置を示
す。本装置は、鉄酸化細菌を増殖させる曝気槽3、鉄酸
化細菌と処理水を分離する汚泥沈降槽5、酸素含有ガス
を吹き込むブロア14などから構成されている。曝気槽
3の下部には、気孔径が0.5mmのセラミックス製の
微細気泡型の散気管4を設置してある。FIG. 1 shows an apparatus for growing iron-oxidizing bacteria. The apparatus comprises an aeration tank 3 for growing iron oxidizing bacteria, a sludge settling tank 5 for separating iron oxidizing bacteria and treated water, a blower 14 for blowing oxygen-containing gas, and the like. In the lower part of the aeration tank 3, a fine bubble type diffuser 4 made of ceramics having a pore diameter of 0.5 mm is provided.
【0040】まず、曝気槽3および汚泥沈降槽5に都市
下水の有機物の処理を行っている下水処理場の活性汚泥
混合液(活性汚泥濃度:1000mg/l)を投入し、
沈殿させ、上澄液をすてた。鉄酸化細菌を馴養するた
め、酸またはアルカリにより曝気槽3のpHを2に制御
し、Fe2+濃度が1500mg/l、亜鉛イオンが30
00mg/l、錫イオンが100mg/l、3価クロム
イオンが100mg/lの人工排水を添加した。First, an activated sludge mixed solution (activated sludge concentration: 1000 mg / l) from a sewage treatment plant that treats organic matter in municipal sewage is charged into the aeration tank 3 and the sludge settling tank 5.
The precipitate was allowed to settle and the supernatant was discarded. In order to acclimate iron oxidizing bacteria, the pH of the aeration tank 3 is adjusted to 2 with an acid or an alkali, and the Fe 2+ concentration is 1500 mg / l and zinc ions are 30
An artificial drainage of 00 mg / l, tin ion of 100 mg / l, trivalent chromium ion of 100 mg / l was added.
【0041】曝気槽3には、ORPセンサー10とDO
センサー12を設置し、鉄酸化細菌の馴養期は曝気槽3
のDOを3mg/lと設定して、DOによってブロア1
4の回転数を制御し、エアレーションを行った。曝気槽
3のORP(Ag/AgCl基準)が+550mV以上
に上昇したらORP(Ag/AgCl基準)制御に変更
し、ORP(Ag/AgCl基準)によってブロア14
の回転数を制御し、空気によるエアレーションを行っ
た。また、曝気槽3のpHは、10%硫酸または10%
NaOH水溶液によって前と同じ2.0に制御した。窒
素化合物、リン化合物として硫酸アンモニウム、リン酸
をそれぞれ10mg/lずつ添加した。水温は20℃に
制御した。The aeration tank 3 has an ORP sensor 10 and a DO
A sensor 12 is installed, and the fermentation period of iron-oxidizing bacteria is set in the aeration tank 3
Is set to 3 mg / l, and blower 1 is set by DO.
Aeration was performed by controlling the number of rotations of No. 4. When the ORP (Ag / AgCl reference) of the aeration tank 3 rises to +550 mV or more, the control is changed to the ORP (Ag / AgCl reference) control, and the blower 14 is controlled by the ORP (Ag / AgCl reference).
The number of rotations was controlled, and aeration with air was performed. The pH of the aeration tank 3 is 10% sulfuric acid or 10%
It was controlled at 2.0 as before by an aqueous NaOH solution. Ammonium sulfate and phosphoric acid were added at 10 mg / l each as a nitrogen compound and a phosphorus compound. Water temperature was controlled at 20 ° C.
【0042】曝気槽3に排水を供給してから14日後に
曝気槽3のORPが+550mV以上となり、処理水の
Fe2+が10mg/l以下となった。この段階で再び曝
気槽3の汚泥を沈殿させ、上澄液をすて、同じ人工排水
を供給した。この操作を繰り返すと、図2に示すよう
に、24時間以内に処理水のFe2+が10mg/l以下
となった。14 days after supplying the wastewater to the aeration tank 3, the ORP of the aeration tank 3 became +550 mV or more, and the Fe 2+ of the treated water became 10 mg / l or less. At this stage, the sludge in the aeration tank 3 was precipitated again, the supernatant was removed, and the same artificial drainage was supplied. By repeating this operation, as shown in FIG. 2, the Fe 2+ of the treated water became 10 mg / l or less within 24 hours.
【0043】この段階で連続操作に移行した。すなわ
ち、曝気槽3のHRTを7日毎に8時間→6時間→4時
間→3時間→2時間→1.5時間となるように短縮し
た。いずれの条件においても処理水のFe2+は10mg
/l以下に除去されており、鉄酸化細菌の馴養が完了し
たと判断した。At this stage, the operation was shifted to a continuous operation. That is, the HRT of the aeration tank 3 was shortened every 8 days from 8 hours → 6 hours → 4 hours → 3 hours → 2 hours → 1.5 hours. Under any conditions, the amount of Fe 2+ in the treated water was 10 mg.
/ L or less, and it was judged that the adaptation of the iron-oxidizing bacteria was completed.
【0044】鉄酸化細菌の馴養が完了すると、曝気槽3
のHRTが2時間の条件で人工排水を供給するととも
に、塩素イオン濃度を1000mg/lから7日毎に1
000mg/lずつ15000mg/lまで塩化ナトリ
ウム(NaCl)を用いて増加させた。いずれの条件に
おいても処理水のFe2+は10mg/l以下に除去され
ており、鉄酸化細菌が塩素イオンに対して耐性を有して
いると判断された。After the fermentation of the iron-oxidizing bacteria is completed, the aeration tank 3
HRT supplies artificial wastewater under the condition of 2 hours, and increases the chloride ion concentration from 1000 mg / l to 1 every 7 days.
It was increased with sodium chloride (NaCl) in 1 000 mg / l increments to 15000 mg / l. Under any of the conditions, Fe 2+ of the treated water was removed to 10 mg / l or less, and it was determined that the iron-oxidizing bacteria had resistance to chloride ions.
【0045】この後約1年間、曝気槽3のHRTが2時
間、水温が10〜35℃、塩素イオン濃度が15000
mg/lの条件で連続処理を行った。この結果、連続処
理の処理水は、表1に処理水質の一例を示すように、ど
の水温の条件においてもFe2+が15mg/l以下まで
除去されており、CODも15mg/l以下と良好であ
った。この結果、この鉄酸化細菌は水温の変動にも強い
ことが推定された。Thereafter, for about one year, the HRT of the aeration tank 3 was maintained for 2 hours, the water temperature was 10 to 35 ° C., and the chlorine ion concentration was 15,000.
Continuous treatment was performed under the condition of mg / l. As a result, as shown in Table 1, an example of the quality of the treated water, Fe 2+ was removed to 15 mg / l or less and COD was 15 mg / l or less as shown in Table 1. Met. As a result, it was presumed that the iron-oxidizing bacteria were also resistant to fluctuations in water temperature.
【0046】[0046]
【表1】 (データ;10〜12個の平均値)[Table 1] (Data; average value of 10 to 12 pieces)
【0047】曝気槽3中の鉄酸化細菌の濃度は、連続実
験に移行後急速に増加し、50000〜100000m
g/lに達した。しかし、沈降性は悪化せず、図3に示
すように、沈降性の指標であるSVIは10〜50と極
めて良好であることが確認された。したがって、曝気槽
3中の鉄酸化細菌を高濃度に維持することが容易であ
り、本方法を用いることにより曝気槽3や汚泥沈降槽5
のコンパクト化が可能となる。The concentration of the iron-oxidizing bacteria in the aeration tank 3 rapidly increased after shifting to the continuous experiment, and was 50,000 to 100,000 m
g / l. However, the sedimentability did not deteriorate, and as shown in FIG. 3, it was confirmed that the SVI, which is an index of the sedimentability, was 10 to 50, which was extremely good. Therefore, it is easy to maintain the iron oxidizing bacteria in the aeration tank 3 at a high concentration, and by using this method, the aeration tank 3 and the sludge settling tank 5
Can be made more compact.
【0048】[0048]
【実施例2】図1に示した装置の曝気槽3および汚泥沈
降槽5に製鉄所コークス工場排水の有機物の処理を行っ
ている処理場の活性汚泥混合液(活性汚泥濃度:500
0mg/l)を投入し、実施例1と同様の方法で鉄酸化
細菌を馴養した。ただし、コークス工場排水は海水で4
倍に希釈されて処理されているため、人工排水は当初か
らCl- 濃度を15000mg/l、Fe2+濃度を20
00mg/l、亜鉛イオンを3000mg/l、錫イオ
ンを100mg/l、3価クロムイオンを100mg/
lの組成に調整した。Embodiment 2 An activated sludge mixed solution (activated sludge concentration: 500) of a treatment plant in which an aeration tank 3 and a sludge settling tank 5 of the apparatus shown in FIG.
0 mg / l), and iron-oxidizing bacteria were acclimated in the same manner as in Example 1. However, the coke plant wastewater is 4
Since the artificial wastewater is diluted and treated twice, the artificial wastewater has a Cl - concentration of 15000 mg / l and an Fe 2+ concentration of 20 from the beginning.
00 mg / l, zinc ion 3000 mg / l, tin ion 100 mg / l, trivalent chromium ion 100 mg / l
1 composition.
【0049】この結果、鉄酸化細菌の馴養期間を実施例
1と比較して約4カ月短縮できた。さらに、曝気槽3の
HRTが2時間、水温が10〜35℃、塩素イオン濃度
が15000mg/lの条件で連続処理を行った結果、
連続処理の処理水はどの水温の条件においてもFe2+が
15mg/l以下まで除去されており、CODも15m
g/l以下と良好な結果が得られた。このように、製鉄
所コークス工場排水の有機物の処理を行っている処理場
の活性汚泥のように海水に耐性のある活性汚泥を用いる
と、塩素イオン耐性のある鉄酸化細菌をより短期間で馴
養できることが明らかになった。As a result, the acclimatization period of the iron-oxidizing bacteria could be shortened by about 4 months as compared with Example 1. Furthermore, as a result of performing continuous treatment under the conditions of HRT of the aeration tank 3 for 2 hours, water temperature of 10 to 35 ° C., and chloride ion concentration of 15000 mg / l,
In the treated water of the continuous treatment, Fe 2+ was removed to 15 mg / l or less at any water temperature, and COD was 15 m / l.
g / l or less, a good result was obtained. In this way, using activated sludge that is resistant to seawater, such as activated sludge at a treatment plant that treats organic matter from the effluent of a steel mill coke plant, can acclimate chloride-resistant iron-oxidizing bacteria in a shorter period of time. It became clear what we could do.
【0050】[0050]
【実施例3】図1に示した装置の曝気槽3および汚泥沈
降槽5にチオ硫酸含有排水の処理を行っている処理場の
硫黄酸化細菌(濃度3500mg/l)を投入し、実施
例1と同様の方法で硫黄酸化細菌から鉄酸化細菌を馴養
した。この硫黄酸化細菌は活性汚泥から馴養したもので
あり、Cl- 耐性が5000〜6000mg/lあった
ため、人工排水は当初からCl- 濃度を5000mg/
l、Fe2+濃度を2000mg/l、亜鉛イオンを30
00mg/l、錫イオンを100mg/l、3価クロム
イオンを100mg/lの組成に調整した。Example 3 A sulfur-oxidizing bacterium (concentration: 3500 mg / l) from a treatment plant for treating thiosulfuric acid-containing wastewater was introduced into the aeration tank 3 and the sludge settling tank 5 of the apparatus shown in FIG. Iron-oxidizing bacteria were acclimated from sulfur-oxidizing bacteria in the same manner as described above. Since this sulfur-oxidizing bacterium was acclimated from activated sludge and had a Cl - resistance of 5000 to 6000 mg / l, the artificial wastewater had a Cl - concentration of 5000 mg / l from the beginning.
l, Fe 2+ concentration 2000 mg / l, zinc ion 30
The composition was adjusted to 00 mg / l, tin ion to 100 mg / l, and trivalent chromium ion to 100 mg / l.
【0051】この結果、鉄酸化細菌の馴養期間を実施例
1と比較して約1カ月短縮できた。さらに、曝気槽3の
HRTが2時間、水温が10〜35℃、塩素イオン濃度
が15000mg/lの条件で連続処理を行った結果、
連続処理の処理水はどの水温の条件においてもFe2+が
15mg/l以下まで除去されており、CODも15m
g/l以下と良好な結果が得られた。このように、硫化
水素排水の処理を行っている処理場の硫黄酸化細菌を用
いると塩素イオン耐性のある鉄酸化細菌をより短期間で
馴養できることが明らかになった。As a result, the acclimatization period of the iron-oxidizing bacteria could be shortened by about one month as compared with Example 1. Furthermore, as a result of performing continuous treatment under the conditions of HRT of the aeration tank 3 for 2 hours, water temperature of 10 to 35 ° C., and chloride ion concentration of 15000 mg / l,
In the treated water of the continuous treatment, Fe 2+ was removed to 15 mg / l or less at any water temperature, and COD was 15 m / l.
g / l or less, a good result was obtained. Thus, it was revealed that the use of sulfur oxidizing bacteria in a treatment plant that treats hydrogen sulfide wastewater allows the fermentation of iron oxidizing bacteria having chloride ion resistance in a shorter period of time.
【0052】[0052]
【発明の効果】本発明により、都市下水や産業排水の活
性汚泥から塩素イオン耐性のある鉄酸化細菌を馴養、増
殖させることが可能となる。この結果、曝気槽に高濃度
の塩素イオン耐性のある鉄酸化細菌を維持できるため、
排水処理効率、処理水質が向上し、Fe2+とCl- を含
有する排水の安定した処理が可能になる。According to the present invention, it becomes possible to adapt and multiply chloride-resistant iron-oxidizing bacteria from activated sludge of municipal sewage and industrial wastewater. As a result, it is possible to maintain a high concentration of chloride-resistant iron-oxidizing bacteria in the aeration tank,
Effluent treatment efficiency and treated water quality are improved, and stable treatment of wastewater containing Fe 2+ and Cl − becomes possible.
【図1】本発明を実施する装置の一例を示す図である。FIG. 1 is a diagram showing an example of an apparatus for implementing the present invention.
【図2】都市下水処理場活性汚泥からの鉄酸化細菌の馴
養の一例を示す図である。FIG. 2 is a diagram showing an example of acclimation of iron oxidizing bacteria from municipal sewage treatment plant activated sludge.
【図3】都市下水処理場活性汚泥から馴養した鉄酸化細
菌の沈降性の一例を示す図である。FIG. 3 is a view showing an example of the sedimentation of iron oxidizing bacteria acclimated from activated sludge of an urban sewage treatment plant.
1 排水タンク 2 排水供給ポンプ 3 曝気槽 4 散気管 5 汚泥沈降槽 6 レーキ 7 処理水 8 pHセンサー 9 pH制御装置 10 ORPセンサー 11 ORP制御装置 12 DOセンサー 13 DO制御装置 14 ブロア 15 汚泥返送ポンプ 16 タイマー 17 処理水タンク 19 硫酸タンク 20 NaOHタンク 21 硫酸ポンプ 22 NaOHポンプ DESCRIPTION OF SYMBOLS 1 Drainage tank 2 Drainage supply pump 3 Aeration tank 4 Aeration tube 5 Sludge settling tank 6 Rake 7 Treated water 8 pH sensor 9 pH control device 10 ORP sensor 11 ORP control device 12 DO sensor 13 DO control device 14 Blower 15 Sludge return pump 16 Timer 17 Treated water tank 19 Sulfuric acid tank 20 NaOH tank 21 Sulfuric acid pump 22 NaOH pump
───────────────────────────────────────────────────── フロントページの続き (72)発明者 野村 幸弘 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (56)参考文献 特開 平8−24894(JP,A) 特開 昭63−49298(JP,A) 特開 昭60−7994(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 3/34 C12N 1/20 ────────────────────────────────────────────────── ─── Continued from the front page (72) Inventor Yukihiro Nomura 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (56) References JP-A-8-24894 (JP, A) JP-A-63-49298 (JP, A) JP-A-60-7994 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 3/34 C12N 1/20
Claims (5)
備から採取した活性汚泥を曝気槽に投入し、曝気槽に2
価鉄を含む排水を通水するとともに窒素化合物とリン化
合物を添加し、曝気槽のpHを1.0〜3.0に調整
し、曝気槽に酸素含有ガスを吹き込むことにより活性汚
泥中から鉄酸化細菌を増殖させることを特徴とする鉄酸
化細菌の増殖方法。1. Activated sludge collected from a treatment facility for decomposing organic substances in organic wastewater is introduced into an aeration tank, and the activated sludge is added to the aeration tank.
While passing through the wastewater containing valent iron, the nitrogen compound and the phosphorus compound are added, the pH of the aeration tank is adjusted to 1.0 to 3.0, and oxygen-containing gas is blown into the aeration tank to remove iron from the activated sludge. A method for growing iron oxidizing bacteria, comprising growing oxidizing bacteria.
備から採取した活性汚泥を曝気槽に投入し、曝気槽に2
価鉄および塩素イオンを含む排水を通水するとともに窒
素化合物とリン化合物を添加し、曝気槽のpHを1.0
〜3.0に調整し、曝気槽に酸素含有ガスを吹き込むこ
とにより活性汚泥中から塩素イオン耐性のある鉄酸化細
菌を増殖させることを特徴とする鉄酸化細菌の増殖方
法。2. Activated sludge collected from a treatment facility for decomposing organic matter in organic wastewater is introduced into an aeration tank, and the activated sludge is added to the aeration tank.
The wastewater containing valent iron and chlorine ions is passed through, and a nitrogen compound and a phosphorus compound are added.
A method for growing iron-oxidizing bacteria, characterized in that chloride-resistant iron-oxidizing bacteria are grown from activated sludge by adjusting the pH to -3.0 and blowing an oxygen-containing gas into an aeration tank.
し、海水希釈した排水中の有機物を分解する処理設備か
ら採取した塩素イオン耐性のある活性汚泥を曝気槽に投
入し、曝気槽に2価鉄および塩素イオンを含む排水を通
水するとともに窒素化合物とリン化合物を添加し、曝気
槽のpHを1.0〜3.0に調整し、曝気槽に酸素含有
ガスを吹き込むことにより活性汚泥中から塩素イオン耐
性のある鉄酸化細菌を増殖させることを特徴とする鉄酸
化細菌の増殖方法。3. An activated sludge having chlorine ion resistance collected from a treatment facility for diluting organic matter in seawater-diluted wastewater by diluting seawater from a coke plant wastewater of a steelworks into an aeration tank, and then divalent into the aeration tank. The wastewater containing iron and chlorine ions is passed through, and a nitrogen compound and a phosphorus compound are added, the pH of the aeration tank is adjusted to 1.0 to 3.0, and an oxygen-containing gas is blown into the aeration tank to cause the activated sludge. A method for growing iron-oxidizing bacteria, comprising growing chloride-resistant iron-oxidizing bacteria from a microorganism.
備から採取した活性汚泥を曝気槽に投入し、曝気槽にチ
オ硫酸を含む排水を通水するとともに窒素化合物とリン
化合物を添加し、曝気槽に酸素含有ガスを吹き込んで硫
黄酸化細菌を増殖させた後に、曝気槽のpHを1.0〜
3.0に調整し、曝気槽に酸素含有ガスを吹き込むこと
により硫黄酸化細菌から塩素イオン耐性のある鉄酸化細
菌を増殖させることを特徴とする鉄酸化細菌の増殖方
法。4. Activated sludge collected from a treatment facility for decomposing organic matter in organic wastewater is introduced into an aeration tank, and wastewater containing thiosulfuric acid is passed through the aeration tank, and a nitrogen compound and a phosphorus compound are added. After the oxygen-containing gas is blown into the aeration tank to grow the sulfur-oxidizing bacteria, the pH of the aeration tank is adjusted to 1.0 to 1.0.
A method for growing iron-oxidizing bacteria, comprising adjusting the pH to 3.0 and blowing an oxygen-containing gas into an aeration tank to grow iron-oxidizing bacteria having chlorine ion resistance from sulfur-oxidizing bacteria.
曝気槽のAg/AgCl基準の酸化還元電位(ORP)
を+550mV〜+600mVにするとともに、曝気槽
の溶存酸素(DO)を1〜5mg/lにするように曝気
槽に吹き込む酸素含有ガス量を調節することを特徴とす
る請求項1〜4のいずれかに記載の鉄酸化細菌の増殖方
法。5. When blowing an oxygen-containing gas into an aeration tank,
Redox potential (ORP) based on Ag / AgCl of aeration tank
5 is set to +550 mV to +600 mV, and the amount of oxygen-containing gas blown into the aeration tank is adjusted so that the dissolved oxygen (DO) in the aeration tank is 1 to 5 mg / l. The method for growing iron-oxidizing bacteria according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06220822A JP3136458B2 (en) | 1994-08-24 | 1994-08-24 | How to grow iron-oxidizing bacteria |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06220822A JP3136458B2 (en) | 1994-08-24 | 1994-08-24 | How to grow iron-oxidizing bacteria |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0857497A JPH0857497A (en) | 1996-03-05 |
JP3136458B2 true JP3136458B2 (en) | 2001-02-19 |
Family
ID=16757101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06220822A Expired - Fee Related JP3136458B2 (en) | 1994-08-24 | 1994-08-24 | How to grow iron-oxidizing bacteria |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3136458B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004283001A (en) * | 2000-12-08 | 2004-10-14 | Bicom:Kk | Promotor for culturing autotrophic bacterium at high concentration |
JP2002176970A (en) * | 2000-12-13 | 2002-06-25 | Bicom:Kk | High-concentration sulfur-oxidizing bacterium, and method for high-concentration culture of sulfur- oxidizing bacterium |
JP6968023B2 (en) * | 2018-04-17 | 2021-11-17 | 株式会社安藤・間 | In-situ purification method and in-situ purification device for contaminated soil or water |
-
1994
- 1994-08-24 JP JP06220822A patent/JP3136458B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0857497A (en) | 1996-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Di Capua et al. | Electron donors for autotrophic denitrification | |
US5169532A (en) | Method for biological removal of cyanides, thiocyanate and toxic heavy metals from highly alkaline environments | |
US20060000784A1 (en) | Water treatment | |
JP2002011495A (en) | Method for removing nitrogen and phosphor from wastewater | |
JP4570069B2 (en) | Method for removing ammonia nitrogen from wastewater | |
JP2003053383A (en) | Method for removing nitrogen from waste water | |
JP2006205097A (en) | Biological treatment method of wastewater | |
JP3136458B2 (en) | How to grow iron-oxidizing bacteria | |
JP3749617B2 (en) | Method of acclimatizing sulfur-oxidizing bacteria and method of removing nitrogen from wastewater using sulfur-oxidizing bacteria | |
JP3958900B2 (en) | How to remove nitrogen from wastewater | |
JPH08173990A (en) | Treatment method for drainage containing divalent iron | |
JPH10118664A (en) | Treatment of waste water containing cyan compound and organic matter | |
JP2003071490A (en) | Method for removing nitrogen from wastewater | |
JPH09206790A (en) | Treatment of waste water of steel product pickling containing nitrate nitrogen | |
JP2001212592A (en) | Method for removing nitrogen from wastewater | |
JP2618164B2 (en) | Conditioning and propagation of sulfur oxidizing bacteria by addition of inorganic coagulant and biological treatment of wastewater containing reducing sulfur compounds | |
JP2002018479A (en) | Method for removing nitrogen from water | |
JP2582695B2 (en) | Biological treatment method for wastewater containing hydrogen sulfide | |
JP3227554B2 (en) | Treatment of wastewater containing ferrous iron | |
JP3270652B2 (en) | Wastewater nitrogen removal method | |
Laliberte | Reducing the toxicity of gold-mine effluent using biological reactors and precipitation | |
JP3184947B2 (en) | Method for treating wastewater containing reducing sulfur compounds | |
JP3241565B2 (en) | Treatment of wastewater containing reducing sulfur compounds by microorganisms | |
JP2562386B2 (en) | Rapid cultivation and growth method for useful microorganisms suitable for wastewater treatment | |
KR20030092751A (en) | Novel bacteria having the iron-oxidation activity and method for the leaching of heavy metals using the same bacteria |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20001107 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313122 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313121 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081208 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081208 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091208 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091208 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091208 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091208 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101208 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101208 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111208 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111208 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121208 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121208 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131208 Year of fee payment: 13 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131208 Year of fee payment: 13 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |